
Volume 153B, number 3 PHYSICS LETTERS 28 March 1985 

T H E O R E T I C A L  CEILING ON QUARK MASSES IN T H E  STANDARD M O D E L  

M.J. D U N C A N  1, R. PHILIPPE x 

Physics Department, Unit,ersi O' of Michigan, Ann Arhor. MI 48109, USA 

and 

Marc SHER 

Physics Department, Unit,ersity of California, Santa Cruz, CA 95064, USA 

Received 26 December 1984 

An unavoidable condition for consistency of the standard model is that all quarks must be lighter than some critical mass. A 
precise determination of this bound necessitates a complete renormalization group analysis of the scalar potential. Our results, 
that this critical condition is Mq < 80 GeV + 0.54 Mtligg~, differs markedly from previous investigations. 

It has been known for some time that radiative 
corrections to the scalar potential of  a quantum field 
theory can play an important role in determining the 
properties of its vacuum. In their pioneering paper, 
Coleman and Weinberg [ 1 ] developed the techniques 
necessary for the evaluation of the O(h) terms in the 
effective potential. In addition to directly writing 
down the leading log approximation (valid for small 
couplings and small field fluctuations), they showed 
how one can use the properties of the renormaliza- 
tion group to sum all leading logs, thus obtaining an 
expression valid over a wider range of field values. 

In the context of the perturbative electroweak 
model, it was subsequently found [2--4] that heavy 
fermions destabilize our vacuum. For a given Higgs 
mass, there are corresponding upper bounds on quark 
and lepton masses. Should states which violate these 
bounds be observed experimentally at forthcoming 
machines, then the standard model would be bereft 
of life and new physics would have to come into play. 
There are other phenomena which lead to mass re- 
strictions, but these require a precision measurement 
[5] or are dependent on unknown hadronic matrix 
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elements [6]. The advantage of focusing our atten- 
tion on the vacuum is that the only inputs are the 
Fermi constant and electroweak couplings, which are 
well known. 

The original studies [2-4]  only examined the first- 
order leading log term in the effective potential and 
also neglected the consequences of the negative mass- 
squared parameter in evaluating the radiative correc- 
tions. A subsequent investigation [7] summed all 
leading logs involving gauge and Yukawa couplings 
and found significantly different bounds. More re- 
cently, the effects of the negative mass-squared pa- 
rameter on the radiative corrections have been con- 
sidered [8] and shown to be crucial. The desire to 
finally settle the question of the value of the maxi- 
mum permissible fermion masses in the standard 
model warrants a complete analysis of the stability 
of the vacuum. As we shall demonstrate in the rest 
of this paper, such an analysis is straightforward and 
leads to bounds which are much more reliable. 

At the tree level of perturbation theory, the clas- 
sical potential of the electroweak model is the familiar 

V(~b)c I = _½/./2~b2 + 1 )k~b4, ( l )  

where #2, ?~ > 0 and the tree-level minimum is at 
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(~)2 =/j2/X" We have written ½~b 2 = dp '~ ,  with ~ be- 
ing the usual Higgs doublet. Utilizing a mass-indepen- 
dent subtraction prescription, the leading log approx- 
imation [1 ] to the O(h) corrections can be written 

V(~b) LL = (fi/64n 2) Tr [(--1)FM 4 In (M2/K2)] -- c, (2) 

where K is the arbitrary mass scale introduced by re- 
normalization and M 2 is the mass matrix for each 
sector, c is a constant chosen such that V LL- vanishes 
when all couplings are set to zero, since there could 
then be no radiative corrections. With the mass ma- 
trices of the standard model, V LL becomes, in the 
Landau gauge, 

V(~b) LL = (h/647r 2) [.404 In (~b2/~; 2) + M 4 In (M2/K 2) 

--/.14 In (--/12//< 2)], (3) 

where M 2 = 3Xq~ 2 - /~2.  The coefficient A is given by 

A = ~ ( g l 4 +  394+ 2g2g~)--~f  g~, (4) 

with gl  ,g2 the usual hypercharge and isospin cou- 
plings and gf are the fermion Yukawas, the sum run- 
ning over color and flavour. In what follows, we as- 
sume that one quark dominates, so we replace ~ g~ 
with 3@. 

In order to sum all leading logs, to obtain a more 
reliable potential at large field values, we must ex- 
plicitly solve the renormalization group equations. 
The effective potential,  to all orders in perturbation 
theory obeys 

8kt 2 g 

- 3,~ ~ )  Veff(40 = O, (5) 

where the sum runs over all gauge and Yukawa cou- 
plings. The/3-functions for these couplings are given 
by the usual 131 = 41g~/96rr 2 ,/32 = -1993/96rr2 '  33 
= -7g~/167r 2 and/3y =gy(992/2 - 892)/16rr 2. In the 
last case we have neglected g l  and g2 compared with 
gy and g3 (this approximation can be relaxed with- 
out changing our results). To find/3x and/3u2, we 
follow Einhorn and Jones [9].  Since the/3, X are 
implicitly O(h), we can separate Veff = Vcl + V LL 
and equate O(~) terms in (5), viz. 

/3x ~ /'t2 ~ 

a V( )LL, (6) --K ~KK 

from which we obtain, upon equating 42 and 4~ 4 co- 

efficients, 

/3u2 = 2 7 + 3 X / 8 n  2, /3h=4XT+(9X 2 + A ) / 8 n  2. (7) 

The anomalous dimension of ~ in the Landau gauge 
is easily derived from the two-point function 

., 2 _ 9g2/2 _ 3g~/4)/16rr2, T = (agy (8) 

from which we find/3u2 and 3x- The complete eq. (5) 
can be solved by the method of characteristics (or by 
the method of educated guessing) to yield the solu- 
tion 

V((O)eff = - l  t22(t)G2(t)dp2 + ~ X(t)G4(t)dp 4, (9) 

where the running coefficients are given by 

dX(t)/dt =/3x(g(t), X(t)), 

dtl2(t)/dt =/a2(t)3u2 (g(t), X(t)), 

G(t) = e x p ( -  ¢ ~/(g(t'), X(t'))dt') , (10) 
0 

and the parameter t --- in (0/K) ,1. All that remains is 
to address the question of the initial values of  the 
couplings at t = 0. 

The minimum condition and the Higgs mass are 
given by 

Ogeff/0q~lOo = 0, m 2 = ~2Veff/O~b2loo, (11) 

and simply choosing the subtraction point to be the 
vacuum expectation value of  the scalar, K = ~0 = 
(x /~GF)  -1/2 = 246 GeV leads to relation ,2 between 
the initial values 

,1 This does not quite match eq. (3) at t = 0, but the dis- 
crepancy is O(h2/16~r2). Since for Higgs masses below 
250 GeV, ~. is always less than 0.5, this is negligible. 

,2 Since we are not summing non-logarithmic corrections, 
the higher order terms in eq. (12) should be taken cum 
grano salis. These terms will affect the Higgs mass by ~ 1%, 
and can thus be ignored. 
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p2 = K2 [)tO + (3X02 + A0)/327r21, 

m 2 = g2 [2Xo _ (6/327r2) (77t2 + A0)] " (12) 

[We have dropped O(X 4) terms which are very small.] 
The initial values of  the gauge couplings are easily ob- 
tained from experiment (AQc D = 0.2 GeV) and the 
Yukawa coupling is fixed by [10] gy(2Mq) =Mq/175 
GeV. Sensitivity to two-loop beta-functions canbe  
estimated by varying AQC D from 0.1 to 0.4 GeV, and 
is found to be negligible, affecting the bound by less 
than 5 GeV. In practice, we c h o o s e  )k0,gy ° and nu- 
merically integrate the running couplings up to 
O(1015 GeV), checking that all couplings remain 
perturbative throughout (only X may become non- 
perturbative, and whether one defines "nonperturba- 
tive" to mean X > 1/2, 1,4rr or 167r 2 makes no prac- 
tical difference in our results). These couplings are 
then put into eq. (9) and the potential is examined 
to determine whether our vacuum is stable. The re- 
quirement that our vacuum be stable leads to an up- 
per bound on a quark mass for a given Higgs mass. 

The original calculations of  this bound [2 -4 ]  
considered only the first-order leading log corrections, 
i.e. eqs. (1 ) - (3 ) .  They neglected two critical effects: 
the running coupling constants, and the correct ex- 

2 pression for M 0 in eq. (3). It is easy to see that the 
first effect will weaken the bounds. Since the Yukawa 
coupling falls as the scale increases, its effect on the 
potential ar large @ is smaller than if its running were 
ignored, thus larger Yukawa couplings are needed to 
have a similar effect and the upper bound thus in- 
creases significantly. The second effect will be crucial 
when scalar loops are important ,  i.e. when the scalar 
is fairly heavy (1> 100 GeV), and it is necessary to 
reliably calculate the bound for heavy Higgs scalars. 
In ref. [7],  the first effect was included, with signif- 
icant changes in the previous bounds, but the second 
effect, plus the beta functions for p2 and X were ig- 
nored. In ref. [8],  the second effect was included, 
but the first effect was ignored. In the present anal- 
ysis, by explicitly solving the full renormalization 
group equation, all leading logs have been included. 

The results are summarized in fig. 1 which plots 
the maximum permissible quark mass for a given val- 
ue of  the Higgs mass, which we vary from 10 to 250 
GeV. Also plotted are the bounds from previous anal- 
yses, which are seen to be quite different for Higgs 
masses below 250 GeV, the scalar self-coupling be- 
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Fig. I. Ceiling on the quark mass as a function of  the Higgs 
mass. The lower (upper) dashed curve is the previous limit 
of  refs. [2 -4 ,8]  ( [7]) .  Below the lower solid curve, the pres- 
ent vacuum is absolutely stable. Between the two solid curves 
the vacuum is unstable but with a lifetime > 10 I° yr. 

comes nonperturbative before the region of  instabili- 
ty is reached, thus any instability lies outside the realm 
of  perturbation theory;  one can say nothing about 
quark mass limits for Higgs masses above 150 GeV. 
It turns out that our result can be fit rather well to 
a straight line, and we conclude that if our vacuum 
is stable, then there is an upper bound on the mass of  
a heavy quark given b y M q  < 80 GeV + 0.54 MH, valid 
i f M  H < 250 GeV. 

Finally, strictly speaking, there is no requirement 
that our vacuum be stable, but only that its lifetime 
be longer than I0  I0 yr. The calculation of  the lifetime 
of  our vacuum was discussed in detail in ref. [7],  
where it was noted that the results are, unlike the 
stability bound, very insensitive to running couplings. 
We have checked and found that  the bounds of ref. 
[7] are not significantly altered. The resulting bound, 
obtained by assuming only that our vacuum is suf- 
ficiently long-lived, is also plotted in fig. I .  As M H 
increases from 10 to 250 GeV, the bound increases 
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from 180 to 240 GeV. In the region between this 
bound and our stability bound,  our vacuum is un- 
stable, but lives longer than 1010 yr. (In most of  this 
region, the lifetime is much longer than 101° yr,  so 
there is no cause for alarm). 

It is easy to generalize this bound to more compli- 
cated models. If  there are many heavy quarks, Mq is 
replaced by (NM4) 1/4 If there are more scalars, there q • 
are many more parameters in the Higgs potential ,  but  
a bound can still be found. For  the moment ,  consider 
the two-doublet  model. There are two neutral (0 +) 
scalars, q~ and r~, a neutral ( 0 - ) ,  X 0 and a charged 
scalar, X -+ . To avoid tree-level flavor changing neutra! 
currents, one can only couple one of the doublets to 
the heavy quark; call that doublet  ~2" Since only qb 2 
couples to the quark, the instability should occur in 
the q~2-direction, i.e. in the direction q~l = 0 (clearly, 
if an instability develops in another direction, our 
bound will only be tightened). One can then ,3 look 
at the potential  with qb 1 = 0. Examining the one-loop 
potential  in this case, one sees that the ordinate of  
fig. 1 is replaced by 

(M 4 _~M~x + ± tl/t4 ~1/4 
- -  - -  1 2  x , , t  x O  ) • 

The neutral scalar combinat ion parallel to ~2 has al- 
ready been included, the one orthogonal to qb 2 drops 
out  since the q~l = 0 direction is being considered. 
The abscissa of  fig. 1, ignoring k 2 terms, is (2k2)l/2K 
where K is 246 GeV and k 2 is the self-coupling of  q~2" 

This bound is useless without  knowledge of X 2 
(which can only be "measured" through Higgs-Higgs 
scattering). The masses of q~ and r7 satisfy the relation 

M~ + M2 n = 2X 1 o~ + 2X2v~, 

thus 

2X2v ~ < M ~  + M 2 

and so we have an upper bound of  

1 2 

on k 2 . Since the curves in fig. 1 are increasing, one 
can replace X 2 on the abscissa by  this bound;  the re- 
suiting upper bound on the fermion mass is still valid. 
All we now need is an expression for 02. The Yukawa 

• a In the work of Georgi, Manohar and Moore [12], there 
was a large ratio of vacuum values, thus the mass eigen- 
states were essentially the same as weak eigenstates. This 
procedure then leads to an effective field theory involving 
only the light mass eigenstate. 

coupling of  the quark to the neutral scalars is gyQQ 

× (~ cos a + r/sin a) ,  where gy = %/'2Mq/o 2 . In the Yu- 
kawa couplings to each mass eigenstate are g¢ and gn, 
theng~ +g2 2 2 n = 2Mq/°2 so the abscissa in fig. 1 is re- 
placed by 

[ 

This, then, is the general!zation of our bound to two- 
Higgs models. 

In multi-doublet  models, one can easily show that  
the ordinate becomes 

\1/4 

and the abscissa becomes 

(~ ~iM2¢i ~g2i)l/2g/M q. 

The bound clearly becomes useless as the number of  
doublets proliferates. 

We are very grateful to Marty Einhorn for his as- 
sistance. One of  us (M.S.) thanks the University of 
Michigan for its hospitali ty while this work was per- 
formed. This paper is dedicated to the memory of  
Holly Steigman, and is upported by the US Depart- 
ment of  Energy. 

References 

[1] S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 
1888. 

[2] H.D. Politzer and S. Wolfram, Phys. Lett. 82B (1979) 
242. 

[3] P.Q. Hung, Phys. Rev. Lett. 42 (1979) 873. 
[4] N. Cabibbo, L. Maiani, A. Parisi and R. Petronzio, Nucl. 

Phys. B158 (1979) 295. 
[5] M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Phys. 

Lett. 78B (1978) 285; 
M. Veltman, Nucl. Phys. B123 (1977) 89. 

[6] A. Buras, Phys. Rev. Lett. 46 (1981) 1354. 
[7] R. Flores and M. Sher, Phys. Rev. D27 (1983) 1679. 
[8] M.J. Duncan and R. Philippe, Ann Arbor preprint UM 

TH 84-22 (September 1984). 
[9] M.B. Einhorn and D.R.T. Jones, Nucl. Phys. B211 

(1983) 29. 
[10] H. Georgi and M.D. Politzer, Phys. Rev. D15 (1977) 

2495. 
[11] S.L. Glashow and S. Weinberg, Phys. Rev. D15 (1977) 

1958. 
[12] H. Georgi, A. Manohar and G. Moore, Phys. Lett. 149B 

(1984) 1234. 

168 


