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ABSTRACT 

A model of  ice cover thermodynamics was used to 
simulate ice growth and decay along the international 
section of the St. Lawrence River for winter 1980- 
81. This winter was chosen because of the excep- 
tionally cold weather in December and January, and 
because of the abnormally warm air temperatures 
during the second half of  February. At the air-ice 
interface, the model computes the surface energy 
transfer components and a resulting equilibrium sur- 
face temperature. At the lower boundary, an empiri- 
cal algorith simulates the turbulent transfer of heat 
from the water. Within the ice, and implicit numerical 
solution to the general heat diffusion equation is 
used, permitting stable solutions for a variety of  time 
intervals and node distances within the model. The 
model was used to simulate ice growth and decay at 
five sites characterized by their flow velocity, the 
date of  ice-cover formation, and the water tempera- 
ture regime. The model adequately represented 
growth rates at all five sites, but produced decay rates 
slower than those observed. Simulated breakup was 
1-7  days later than observed, presumably because 
mechanical weakening of the ice was not taken into 
consideration. During the growth period, the model is 
far more sensitive to the values assigned to ice proper- 
ties than it is to the error range in the meteorological 
variables. During the breakup period, the most sensi- 
tive boundary variable is water temperature. 

INTRODUCTION 

The purpose of this paper is to describe the con- 
struction and application of a one-dimensional ther- 
modynamic model for simulating ice cover growth 
and decay on rivers. While Ashton (1978) has pointed 
out that the significant events in river-ice cover 
chronology occur in abrupt transitions from one 
steady-state condition to another, a thermal model 
that excludes hydraulic or mechanical forces serves 
a number of uses. The primary use described here is 
as a tool for investigating the sensitivity of  the ice 
cover to various heat-transfer processes, and to the 
values assigned to a variety of model properties and 
boundary conditions. 

In addition, the model has application as a simula- 
tor of ice growth and decay on small lakes or regu- 
lated rivers, where hydraulic forces are minimal or 
well controlled. The latter portion of the paper de. 
scribes such an application to five sites on the St. 
Lawrence River above the hydropower complex at 
ComwaU, Ontario. Finally, the model provides a 
means of estimating both the temperature gradient 
within the snow and ice and the amount of absorbed 
shortwave radiation. 

Thermodynamic models of  river ice sheets are not 
new, but most work has concentrated on the turbu- 
lent transfer of heat from the river to the underside 
of the ice (e.g. Baines, 1961; Ashton, 1973) with 
little emphasis on heat transfer within the ice cover 
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and at the surface boundary. Calkins (1979), for 
example, used a simple molecular conduction model 
with a linear temperature gradient to simulate the 
effect of frazil ice porosity on ice-cover growth rates. 

Models of sea or lake ice are more likely to em- 
phasize the surface and internal processes. Wake and 
Rumer (1979) applied a two-dimensional model 
to Lake Erie, computing an equilibrium surface tem- 
perature from energy balance considerations, and 
conducting heat within the ice along a linear tem- 
perature gradient. More closely related to the work 
reported here is a one-dimensional model of sea ice 
thermodynamics described by Maykut and Unter- 
steiner (1971). Their model simulates heat transfer 
below, within, and above the ice-snow cover; allows 
shortwave radiation to be absorbed within the ice 
layer; and allows nonlinear temperature gradients to 
develop. 

A much simpler approach to simulating ice growth 
and decay in rivers has recently been developed by 
Shen and Yapa (1983). They have expanded the 
degree-day approach to ice growth to include an 
empirical decay function. They tested the model for 
10 sites along the St. Lawrence River over nine winter 
seasons. 

The model presented here couples a simple algo- 
rithm for simulating the turbulent transfer of heat 
from the river to the ice base with surface energy 
budget simulation and two different algorithms for 
determining the rate of heat transfer through the ice 
and snow. The first approach assumes the molecular 
conduction of heat along a linear temperature gra- 
dient. In the second approach, numerical solutions 
are employed, based on the implicit temperature dif- 
fusion scheme described by Outcalt et al. (1975). The 
approach permits the model to couple a Beer's law 
approximation of the internal absorption of short- 
wave radiation to a nonlinear thermal profile evolu- 
tion. 

Inputs to the model are daily values for air tem- 
perature, dew-point temperature, wind speed, inci- 
dent global shortwave radiation, and water temper- 
ature. Atmospheric pressure and water velocity 
beneath the ice cover are held constant. Observed 
snow thicknesses on the river ice are inserted as 
available (every 7 days for the St. Lawrence River). It 
is also necessary to identify the date of maximum ice 
cover thickness. In return, the model simulates daily 

values for surface temperature, components of the 
surface energy budget, ice thickness, and temperature 
profiles within the snow and ice cover. 

DESCRIPTION OF THE MODEL 

A cross section of the ice cover (Fig, 1) showsthe 
layers that control the transfer of heat from the river 
to the atmosphere and the energy fluxes that are 
considered within the model. The snow layer may be 
absent during any portion of the ice season, thus al- 
lowing shortwave radiation to penetrate the ice sur- 
face. 
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Fig. 1. Vertical section through river ice showing energy 
fluxes during growth period. 

A number of assumptions simplify the simulation 
of growth and decay. Simulation starts once a solid 
ice cover has formed. Snow-ice formation is not 
considered; hence, simulated growth can only occur 
at the base of the  ice layer. The temperature at  the 
water-ice interface is assumed to be 0.0*C and the 
surface temperature (T s) is a derived value. Simulated 
ice decay takes place at the base of the ice layer, and 
also at the surface during those periods when the sur- 
face temperature is 0°C. Ice and snow properties, 
such as density, are considered to be constant and 
uniform throughout each layer. In addition, the flux 



253 

of heat out of the ice is assumed equal to the flux 
entering the lower surface of the snow. 

The simulation model is based on a set of equa- 
tions that defines the energy fluxes within the snow 
and ice layers and the mass balances at the boundaries 
of the snow and the ice cover. The governing equa- 
tion at the lower ice boundary relates the change in 
ice thickness to the relative magnitudes of the flux of 
heat at the lower surface of the ice cover, Qi (W m-B, 
and the flux of heat from the water to the ice, Qw 
(W m-b. 

Qi - Qw = Pi h(dZi/dt), (1) 

where Pi is ice density (kg m-3), ), is the latent heat of 
fusion (J kg-l), Z i represents ice-cover thickness (m), 
and t is time (s). By assuming a steady-state partition- 
ing of energy fluxes at the snow or ice surface, one 
can calculate the upper boundary condition for 
energy flux as follows: 

Qi (or Qs) = -(Qm + Qh + Qle), (2) 

where Qra is the net radiation flux (W m-~), Qh is the 
sensible heat flux to the air (W m-~), and Qle is the 
latent heat flux to the air (W m-2). 

Heat transfer from the river to the base of the ice 
sheet is computed with an empirical relation that cal- 
culates the rate of heat transfer from a fluid to the 
boundaries of a closed conduit (Ashton, 1973). 

Qw R/(rw (Tw - Tin)) = B Re °'a Pr °'4 (3) 

By computing expected values of the Reynolds (Re) 
and Prandtl (Pr) numbers at 0°C and by equating the 
hydraulic radius, R, with half the water depth be- 
neath the ice cover, eqn. (3) can be rearranged to 
express Qw as a function of a temperature difference 
and a heat transfer coefficient, h i (W m -2 °C-1). 

Qw = (Tw - Tm)hi, (4) 

where 

hi = Bi ( Uw°'a/Zw°'2), (5) 

B i is an empirical constant (Wm -2"6 s °'a °C-1), U w is 
water velocity (m s-l), and Z w is water depth (m). 

While it is common in most ice-growth models to 
assume that the surface temperature is equivalent to 
the air temperature, there are many atmospheric 
conditions (e.g. clear, calm weather) under which this 
is not valid, particularly when working with sub- 

diurnal time steps. By applying a secant algorithm 
(Beckett and Hurt, 1967) to a set of surface energy 
balance equations transcendental in surface tempera- 
ture, it is possible to compute the equilibrium value 
for T s. Given a time series of incident shortwave 
radiation and wind velocity, dewpoint temperature, 
and air temperature at one level above the surface and 
by making a number of assumptions about surface 
properties, one can construct the surface energy 
balance relations as shown in the appendix and out- 
lined below. 

Qi = f(Ts, Ki, Zi), (6) 

Qm = f(Ts, Qsw, Qswe, Ta, Td, A), (7) 

Qh =f(Ys, Ta, U, Zo), (8) 

and 

Qle = f(Ts, ra, Td, U, Zo), (9) 

where Qsw represents the incident shortwave radia- 
tion flux (W m-2), Qswc is the potential clear sky 
shortwave radiation flux (W m-2), T a is air tempera- 
ture (°C), T d is dewpoint temperature CC), A isalbe- 
do, U is wind speed (m s-l), and Z o is the aerodynam- 
ic roughness length (m). 

When the value for the simulated equilibrium sur- 
face temperature is greater than O°C, the temperature 
is reduced to O°C and the excess flux is used for sur- 
face ablation. 

Steady-state heat flux by molecular conduction 
through the ice can be defined as 

Qi = (Tin - Ts)(Ki/Zi), (10) 

where T m is the temperature at the base of the ice 
slab (°C), T s is the surface temperature (*C), and K i 
is thermal conductivity (W m -I °C-I). Three assump- 
tions are implied by this expression for heat flux. The 
first is that the material is vertically homogeneous in 
its thermal properties; the second, that there can be 
no internal sources of heat unless they are uniformly 
distributed in the vertical dimension; finally, that any 
change in the surface temperature is reflected imme- 
diately by a new linear temperature gradient. 

The first assumption can be relaxed if the transfer 
of heat between layers with different thermal prop- 
erties is continuous. For example, if a snow layer is 
present, eqn. (I0) becomes 
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Qs = (Tin - Ts) /[ (Zi /Ki)  + (Zs/Ks)]" (11) 

A second version of the model was constructed; all 
elements are identical to those described above ex- 
cept that it allows the development of a nonlinear 
temperature gradient in the snow and ice layers. In 
this version, heat transfer is computed by simulating 
Fickian diffusion of heat. To use the finite-difference 
method described below, a series of evenly spaced 
computation nodes was embedded in the simulated 
ice and snow cover. This method allows the computa- 
tion of Qi (or Qs) at any level in the snow and ice 
layers. 

The value used in eqn. (2) for the flux leaving the 
upper surface was computed as a function of the 
temperature gradient near the surface. 

Qi = (Ki /AZi ) (Ts-1  - Ts), (12) 

where AZ i is the distance between nodes and Ts_ 1 is 
the temperature at the first node below the surface. 
Likewise, at the lower boundary, the flux Qi used in 
eqn. (1) is computed by 

Qi = (Ki/AZiXTm - Tm+l), (13) 

where Tin+ 1 is the temperature at the first node 
above the lower surface. 

Within the snow and ice layers, it is not necessary 
to compute Qi directly. Rather, temperature changes 
are simulated by solving the general one-dimensional 
heat conduction equation 

dT/d t  = (K/C)(d2T/dZ2).  (14) 

The implicit scheme to solve the finite-difference 
form of eqn. (16) is described in Outcalt et al. (1975). 

If snow is not present, shortwave radiation will 
penetrate the surface and alter both the temperature 
gradient and the cohesion between ice crystals 
(Ashton, 1984). In order to quantify accurately 
the attenuation of radiation with depth, one would 
assign wavelength-specific extinction coefficients and 
allow for the normal stratification of a river ice cover. 
In this model, however, the degree of attenuation 
described by Beer's Law and a constant extinction 
coefficient is accepted as a first approximation. This 
is similar to the approach described by Maykut and 
Untersteiner (1971) and Maffaire (1975). The rise in 
temperature contributed by radiation at may depth is 
computed as follows: 

dT/d t  = (k/C)Osw ( 1 - A ) e x p  -kz , (15) 

where C is heat capacity (J m -3 °C-1) and k is the ex- 
tinction coefficient (m-i). 

The growth or decay during any given period is 
simulated in the following manner. The model first 
solves for Ts, the equilibrium surface temperature 
that balances the four energy-balance fluxes. Heat is 
then allowed to diffuse in the snow and ice layers. 
The thermal gradient at the base of the ice sheet is 
used to compute the change in thickness, which 
necessitates adding or subtracting computation nodes. 
If nodes are added, they are assigned and initial tem- 
perature of 0°C. Finally, the heat diffusion subrou- 
tine is called a second time so that the thermal 
gradient can come to equilibrium in the thicker or 
thinner ice sheet. 

APPLICATION 

The model has been tested at five sites along the 
channel of the upper St. Lawrence River for the 
1980-81 winter. These are designated F-l, F-2, 
G-2, H-l, and H-4 in Fig, 2, The 1980-81 winter was 
chosen as a test season because of the temperature 
extremes that occurred. The December mean temper- 
ature (- l l .8°C) at Massena, N,Y., was the coldest 
experienced since 1949, and the January temperature 
(-14°C) was the third coldest. February air temper- 
ature (-0.4°C), however, set a record high, exceeding 
the 30-year monthly mean by 8°C and the previous 
maximum monthly mean by nearly 4°C. 

Observations of ice events at the five sites were 
collected from the St. Lawrence Seaway Authority 
(Cornwall), the St. Lawrence Seaway Development 
Corporation (Massena) and Ontario Hydro (Corn- 
wall), and are summarized in Table 1. Al thou~ maxi- 
mum ice thickness and river outflow were near nor- 
mal for the 1980-81 season, freezeup occurred 7 -18  
days earlier than normal and breakup occurred 9 -3 0  
days earlier. 

This early breakup was caused for the most part 
by abnormally warm air during the second half of 
February. Mean hourly air temperatures in Ogdens- 
burg, N.Y., remained above 0°C from noon on 
February 15 until late February 26, with a high of 
14°C at midday on February 23. Nearly 2 cm of rain 
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Fig. 2. St. Lawrence River between Montreal, Que., and Lake Ontario. Site numbers refer to ice thickness measuring sites. 

TABLE 1 

Comparison of 1980-81 ice event dates with 10-yr mean 

Site 1980-81 date of 10-yr mean date 1980-81 period 10-yr mean date 
ice cover formation of formaton of breakup of breakup 

F-1 Dec. 23 Jan. 7 Feb. 17-23  Mar. 21 

F-2 Dec, 26 Jan. 13 Feb. 17 -20  Mar. 5 

G-2 Dec. 23 Jan. 1 Mar. 5 - 1 7  Mat. 20 

H-1 Jan. 2 Jan. 17 Feb. 13-17  Mar. 5 

H-4 Jan. 5 Jan. 12 Feb. 17-20  Mar. 8 

also fell during this period, speeding the rate of snow 
ablation and lowering the albedo. 

Time series needed to drive the model are those 
for air temperature, dew-point temperature, wind 
speed, incident shortwave radiation, and water tem- 
perature. The first four were taken from a micro- 
meteorological station operated by the St. Lawrence 
Seaway Development Corporation. The tower is 
located on a pier jutting into the St. Lawrence River 
at Ogdensburg, with the sensors roughly 10 m above 
the water surface. A more complete description of 
the sensors is given in Greene (1981). As noted in 
Table 2, the greatest distance between a site and the 
micrometeorological station was 45 kin. 

Although individual water temperature time series 
are not available for each site, temperatures are meas- 
ured once daily at the upstream (Clayton, N.Y.) and 

downstream (Moses-Saunders Power Dam) ends of 
the international section of the river (Shen and Yapa, 
1982). Therefore, a two-part interpolation scheme 
was used to assign a daily water temperature to each 
site, depending on the thermal regime of the river. 

During the period between ice cover formation 
and maximum ice cover thickness, upstream water 
temperatures were consistently 0.2-I.0°C warmer 
than downstream. Hence, the water temperature at 
a site was approximated as a function of the upstream 
temperature and the distance to the upstream sensor, 
in the form of Newtonian exponential cooling. 

T w = T u exp (-bX), (16) 

where X, the distance in kilometres from Clayton, is 
a surrogate for elapsed time; T u is the water temper- 
ature at Clayton; and b is an empirical constant. 
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TABLE 2 

Characteristics of the five simulation sites 

Site Water velocity Water depth Distance from Distance from 
(ms -~) (m) Clayton (kin) Ogdensburg (km) 

F-1 0.41 21.3 117 45 

F-2 0.69 14.0 102 29 

G-2 0.20 9.0 90 18 

H-1 0.83 16.0 88 17 

H-4 0.65 12.0 59 13 

Water temperatures at a site between the upstream 
and downstream thermometers were not measured 
during the 1980-81 winter. However, temperature 
data from three sites along the river during the 1979- 
80 winter were used to compute a value of 0.056 for 
b. 

Once the date of maximum ice thickness is past 
'and an increasing number of reaches are open water, 
downstream water temperatures are no longer ade- 
quately represented by eqn. (16). After this date, 
therefore, water temperatures at each site were com- 
puted by linear interpolation between the upstream 
and downstream values. 

When possible, values used for parameters for the 
model were chosen from work done on the St. Law- 
rence River. When this was not possible or when the 
range of possible values was large, a midrange choice 
was made. The significance of possible variation in 
these parameters is discussed in the next section. 

Within the simulation model, the five sites were 
differentiated on the basis of their date of ice-cover 
formation, the observed (once per week) thickness of 
snow on the lee at that site, and the four variables 
listed in Table 2. Wat0r velocity was computed using 
the discharge rates and crousectional area of the river 
at each site. Water velocity was held constant through- 
out the season because the flow recorded at the 
Moses,Saunders Power Dam was relatively constant 
at 6,796 m a s -1 (240,000 ft 3 s-'). 

Ashton (1979) gives a value of 1,622 W m -2"6 s °'s 
°C -~ for the parameter B i used to compute the heat 
transfer coefficient (hi) ill eqn. (5), but notes that the 
value may increase by 50% if ripples appear during 

the spring melt period. All runs described in this 
paper used a constant B i. 

Temporally and spatially averaged values for 
optical properties of ice and snow are poor indicators 
of actual conditions. In the absence of reasonable 
algorithms describing how change takes place, con- 
stant values were used for mean daily ice and snow 
albedoes. Because the surface layer is commonly 
snow ice, a value of 0.45 for ice albedo was chosen 
(Bolsenga, 1969). Snowfalls occur with a 1- to 2- 
week frequency; hence, snow albedo was set relative- 
ly high at 0.85. A bulk extinction coefficient of 
2.0 m -s was chosen for the absorption of shortwave 
radiation within the ice (Maguire, 1975). This value is 
based on measurements taken between 400 and 700 
nm in ice on the Ottawa River. 

An average snow density of 350 kg m -3 was 
selected. Values for snow thermal conductivity and 
diffusivity were computed as a function of density 
from relationships reported by Yen (1981). Snow 
conductivity was 0.307 W m -~ °C-~ and diffusivity 
was 4.18 X 10 -7 m 2 m -1. A mid-range value of 7.0 X 

10 -4 m for the aerodynamic roughness length of snow 
was taken from Michel (197t). A roughness length 
of 3.0 X 10 -4 m was a s ~ d  to the ice when free of 
snow (Michel, 1971). 

Because of the differences in air content and 
crystal structure, the density and thermal properties 
of snow ice and secondary ice (black ice) differ as 
well. A density of 900 ks m -3 (2% air bubble frac- 
tion) was chosen as representative of the entire ice 
layer. Corresponding values for thermal conductivity, 
2.03 W m -t °C-1, and diffusivity, 1.07 X 10 -6 m 2 s -~, 
were computed from Yen (1981). 
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R E S U L T S  A N D  D I S C U S S I O N  

Results from applying the simulation model to the 
1980-81 season are shown in Figs. 3 -7 .  In each case, 
the curve labeled "Model B" represents an application 
of the model that assumes a linear temperature 
gradient through the ice cover. The curve labeled 
"Model A" represents an application of the nonlinear 
temperature gradient model. The bottommost curve 
in each figure shows observed snow depth and dura- 
tion at each site. 

The two ice-thickness simulation curves generally 
bracket the observations, with the linear temperature 
gradient model (Model B) simulating a thicker ice 
cover. The one exception occurred at site G-2, which 
also experienced the greatest depth and duration of 
snow cover. This phenomenon will be discussed be- 
low. Although the slopes of the simulation curves 
mimic the trend of the observations, the simulations 
both underpredict and overpredict the end of an ice 

cover by 2 - 7  days. Some of the discrepancy may be 
caused by the difficulty of assigning the "observed" 
breakup date. It is more probable, however, that the 
lack of simulation of mechanical weakening, as well 
as thermal decay, causes the weaker fit of model to 
observations (Ashton, 1984). 
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The difference in simulated ice-cover thickness in 
the two models is caused by differences in the simu- 
lated surface temperature. This difference is shown 
for station F-2 in Fig. 8, which depicts simulated sur- 
face temperatures, observed air temperature, and 
interpolated water temperature for the season. 
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Fig. 8. Surface temperatures simulated by the two versions of  
the model. Observed air temperatures from Ogdanshurg, 
N.Y., and water temperatures interpolated between Kingston, 
Ont., and Cornwall, Ont. 

The simulated surface temperatures in the figure 
differ by as much as 9°C on any one date. The sur- 
face temperature produced by the linear gradient 
version of the model (model B) follows the air tem- 
perature quite closely, with the greatest differences 
occurring during the first 10 days of growth. Surface 
temperatures were also constrained at 0°C during 
spring melt. 

The surface temperatures produced by the non- 
linear temperature version of the model (model A) 
act like smoothed air temperatures except during the 
snow covered period. Unlike the linear gradient 
version of the model, the non-linear version has a 
"memory" of the previous day's temperature profile. 
In the linear gradient version, Qi is computed by eqn. 
(10), where T m is 0°C and T s is the equilibrium tem- 
perature to be solved for. The previous T s exerts an 
influence only in the sense that it affects the growth 
of the ice layer. 

In contrast, eqn. (12), used to compute Qi for the 
nonlinear version, includes the term Ts__ 1 (the tem- 
perature at one node below the surface on the previ- 

ous day). Even if the nonlinear version produced a 
linear temperature gradient on a given day it could 
not, on the next day, produce a T s that diverged by 
much since the increase in Qi would have to be bal- 
anced by corresponding changes in Qm, Qh, and QIe- 

As pointed out above, the nonlinear temperature 

gradient model (model A) has an anomalous reaction 
to prolonged snow cover, as seen in Fig. 5. The high 
growth rate of ice during this period is contrary to 
the expected insulating effects of the snow cover. The 
increased growth occurs because the simulated snow 
surface temperatures are cold enough to drop the 
temperature at the ice-snow interface to a tempera- 
ture below that simulated at an ice surface without 
snow. 

This phenomenon could be caused either by the 
choice of values assigned to snow properties or by the 
numerical method. As will be shown, the model is 
generally more sensitive to variations in system prop- 
erties than to variations in forcing variables. In this 
case, however, the cause is more likely related to the 
use of a 24.h time step. When the time interval is 
dropped to 1 h, simulated maximum ice thickness at 
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station F-2 is 8 cm less than the maximum ice thick- 
ness computed under no snow conditions. 

An example of  simulated temperature gradient 
change in a 54-cm-thick ice sheet is shown in Fig. 
9. The upper curve in the top graph is the meas- 
ured warming of the air on February 1, 1981, at a 
station adjacent to the St. Lawrence River at Ogdens- 
burg. The lower curve in the top graph is the simu- 
lated temperature response of the snow.free surface 
of the ice sheet. The bottom graph shows the simu- 
lated internal temperature profiles over the same 
period. The temperature gradient is strongest at 
7:00 a.m. At that time, it is also approximately 
linear. Over the course of  the day, the upper portion 
of the ice sheet warms quickly, creating a nonlinear 
temperature gradient. 

MODEL SENSIT IV ITY 

Table 3 summarizes the effects of  variation of 
model variables and parameters on the simulated 

maximum thickness and date of  breakup for station 
F-2. The amount of variation was chosen to represent 
either the potential error in the measurement of a 
variable or a reasonable range of values for system 
properties. Some negative deviations, such as those in 
wind speed, had to be limited so that they would not 

fall below a zero value. 
The algebraic signs of  the departures are those one 

would expect. For example, the temperature curves in 
Fig. 8 shows that the simulated surface temperature 
was usually higher than the air temperature. An in- 
crease in wind speed or surface roughness should 
therefore cause a larger heat loss owing to turbulent 
transfer and a consequent increase in ice thickness. 
The largest departure, 6.5 cm for variation in the 
extinction coefficient, represents a 15% decrease 
from the standard run maximum thickness of  43.5 
cm. The date of breakup is relatively insensitive ex- 
cept to variations in water temperature. 

While Table 3 allows one to quantify the effects of  
variations, it does not allow comparison between 
variables other than those of comparable units. A 

TABLE 3 

Nonlineax temperature gradient model sensitivity 

Departure from standard tun values (F-2) 

maximum thickness date of breakup 
(cm) (days) 

Meteorological variables 
T a + 1 (°C) 
U ± 1 (m s -1) 
r d ± 2 (°C) 
Qsw ± 1.0 (MJ rn -~ day -1) 
QIw ± 1.0 (MJ m -s day -1) 
T w ± 0.1 (°C) 

Snow and ice properties 
A 0.45 + 0.1 (ice) 

0 .85  + 0 .1  ( s n o w )  

Z o ice 0.0003 + 0.0027 (m) 
0.0003 - 0.00027 (m) 

k 2.0 ± 0.5 (m -I) 

K i 2.03 + 0.01 (W m -I C -I) 

K s 0.307 + 0.I (W rn -t C -I) 

Conditions beneath the Ice cover 
U w + 0 . 2 0  (m s -!) 
B i + 300 (W m -2"6 s° 'S°C- l )  

-1.8/+2.4 -11+I 
+2.0/-2.5 +I/-1 
-0.1/0.0 0/0 
-0.4/+ 1.0 0/+ 1 
-1.4/+1.8 -1/+1 
-3.51+4.4 -21+2 

+2.6/-2.5 0/-I 

+4.o/-1.3 0/+1 

-6.5/+4.1 o/o 

+0.8/-0.9 0/+1 

--0.1/+0.1 0/0 

-2.0/+2.8 -1/+1 
-1.7/+2.3 -1/+1 
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method described by Coleman and DeCoursey (1976) 
was used to compute a parameter called the relative 
importance (R/). If  X is any independent model 
variable and Y is a dependent variable, such as ice 
thickness, R1 is found by 

RI  = [(A Y/AX) ((Xma x - Xmin) / Y)]. (17) 

Note that RI  is related to, but not the same as, rela- 
tive sensitivity. By including the expected range of a 
variable, RI  becomes dimensionless and can be used 
to compare the effect of any independent variable 
with another. The relative importance was computed 
for both the positive and negative departure for each 
of the variables and then averaged. These values are 
listed in Table 4 by their ranking. 

TABLE 4 

Relative importance of model parameters, from most im- 
portant to least important 

Variable Relative impact on maximum ice thickness 

k 0.122 
T w 0.091 
Z o ice 0.061 
A 0.059 
u w 0.055 
U 0.052 
T a 0.048 
B i 0.046 
Qlw 0.037 
K i 0.019 
Qsw 0.015 
r d  0.002 
K s 0.002 

SUMMARY 

The growth and decay of the ice cover on a river 
manifest a complex series of heat transfer processes 
within and between different media. It is commonly 
acknowledged that many of these processes are self- 
canceling in their effects, such that very simple mod- 
els can reasonably reproduce observed rates of growth 
and decay. It is of interest, however, tO examine more 
detailed simulations as a way of isolating significant 
properties or processes. 

The model described here couples the simulation 
of upper and lower surface energy~ fluxes with the 
diffusion of heat through the ice sheet. For these 
processes, the model is more sensitive to changes in 
system properties than to changes in the forcing 
meteorological variables. However, it is the under-ice 
conditions, represented by water temperature and 
water velocity, that exert the greatest influence on 
simulated growth. 
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The ranking of the model parameters demonstrates 
two features of  the model: (1) the model is more sen- 
sitive to conditions beneath the ice (T  w, Uw) than to 
the meteorological variables above the ice, and (2) 
the model is more sensitive to system parameters than 
to the forcing variables interacting with those proper- 
ties. For example, the model is more sensitive to 
variations in the aerodynamic roughness length than 
to variations in wind speed. The low sensitivity to 
variations in the dew-point temperature is reasonable 
given the minor role of evaporation from ice. The 
model is also insensitive to variations in the thermal 
conductivity of the snow and ice. 
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APPENDIX 

Energy balance at the upper boundary 

Energy balance at the ice-air interface must be 
considered under two conditions,  with and without  
phase change. When no phase change is occurring, 
T s is assumed to be less than O°C. During spring melt,  
the upper surface of  the ice is melting and T s is fixed 
at 0°C. Considering the first case, one can assume that 
the flux of heat to the surface from below must equal 
the flux of  heat leaving the ice surface under steady- 
state conditions 

Qs = - Q t .  

Qt (w m -2) is the sum of  the relevant fluxes as de- 
fined by 

Qt = Qm + Qh + Qk,  

where Qm is the net radiation flux, Qh is sensible 
heat flux to the air, and Qle is latent heat flux. The 
relevant equations for computing the net radiation 
flux and the turbulent transfer o f  sensible and latent 
heat are outlined below. 

Net radiation 

Qrn = (1 - A ) Q s w  + e(Qrl - oTs 4) (A- l )  

Qrl = °(Ta) 4 - [(110.6 + 5.41(ea °'s - es °'s) - 0.485 E] 

(Qsw/ Qswc) 2 (A-2) 
(Anderson and Baker, 1967; Bolsenga, 1965) 

Qswc = Qbeam + Qdiff + Qbacskt (A-3) 

Qbeam = Qext exp(nabs = nabs = n~at) . (A-4) 

(Gates, 1962) 

nab s = -0.089(Pro/1013) °"7s _ 0.174(wm/20) °'6 (A-5) 

(Gates, 1962) 

(A-6) 

(Gates, 1962) 

nscat = -O.083(dm) o.9 
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Qdiff = 0.5 Qext(1 - exp(nscat)) (A-7) 

(Outcalt and Carlson, t975) 

Qbacskt = 0-5(Qbeam + adiff)  A (1 - exp(nscat)) (A-8) 

(Outcalt and Carlson, 1975) 

Turbulent transfer 

Qh = -PaCpVK2U( Ta - Ts)/ X (A-9) 

Qle = -Pa~VK2U(qa - q s ) /X  (A-10) 

X = ( ln (Za/Zo)  - 4 0 ( l n ( Z a / Z o )  - 42), (A-11) 

where 41 and 42 are the Businger-Dyer functions 
(Paulson, 1970). 

LIST OF SYMBOLS 

Capital letters 

A 
Bi 

C 
E 
K 
P 
a 

Qh 
Q~ 
Q,1 

QII1 
Q~v 
Qswc 

Qt 

Qdg 
Qbae~t 
Qext 

R 

Albedo 
Constant used in eqn. (12) (W m -2"6 s °'s 
°C-I ) 
Heat capacity (J m -3 °C-1) 
Station adjustment term for eqn. (A-2) 
Thermal conductivity (W m -1 °C -1) 
Pressure (mb) 
Heat flux (Wm -z) 
Sensible heat flux to the air (W m -2) 
Latent heat flux to the air (W m -2) 
Downward atmospheric longwave radiation 
flux (W m -2) 
Net radiation flux (W rn -2) 
Incident shortwave radiation flux (W m -2) 
Potential incident shortwave radiation flux 
with no cloud cover (W m -r) 
Total net flux leaving the ice surface (W m -2) 
Direct beam radiation flux (W m -~) 
Diffuse radiation flux (W m -z) 
Backscattered radiation flux (W m -2) 
Flux of shortwave radiation incident on a 
horizontal surface "outside" the atmosphere 
(W m -2) 
Hydraulic radius (m) 

T 

rs 

U 

Vw 
Z 
Za 
Zo 
Zw 

Temperature (°C) 
Dewpoint temperature (°C) 
Surface temperature (°C) 
Temperature at ice/water interface (°C) 
Wind speed (ms -1) 
Water speed (m s -1) 
Depth below the surface (m) 
Height of meteorological observations (m) 
Aerodynamic roughness length (m) 
Depth of water (m) 

Small letters 

Cp 

d 

e a 

e s 
hi 

m 
nabs 
nseat 
q 
t 
vK 

w 

Specific heat of air constant pressure (J kg -1 
°C-1) 

Atmospheric dust concentration (particles 
cm -3) 

Saturated vapor pressure at T a (mb) 
Saturated vapor pressure at T s (mb) 
Heat transfer coefficient from water to ice 
(w m -2 °C-b 
Shortwave radiation extinction coefficient 
(m-') 
Optical air mass 
Absorption coefficient 
Scattering coefficient 
Specific humidity (kg kg -1) 
Time (s) 
yon K~rm~n constant 
Precipitable water (mm) 

Greek small letters 

c~ Thermal diffusivity (m 2 S -1) 
e Longwave emissivity 

Latent heat of fusion (J kg -1) 
p Density (kg m -3) 
a Stefan-Boltzman constant 
4 Businger-Dyer function 

(W rn -2 K -4) 

Subscripts 

a 

i 
s 
w 

.Air 
Ice 
Snow or surface (of ice or snow) 
Water 


