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Summary 

A transient contact problem with frictional heating for two sliding half- 
planes is considered. One of the half-planes is slightly rounded to give a 
hertzian initial pressure distribution; the other is a rigid non-conductor. It 
is shown that if the ratio of initial width of contact to the width in the 
steady state is less than some critical value, the contact area shrinks smoothly 
until the steady state is reached. Otherwise the pressure dis~ibution develops 
a wavy perturbation and eventually bifurcates. Results are compared with 
previous approximate solutions. 

1. Introduction 

Let us consider two sliding solids which are nominally conforming over 
some contact area. An asperity or another imperfection disturbs the pressure 
distribution and hence the heat generation due to friction. This produces 
non-uniform thermoelastic displacements in the solids and further non- 
uniformity in the pressure distribution. This phenomenon, which is known 
as thermoelastic instability, was observed experimentally by Parker and 
Marshall [l] and explained in terms of thermoelastic displacements in refs. 
2 and 3. Extensive study of the process has been conducted by the research 
group of R. A. Burton. In particular, they have shown [4 - 63 that for the 
two-dimensional geometry there exists some critical value V,, of speed for 
which the pressure, if started with a sinusoidal disturbance, remains un- 
changed. The critical speed depends on the wavelength of the disturbance. 
If the given velocity V exceeds the critical value, the pressure grows without 
limits, and otherwise it eventually decays. It was assumed [4,6] that contact 
between the two solids is maintained everywhere along the sliding surfaces 
by a superposed uniform pressure. If the superposed pressure is not suffi- 
cient (which is sooner or later always the case for V > V,,) a patch-like 
contact eventually develops. 
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Steady state solutions for patch-like contact are given in refs. 7 - 9. 
There is a gap between these two problems which can be formulated as 
follows. Let us suppose we started with the two solids conforming initially 
everywhere. Let us suppose also that the force, pressing one of the bodies 
against the other, and the speed of sliding are given. How, generally speaking, 
does the process develop with time ? In particular, does the contact area 
shrink smoothly until the steady state solution is reached or does it bifur- 
cate? A simplified model for the axisymmetric non-steady problem has been 
suggested in ref. 10 where the thermally distorted body is approximated by 
a quadratic surface. This model has been used to evaluate the effect of design 
and operating conditions on the maximum temperature reached in brakes 
[ll]. Among other things, it was shown that, in the case of uniform deceler- 
ation, the duration of the stop is significant. If the stop is sufficiently slow 
for hot spots to develop, the temperature is high. High temperature is also 
reached if the stop is sufficiently fast, owing to the high rate of heat genera- 
tion. There exists an optimum between these two extremes. One of the 
purposes of the present paper is to determine the range of validity of this 
approximate treatment. 

2. The model 

To make the problem more tractable, and yet not without significance, 
it will be subjected to the following restrictions (Fig. 1). 

(1) The contact area is stationary with respect to one solid. 
(2) The other solid is a rigid non-conductor. 
(3) There is no coupling between tangential and normal tractions. 
(4) The conducting body is slightly rounded to give the initial pressure 

distribution. 
Some remarks should be made about these assumptions. Assumption 

(1) is not independent and follows from the others. For the steady problem, 
roundedness of the conductor is not required for the area of contact to be 
stationary with respect to the conductor [6]. 

1 P 

Y 
elastic, conductrng 

rrgrd, non-conductrng 

half - plone V 

Fig. 1. The model of the surface contact. 
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Rigidity of the non-conductor is not restrictive because its contribution 
to the elastic displacements can be absorbed in the displacements of the 
other body by an appropriate choice of the elastic constants. As remarked 
by Burton et al. [8], taking K = 0 for one body results in the worst possible 
case for instability to develop. It is a reasonable approximation for a low 
conductivity composition brake material sliding on steel. 

Assumption (3) does not mean that the tangential traction on the 
surface is neglected. Indeed, the work done against these tractions is the 
source of the heat generation. However, the elastic displacements normal to 
the surface, caused by the tangential tractions, are much smaller than those 
produced by the normal tractions, and the coupling effect is negligible. This 
approximation becomes exact if Dundurs’ constant 0 is zero [ 121. 

3. The method of solution and governing equations 

A straightforward method of treating the problem is to write down the 
governing integral equations in terms of appropriate Green’s functions [13]. 
To set up these equations we use the fundamental solution corresponding to 
the release at time t = 0 of a quantity of heat Q per unit length in the z 
direction at x = y = 0 on the surface of the half-plane y > 0. The tempera- 
ture T is given by [14] 

T = Q exp(--R2) 
Bnkpc t 

(1) 

where 

xz+yz 
R2=t (2) 

The corresponding normal displacements on the traction-free surface 
are [15] 

aQ(1 + u) 
u, = - 

apc(kt)1’2 
@J,(R) (3) 

In eqns. (1) and (3), CY, k, p, c and v are respectively the coefficient of 
thermal expansion, the thermal diffusivity, the density, the specific heat and 
Poisson’s ratio for the material. The function 

2 exp(-R2) R 
@i(R) =--+ R s exp(s2) ds 

0 
(4) 

is related to the complex error function discussed by Miller and Gordon 
[16] (the series for small and large arguments for $~i are given in ref. 15). 

Using these results, the governing equation for the unknown contact 
pressure distribution p(x) can be written 
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uy(x, t) = 
2(1 - 9) 

ITE 
P(X,, t) loglx, --xl b, - 

A(t) 

a(1 + V)jA t 

JJ 
V(t,)P(xl> tl) 

- 

nPc 
o A(t,) {h(t _ Q}l/2 @l@l) dxl dtl 

x E A(t) (5) 

where 

R *= (x-Q2 
1 

4h(t - ti) 
(6) 

E is Young’s modulus, EL is the coefficient of friction and V is the sliding 
speed. The first integral in eqn. (5) gives the elastic displacements caused by 
the pressure, the second defines the thermoelastic displacements, accumu- 
lated over the period of time t, and the right-hand side represents the initial 
curvature of the body (radius r) and includes an unknown rigid body dis- 
placement D. 

The integrals should be performed over the domain A(t) for which the 
two solids are in contact and this is also the range of definition of the 
integral equation. It is not known a priori, but it is determined by the 
conditions 

P(X, t) = -(J,,(x, 0, t) a 0 x EA(t) (7) 

X2 
u,(x, t) > D - s x E A(t) (8) 

and 

.f P(X, t) t2.x =P(t) (9) 
A(t) 

where A(t) is that part of the surface which is not in contact and P(t) is the 
prescribed force pressing the bodies together. The two inequalities (7) and 
(8) state respectively that the contact tractions should be non-tensile and 
that there should be no interpenetration of material outside the contact 
area. 

Once eqn. (5) is solved for p(x, t), the surface temperature can be 
found from the equation 

T(x,t)= “-jJ VP(% tl) exp(--%*) W dtl 

2xkpc 0 A(t,) t-t, (10) 
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4. Nondimensional formulation 

For constant load P and speed V, the number of parameters can be 
drastically reduced (to one) by introducing the non-dimensional variables 

x* =x/A, (11) 

A* =AfAo (12) 

T* = 3~kp~T~4~V (13) 

P* = ~Aoip (14) 

t* = kt/Ao2 (15) 

where A is the half-width of the area of contact and A0 is the value of A in 
the steady state and is given by [ 73 

A 
0 

= 37Gl- v)kw 

4cq~VE 

Introducing eqns. (11) - (15) into eqns. (5) and (10) yields 

2 A*@) 
- 

s 
p*(x,*) log(x* -x,*1 dq* - 

a -A*(t*) 

3 t* A*(t*) p*(q*, tl*)&(R1) dxl* dtl* 
-- 

ss 
40 -A*@*) 

(t* - t1*p2 

= ~[-X*2j~~2 +ll*] -A*<x*<A* 

A*(f*) p* exp(--R12) d.z,* dtr* T*=;j’ j 
0 -A*@) 

t* - tx* 

(16) 

(17) 

(18) 

where D* is the dimensionless form of the arbitrary constant D and A(0) is 
the half-width of the contact area at t = 0 given by 

4P(l - v2)r 
I-WH2 = nE w 
For the range of the integrals in these equations it is implicitly assumed that 
the contact area does not bifurcate. We can see from eqn. (17) that the 
solution depends on the single parameter A*(O). 

5. Discretization and numerical procedure 

The contact problem can be discretized in time and space by dividing 
the contact area into several strips of width AX, replacing the actual 
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pressure and heat input by piecewise-constant presentation and proceeding 
in increments of time. Computing the pressure and the temperature for a 
current time step we keep the heat input from the previous time step un- 
changed. This corresponds to the explicit scheme in the finite element 
method. However, an essential difference is that we deal with the surface 
rather than with the volume of the body. The influence of the uniform heat 
input distributed over a strip Ax on the displacements and temperature at 
point x can be conveniently expressed in terms of the solutions given in 
ref. 15. 

These results can be used to replace eqn. (17) for a current time step with 
a sum, expressed in terms of unknown pressures p(Xi) (i = 2, 3, . . . , N - 1) at 
all interior points of the area of contact and the constant D. The set of 
algebraic equations is obtained by prescribing in turn x = Xi (i = 2, 3, . . . , 
N - 1). An additional equation is obtained by the discretization of eqn. (9). 
The non-linearity, which results from the fact that the area of contact is not 
known in advance, can be handled by trials and checks of inequalities 
(7) and (8). For a symmetric problem with a simply connected area 
of contact (which is the case for the examples treated below) the search can 
be simplified. We drop eqn. (9) and enforce eqn. (17) at the boundary point 
instead. Thus, we impose two conditions on this point. First, we require the 
pressure to be equal to zero (by dropping it from the unknowns); secondly, 
we force this point to be in contact. These two conditions are equivalent to 
requiring continuity of contact pressure at the boundary and this is equiv- 
alent to the inequalities (7) and (8) for simply connected contact 
areas. If the total force F = ZpiAXi turns out to be, say, larger than P so that 
eqn. (9) is violated, we release one point and repeat the procedure until a 
sufficiently accurate solution is obtained. In fact, we start the search with 
the area of contact found in the previous time step. Since the increment of 
time is always small, no more than one or two points are candidates for 
release, and non-linearity does not cause problems. 

The attempt to use the piecewiseconstant representation was not 
successful. The solutions were unstable for any reasonable number of space 
steps for A(0) > 5. The pressures obtained differed significantly in value and 
sometimes in sign at neighboring points and the results did not converge 
with increasing numbers of points. Since the oscillations occurred on the 
scale of the discretization, the numerical procedure (not the process) should 
be blamed for the instability. The numerical procedure was stabilized when 
the piecewise-constant distribution was replaced with piecewise-linear 
representation of the heat input and the pressure. It can be constructed as a 
linear combination of triangular heat inputs (Fig. 2(a)). The same idea was 
used in ref. 17 for isothermal rolling of dissimilar elastic cylinders. The 
triangular heat inputs, in turn, can be obtained as a linear combination of 
linearly distributed heat inputs (Fig. 2(b)). The displacements U, caused by a 
linearly distributed heat input qix can be obtained by integration of the 
Green’s function for a continuous point source in space giving 
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(4 (b) 
Fig. 2. The piecewise-linear representation of the pressure. 

WJ,(~ + V) ’ dt, * 
uy =- 

npek II2 s o (t _ @‘2 o xl+l(Rl) d3c1 f 

I.- 

q1a(l + v)(kt)3’2 
rkpc 

4J2w (20) 

N~e~c~ly efficient series for &{X) can be obtained from those given 
in ref. 15 by integration and are for small and large X respectively 

2nx3 4 m 
d?(X) = -$-- - - 

(-s&p) + 1 

A1l2 c i=o (i + 1)(4i2 - 1)(2i + l)!! 

and 

8 c 
@2(-v = - 

i 
- +log2+$ 

3n112 2 
+logX 

1 
-27rx- 

4 N 
c 

(Xi -l)!! 

- F i=l i(2X2)‘(2i + 3)(2i + 1) 

(21) 

(22) 

where C = 0.577 216 . . . , 
The domains of acceptable accuracy of these series overlap at the value 

x = 2.0. 
The piecewise-linear representation produced physically meaningful 

results which are discussed in Section 6. 

6. Numerical results 

The method described was used to obtain results for a range of values 
of A*(O) between 3 and 500. The most spout physical qu~tities of the 
process, the contact pressure and the surface temperature, were found as 
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Fig. 3. Development of pressure distribution for A*(O) = 20. 
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Fig. 4. Development of pressure distribution for A*(O) = 100. The wavelength correspond- 
ing to the maximum exponential growth rate U* (see Fig. 8) is shown for comparison. 

Fig. 5. Development of pressure distribution for A*(O) = 500. 

functions of time. Some general conclusions about the nature of the process 
can be made. For A*(O) < 20 the pressure changes smoothly from the initial 
(hertzian) distribution toward the steady state distribution (Fig. 3). For 
A*(O) = 50 some waviness in the pressure distribution was observed, but it 
was inconclusive whether it represented a numerical “noise” or a physical 
process. However, bifurcation did not occur. For A*(O) > 80 a wavy pertur- 
bation develops (Figs. 4 and 5) and eventually the area of contact bifurcates. 
The wavelength of the perturbation is large compared with the scale of the 
discretization and the results converge with increasing numbers of points, 
showing that this is a real feature of the solution. The larger is A*(O), the 
earlier this happens. For A*(O) = 80 the area of contact bifurcates at t* = 
170 while with A*(O) = 500 it bifurcates at t* = 40. Rates of shrinking of A* 
for some A*(O) are given in Fig. 6 (full curves). The full curves in Fig. 7 show 
dimensionless temperature at the midpoint of the contact area. 

7. Comparison with the simplified model 

It is interesting to compare these results with those obtained with the 
simplified model [lo] in which the distorted body is approximated by a 
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Fig, 6. Reduction of dimensionless contact half-width A* with time (- ). Results ob- 
tained from the hertzian approximation (- - -) (Appendix A) are shown for comparison. 
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Fig. 7. Dimensionless maximum surface temperature T* as a function of time t* for 
A*(O) = 20, 50 and 100: -, exact solution; - - -, hertzian approximation. 

quadratic surface. The analysis given in ref. 10 relates to the axisymmetric 
problem, but the two-dimensional problem can be treated in the same way 
(see Appendix A). For constant velocity the governing equation has the form 

1 1 

(A*(t*)}2 - {A*(O))2 

t* = 3R,,2 

J 

dtr* i’“““2(t*-“““*~2 exp(_s2) ds 

s @*&*)I3 a 
(23) 

When t* is small, this equation has the approximate solution 

3 
A*(t*)=A*(O)- s nt* 

A direct numerical solution to eqn. (23) does not differ significantly 
from the straight line approximation until A*(t) falls below 3 (see the 
broken curves in Fig. 6). Corresponding curves for the maximum tempera- 
tures predicted by the simplified model are shown by broken lines in Fig. 7. 
These two figures show that the simplified model gives acceptable results for 
temperature and order of magnitude results for contact area during the 
earlier stage of the process, but the error becomes unacceptable after the 
contact area has shrunk to about 60% of A*(O). We note that as the process 
develops, the simplified model overestimates the maximum temperature 
reached. 
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8. Comparison with Dow and Burton’s solution 

As mentioned in Section 1, Dow and Burton [6] have shown that a 
sinusoidal perturbation in contact pressure distribution between two com- 
pletely conforming sliding half-planes can grow if the sliding speed exceeds 
a certain critical value which depends on the wavelength. The situation in the 
present problem is different, in that the bodies make contact over a discrete 
area, but the waviness in pressure distribution observed in Figs. 4 and 5 
suggests that some similar mechanism is involved and invites comparison 
with the unstable wavelengths found in ref. 6. 

Dow and Burton’s analysis (after adjustment of constants to the plane 
strain problem) shows that a contact pressure perturbation Ap =po sin(wx) 
will grow with time according to the equation 

Ap = p. exp(ot) sin(wx) (24) 

where the exponential growth rate u is related to w by the equation 

(25) 

(see ref. 6, eqn. (9)). This equation can be simplified by introducing the 
dimensionless parameters 

o* = Aow a* = uA,‘/k (26) 

and using eqn. (16) to give 

(o* + &J*y = _ “4” $0 (T* + w*2)1/2 - w*} (27) 

It should be noted that all physical parameters have disappeared from the 
equation. The solution of eqn. (27) is shown graphically in Fig. 8. The 
domain with negative u* means that the waves with corresponding frequency 
CJ* decay. In the domain of positive u* there is a particular wave frequency 
(w* = 0.6) for which the rate of growth is the largest (u* = 0.5). This pertur- 
bation eventually dominates the process regardless of the initial amplitude 
of the corresponding wave. The corresponding wavelength 

0.6 
-1 

Fig. 8. Exponential growth rate U* as a function of wave frequency o*. 
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A* = 2" = 10.5 
w* 

is shown in Figs. 4 and 5. We note that it compares well with the waviness 
obtained from the numerical results. 

9. Conclusion 

The numerical technique described enables us to follow the transient 
behavior of the system until it approaches the steady state for A(0) < 80 
and up to the onset of bifurcation for larger values. We must presume that 
after bifurcation occurs, the distribution of load P between the several 
contact areas will change until eventually one area carries the whole load, 
after which approach to the steady state solution will be rapid. However, the 
present method is not suited to pursuing this phase of the process for two 
reasons as follows. 

(1) While the use of Green’s functions is very efficient for the earlier 
time steps, since it reduces the dimension of the problem, it becomes less 
efficient after many steps because at each step the accumulated thermal 
distortions of previous steps have to be recomputed. This problem is com- 
pounded by the fact that, when bifurcation occurs, a larger number of 
spatial points are needed to give an adequate representation of the pressure 
distribution. 

(2) The iterative method used for the non-linear contact problem, 
prescribing the contact area and iterating on the total load P, will not work 
when the contact area bifurcates, since there are now several contact bound- 
aries to find. 

Problem (2) could be overcome by developing a different iterative 
algorithm but, in view of (l), we feel that it is more appropriate to use a 
volume rather than a surface representation to describe this phase of the 
process. Work on such a representation is still in progress and will be reported 
later. 
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Appendix A 

A.1. Simplified model 
In ref. Al an approximate solution was developed based on the rep- 

resentation of the thermally deformed body by a quadratic surface: 

24,(X, t) = C,(t) + Ci(t)X* (Al) 

We present here the corresponding results for the two-dimensional 
problem for completeness. From eqn. (Al) it follows that the pressure 
distribution is hertzian at all times and hence 

C,(t)E 
P@, t) = 1 [UW2 -x*1 “* (A3 

where the half-width of the strip is given by 

(A3) 
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The heat input 

Q(X) = PO(X) 

= CIE~V[ {A(t)}2 -x2]“* 

1 -v2 

and hence the thermoelastic displacements are 

(A4) 

WJV f AU,) 
%(X, t) = - 

k1’2npc(1 - ‘) ,, _A(t,) ’ ss 
c ttIj HN~d2 -q21”2h@~) &I dtl 

(t - tp 

(A5) 

from eqn. (3). Introducing eqn. (Al) into the left-hand side of eqn. (A5) and 
separating the terms with the factor x2, we obtain in the same way as in ref. 
Al 

C,(t) = 

where 

D= 
A(t,) A*(t,*) 

2{k(t - t&l’2 = 2(t* - tl*y 

(-46) 

(A7) 

After replacing C1 from eqn. (A3), the dimensionless form of eqn. (A6) 
becomes 

1 1 

{A*(t*)}2 - (A*(O)}2 
= 3rlj’j* dtl* rs2 exP(-_s2) & 

0 {A*(tl*)13 0 
(As) 

For large D (short time solution) 

D 

J 
0 

s2 exp(-s2) ds = a (A9) 

and we obtain the straight line approximation 

A*(t*) = A*(O) - 
3n 
--g t* HO) 

As the dimensionless time t* tends to infinity, eqn. (A8) predicts that A*(t*) 
tends to 8/37r instead of unity. This gives some measure of the accuracy of 
the approximation. 

Reference for Appendix A 
Al J. R. Barber, The transient thermoelastic contact of a sphere sliding on a plane, 

Wear, 59 (1980) 21 - 29. 


