Base excitation in one-dimensional soil dynamics
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The prescribed motion to be used as base excitation for shear wave propagation studies in soils is
not well defined in the literature. This paper utilizes two methods to investigate the concept of
utilizing one-half the rock surface velocity as the incident velocity at a transmitting boundary at the
soil base. A range of material properties, thicknesses, and frequencies are used to explore the
variation of the ratio: incident velocity to rock surface velocity. Although the ratio varies over a
broad range recommendations are made to assist the analyst in selecting a conservative ratio

suitable for engineering studies.
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INTRODUCTION

In the study of shear wave propagation in soils, the soil
base motion is seldom available. Most generally, only
recorded rock surface seismographs are available, either
from measurements in the vicinity of the site or measure-
ments that are transposed from other locations. These
recorded surface motions are often imposed as the actual
total velocity at soil base. This method produces
unreliable results that are most often in excess of the
physical response. An alternative procedure involves
inverting the rock surface velocity to get the incident
velocity at a substrata interface. Preferably the base
material below the interface is homogeneous. The method
uses this computed incident velocity as the prescribed
motion at the same level beneath the soil to compute the
response of soil mass.

An alternative method uses one-half the rock surface
velocity as the incident velocity at the soil base®. This
method, more convenient but not so precise, provides a
similar soil response. However, to create the same ampli-
tude, the method requires multiplication by a constant
different from one-half in some instances. It is the
objective of this study to find this constant and to identify
its range of applicability. The potential simplification in
soil motion analysis provides the motivation.

Two methods are used to find the constant: namely a
first pulse method, and a frequency domain method. The
former one considers the constant to be a function of
material properties only. The latter one considers the
constant to be a function of both material properties and
wave frequency. The latter method is more complete and
therefore provides a more reliable estimate of the con-
stant. Rock without dissipation is first assumed to
compute the constant; later the limitations imposed by
this assumption are investigated.

PHYSICAL DOMAIN DESCRIPTION

The domain under consideration for both methods is
shown in Figure 1. The material in each layer is locally
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homogeneous. Two types of stratification are investi-
gated. The first type, called TP1, is the one in which the
material property becomes progressively weaker when
measured from the base level to the surface. The second
type, called TP2, contains the opposite type of stratifi-
cation, namely weak to strong from base to surface.
Typically the material is rock with shear moduli, G, in the
range 9 x 108 to 7 x 10° psf, maximum shear stress, 7,,,,, in
the range 2 x 10° to 7 x 10° psf, and specific gravity, S in
the range 2.5 to 3.5°. The number of layers above the base
level is represented by n, which can be any number other
than unity. It is desired to compute the ratio, r, between
the base incident velocity and the total surface velocity.

INITIAL PULSE METHOD

An approximate, but illustrative, method is presented
first. This method, which considers only the response due
to the initial pulse, provides a simple relationship between
base incident velocity and the total surface velocity.

In Figure 2, initially there is an incident wave which is
assumed to have originated at a depth several thousand
feet below the free surface. From the method of character-
istics®, the following equation is valid for motion at any
arbitrary interface f,,

Cr 1=, = P (V;,— V1) ()
Domgain in z—x plane
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Figure 1. Physical representation of domain in the z-x
plane
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Figure 2. Characteristic lines in the z—t plane

C~ designates a negatively sloped characteristic line,
1 =total shear stress, 7,=incident shear stress, V;=total
velocity, V;=incident velocity, p = mass density, v,=shear
wave propagation, and the subscript m designates any
arbitrary number for both the layer and the interface
directly above.

Since there is no previous motion in the rock, along any
C, -1 the relation between total shear stress, 7 and total
velocity, V;. is

Con1:T1,= P15, Va, )

and along any C,; characteristic line, the relation between
incident shear stress, 7, , and incident velocity, V, , is

Co it =pmV, Vi, (3)
The combination of Egs. (1), (2), and (3) yields
2
Vi = Y o V. )
1 + P m—1Ys,_,
Pmbs,

In any (m— 1)th layer, the material property is locally
homogeneous; thus,

V.=V ©)

When the computation proceeds from a bottom layer n
upwards to layer 1, repeated application of Eqgs. (4) and (5),
with index notation, m,changing fromnto 1,and pgv, =0,

yields:
V5= — |V 6
a <U1 -2 ) ©
Pms,

in which Vr =total surface velocity, ¥; =base incident
n

velocity, and the notation [] refers to the multiplication

m=2
operator. From Eq. (6), the ratio, r, is

pm ls,,,1

{H Pals ) ™

It is convenient to define A1 =(0Om-1Vs, /Pmbs)- The
wave propagation velocity is v, = (G/p)!/? for a material
without energy dissipation; therefore

m— Gm— 12 ’
Am_1=<”—p‘G ‘) @®)

Values of the velocity ratio are easily computed with
Eq. (7). Limiting values of the ratio are of particular
interest. Applying a Taylor expansion and Cauchy
inequality equation, one can prove, Appendix, that r
has a limit no matter how many layers there are in the
rock, and the limit occurs at the condition when
Ay=A,=...=A,_,. The result in Appendix is
rmn=0.277 for a rock stratified in a natural manner in
which the material property becomes weaker from bot-
tom to surface. This says that the utilization of one-half of
the surface velocity as an approximation to the actual
base incident velocity could be as much as 80% in error,
(0.5-0.277)/0.277.

The initial pulse method considers only the initial wave
behavior and doesn’t include any influence from reflected
waves. The method is independent of wave frequency,
since frequency doesn’t appear in the equation. Therefore,
this method may not be totally correct in predicting the
ratio, r. However, it does provide a first approximation to
the prediction.

FREQUENCY DOMAIN METHOD

A more complete evaluation is possible by considering
sine waves in the frequency domain. The equation that
describes the vertical propagation of shearing waves

without dissipation is
Pu _u
Por=Coz ®)

in which z = distance in the vertical direction, t = time, and
u=lateral displacement. For a sinusoidal wave the
solution is,

u(z,t) = U(z)e™ (10)
in which
U(z)=Ee* + Fe ™ (11)
with
k?=pw?/G (12)

w=wave frequency in rad/sec.
The time derivative of Eq. (10) gives the velocity, V(z,t),

V(z,t) =i Ee™ + Fe~*:)e't (13)
and the shear stress, 1(z,t)= Gdu/dz, is given by
©(z,t) =ik G(Ee** — Fe~ **)e'™t (149

In Eq. (13), the term iwFe™ ¥ represents the incident
wave traveling in the negative z-direction (upwards) and
the term iwFe =) represents the reflected wave
travelling in the positive z-direction (downwards)!-3.
Corresponding incident and reflected shear waves may be
identified in Eq. (14).
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The total velocity and total shear stress at the top of a
layer with thickness h,,, are

Vul0,0) =V, & (15)
1,(0,t) =1 € (16)
in which
Vy =iw(Ey+F,,) %))
Ty, = iKyGu(Ep— F,) (18)

The constants for the layer may be expressed in terms of
the given velocity and shear stress:

1.(Vy Ty
- —=q "= 1
E, 2z(w +kam) (19)
_ LV, 1,
Fn= _2’< ® ka,,,> 20

The total velocity and total shear stress at the bottom of a
layer with thickness h,, are

Vi(hpst) =V, € (21)
Tlhst) =7p € (22)
in which
Vi, = i0(E €™ + F e ~ ) (23)
1p, =ik G E o= — F e~ teetn) (24)
From Egs. (23) and (24):
_l. Kli Tp, — ik,
En- 21( £ +“kam)e @5)
1./V, Tp ;

F.o=——j| 2~_ ' ik, h.,

m 2’( © K,,Gm>é 25)

Equations (23) and (24) together with (17) and (18) yield
Vo =coskyh, . Vy +iZ,sink,h,. .t (27)

- sin ;mhm Vg, +C0S kbt - Ty 28)
in which
Zm = (U/kam (29)

In Egs. (15)429), Vy, 7y, Vo, and 7, are functions of
depth only. Egs. (27) and (28) can be presented in matrix
form

{D}m=[F]m{U}m (30)
in which

coskyh, iZ,sink,h,

[Fl.= [i sin k,,h,, cosk ] (31)

Z,

{D}m——-{V""} (32)
Tp,

{U}m={V""} (33)
TU_

The total velocity and total shear stress at the bottom of
the (m— 1)th layer is the total velocity and total shear
stress at the top of the mth layer,

Vm-—l(hm—l,t): Vm(O’t) (34)
Tm—l(hm—l’t)zrm(oat) (35)

from which
Vo . =Vu, (36)
Tp, , =Ty, 37)

When the computation proceeds from layer n upwards to
layer 1, repeated application of Egs. (30),(36) and (37) with
index notation, m, changing from n to 1 yields

{D},=[FLi[FL[F]s...[Fl.-.[Fl.{U};  (38)

Since the objective is to find the ratio, r, it is convenient
to set the total surface velocity as a sine wave with unit
amplitude and frequency w:

¥,(0,t) =sin wt = Re(— ie*™) (39)
Eq. (36) together with 7, =0 defines the vector {U}, as
{Uh ={} (40)

and with the given p,,, G,,, @, h,, the transfer matrix [F],,
is defined by Eq. (31), where m=1, 2, 3...,n. By defining
[J] as the product of the matrices [F],, [Fl,....[Fl,-1,

[Fl, ,
J
=] 1 12] 41
L] I:sz Jaz @)

in which J,, J,,, J,;, and J,, are independent of time,
then Eq. (41) together with Eq. (38) gives

o e [ )

Thus the total velocity and shear stress are available at
level n:

Vo,=—iJy, 43)

p,= —iJay (44)

Equations (43) and (44) together with (25) and (26) yield
_l JL J21 —ik,h,

En= 2( o kG, 43)
_ 1 {Ji_ J21 ikh,

Fu= 2( o kG, (46)

Once E, is defined, the amplitude of the incident velocity
at the nth layer is defined as the modulus of wE,:

V.| =|wE,| (47)

Since the amplitude of the total surface velocity is unity in
Eq. (39), one can obtain that the ratio between the
amplitude of the base incident velocity and the amplitude
of the total surface velocity is

r=|wkE,| 48)

In Eq. (48), w and E, are independent of time; thus, the
ratio, r, obtained by this method is also independent of
time. This method provides the layered system response in
the frequency domain instead of the time domain. There-
fore, it allows one to investigate the variation of r with
frequency and to find the critical frequencies at which r is
maximum or minimum.

Based on this method, several numerical examples are
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Figure 3. Velocity ratio vs. frequency, n=1, TPl
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Figure 4. Velocity ratio vs. frequency, n=2, TPI
stratification

tested and illustrated. The type of stratification is TP1
(progressively weaker when measured from base to sur-
face) for Figures 3-5, and TP2 (progressively stronger
when measured from base to surface) for Figures 6-8. The
wave frequency is varied in the range 1-125 rad/sec, which
includes the common frequencies of a seismic event. The
number of layers above base level is one in Figures 3 and 6,
two in Figures 4 and 7, and nine in Figures 5 and 8.
Figures 3-8 show how the velocity ratio, r, varies with the
wave frequency for the specified rock in each case. It is
useful to define the maximum and the minimum value of r
in Figures 3-5 as r,,,, and r,,;, , and in Figures 6-8 as r,,,,
and r,,,. These limiting values represent the upper and
the lower limits. Table 1 summarizes the findings.
When r is plotted in the frequency domain, the result is
a curve as shown in Figures 3-8. If the limiting values of r

are plotted in the frequency domain, the result becomes 2
points for each figure. This allows one to isolate these
points from the frequency domain to see their relation
with another dependent variable. These limiting values
are plotted in Figure 9 to see their variation with the depth
above base level (H). A single symbol appears in Figure 9,
to represent each case of a number of layers tested, i.e., six
symbols represent 6 different numbers of layers,n=1, 2, 3,
5, 9, 30. The figure shows that a critical depth exists
beyond which no matter how the depth increases the
values r,,;, and r,,, remain constant in this frequency
range. This critical depth is important in identifying
potential errors in the use of r=0.5. Table 2 shows the
critical values, identified as Hc, for r,,;, and Hc, forr,,..

The use of one-half surface velocity (r=0.5) to replace
the base incident velocity will be either an overestimation
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Figure 5. Velocity ratio vs. frequency, n=9, TPl
stratification
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Figure 6. Velocity ratio vs. frequency, n=1, TP2
stratification
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for TP1 rock or an underestimation for the TP2 rock. If
the possible maximum errors resulting from this approxi-
mation are represented by P, and P, for TP1 and TP,,

Py =(0.5—rrin,)/Trnin, (49)
P2 = (05 - rll'naxz)/r;naxz (50)

respectively, then,

Ymin, =Smallest ., in Flgure 9, Tmax,=largest rp,, in
Flgure 9. Table 2 summarizes the results from Figure 9.In
addition to the specific findings in Table 2, the following
two general comments apply.
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Figure 7. Velocity ratio vs. frequency, n=2, TP2
stratification
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Figure 8. Velocity ratio vs. frequency, n=9, TP2
Stratification

Table 2. Maximum and minimum values of velocity ratio, Figure 9

Table 1. Sample value of velocity ratio r in different rock stratifications
Figure Type of
No. no. stratification n critical frequency and
amplitude
1 3 TP1 1 w=1 rad/sec, max’ =05
w=41 radfsec, rp, =0.15
2 4 TP1 2 =1 rad/sec, rmaxl—OS
®="68 radfsec, ry;, =0.18
3 — TP1 5 w=lrad/sec, rp,, =05
w=125 rad/sec, rmml
4 5 TP1 9 =1 rad/sec, ax, =0.5
w=110 rad/sec, " tmin, =0, 26
5 6 TP2 1 =98 radfsec, ry,, =164
w=1 radfsec, ry =05
6 7 TP2 2 =86 radfsec, ry,, =125
o=1radfsec, 1y, =05
7 — TP2 5 w=104rad/sec, ry,,, =115
w=1rad/sec, ryp =05
8 8 TP2 9 w=9% radfsec, rp,, =109
w=1rad/sec, rp, =05
240
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Figure 9. Extreme values of velocity ratio vs. total depth,

H

n Hce, Hc, H>Hc, H<Hc, H>Hc, H<Hc, P, P,

1 160’ 400 Timin, =0.15 0.15 <7y, <0.5 Tnax, = 1.65 0.5 <rpgy, <1.65 233 -070
2 250" 360 T'min, =0.19 0.19 <rpiy, <0.5 Tmax, = 1.34 0.5 <rpuy,<1.34 163 —0.63
3 330’ 340° T'tmin, =0.23 023 <rpiy, <0.5 Tmax, = 1.27 0.5 <rpay,<1.27 117  -061
5 380’ 330 Tmin, =028 0.28 <rpip, <0.5 T'max, = 1.20 0.5 <rpay,<1.20 078 —0.58
9 400’ 320 F'min, = 0.30 030 <rpip, <0.5 Tmax, = 1.12 0.5 <rmpay,<1.12 067 —055
30 420 315 "min, =0.34 034 <rp, <05 Ttmax, = 1.07 0.5 <rye,, <1.07 047 -053
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(1) the usage of one-half of the surface velocity as the
incident velocity at the base level would generate an
excessively large soil response (conservative) for TP1
rock. This is so since, in every case, less than 50% of
the surface velocity is actually needed but 50%, would
be used.

(2) the usage of one-half the surface velocity as the
incident velocity in TP2 rock underestimates the soil
behaviour (nonconservative), since more than 50%
surface velocity is actually needed but 509, would be
used.

The change of rigidity and mass density between
two layers are given as

9
ag=S1x10° (51)
n
1.79
Bp==2 (52)

Equations (51) and (52) show that AG and Ap vary
inversely with n. Thus in the previous example,
AG; >AG,>AG;>AG > AGy > AG;,,, and
Ap >Ap,>Ap3>Aps>Apy>Apse. Numerical sub-
scripts refer to the layer number. An interesting finding
from this is that P, and |P,| increase with AG and Ap.
The case (n=30, TP1) is a simulation of an ordinary
rock in which the rigidity and mass density decrease
towards the free surface.

INFLUENCE OF VISCOSITY ON THE
PREDICTION

Base material without dissipation was discussed in the
previous illustration. Now it is desired to take account of
the effect of viscosity. When the viscosity, p, is considered
in the computation of the velocity equation in the
frequency domain, the shear modulus is modified from G,
to G*.

G¥=G,+iou (53)

The critical damping ratio?, g, is related to viscosity, u,
shear modulus, G, and frequency, w, by

ok
=3¢ (54

Rock generally can be described with a viscosity of less
than 3000 Ib sec/ft?>. Thus the maximum damping ratio
is less than 0.03%;. Since the maximum damping ratio is
small, one may expect the influence of viscosity also to be
small. In order to check this, the same cases as Figure 9,
but with viscosity 30001bsec/ft?, were computed. The
results, when compared with Figure 9, show that the
inclusion of viscosity essentially produced identical cu-
rves. It is noted that energy dissipation and viscous effects
play an important role in soil behaviour during seismic
events. However the objective here is to find the velocity
ratio, r,in rock to be utilized as excitation at the soil base;
therefore, only the rock viscosity needs to be considered.

CONCLUSIONS

1. The velocity ratio, r, which determines the percentage
of rock surface velocity that should be used as the
excitation at the transmitting boundary at a soil base, is in
the range 0.15-1.65.

2. If field data shows that the rock property is of the type
that becomes weaker toward the surface, the usage of one-
half surface velocity is proper in the engineering sense,
since the approximation is conservative.

3.Iffield data shows that the rock property is opposite, the
usage of 165%; of the rock surface velocity would provide a
conservative computation. It is noted that rock of this
type is very unusual and probably seldom exists.

4. The multilayered case (n =30, TP1)is probably the most
practical one since it is a simulation of an ordinary rock
whose property (shear modulus, mass density, etc.),
becomes weaker toward the surface. If the rock actually
consists of multilayers (e.g., n=100, 1000, ...), or displays
a continuous variation in properties, the range of r will
become narrower and closer to 0.5. Therefore, it may be a
good approximation to use one-half of the rock surface
velocity as the base incident velocity.

5. The ratio, r, is obtained from a sinusoidal velocity with
frequency, w, but can be extended to a seismic motion
with dominant frequency, w,. It requires first to discretize
the base period, T, and to expand the surface rock
velocity into Fourier series, then the remaining procedure
is similar to the frequency domain method*’.

6. The first pulse method, although a gross
approximation, provides a simple equation that shows
that the velocity ratio, r, is less than 0.5 for TP1 rock and
greater than 0.5 for TP2 rock. The variation of r is similar
to the results from the frequency domain method, i.e.,
0.28 <r<1.65. For a large number of layers, n>>30, the
two predictions agree quite well.
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The purpose is to prove that » in Eq. (7) has a minimum
value (#£0) when A, =A,=A;=...=4,_,=C"*™ D
even if n approaches infinity. TP1 rock is discussed but the
same procedure could be applied to TP2 rock to prove
that TP2 rock has a maximum value (# o). Let

l _pm—le—l

wor =S (56)
then,
VNP
r=§(n 3 1) (57)
m-—2

Applying Taylor series expansion about [,_;=1 and
assuming (I,,_; —1) is small enough so that the higher
order terms can be neglected:

L2ia1+1/2(p-y — 1) (58)
SO
r=1/2( Rt ) 1/2(12""1_1)) (59)
m=2

Since (l,,-;—1) is assumed very small, Eq. (59) can be
approximated as

r=21—"[2""l +2"721/2 i (In-1—1)]
m=2 (60)
=1/2+1/8[( y 1,,,_1>—(n—1)]
m=2

Applying the Cauchy inequality equation,

1 /2 " T
n———f<m§21'"“l>>(mgzl’"_l) (61)

Eq. (61) says that ) I,_, has a minimum value when

m=2
ll=12=13= can =l"_1 0rA1=A2=A3= e =A,|_1;thus

A1=A2=A3=...=A"_1=C1/(n_l) (62)

TP1 rock has a minimum r when §,=2.58 and
G, =9 x1081b/ft?, and S,=3.50 and G,=7 x 10° Ib/ft2.
Therefore, C is 0.3077, and

n 1 + Cl/(n—l))

rminl=1/2< n 3

m=2

(63)
By taking n=2, 5, 10, 100, 1000 and 10 000, the following
values of r,,;, are computed
T'min, (n=2)=0.3269
Fmin, (N = 5)=0.2896
"min,(n=10)=0.2828
T'min,(n =100)=0.2778
T'min, (n=1000)=0.2774
T'min,(n=10000)=0.2772

From these values one can see that r,,;, approaches 0.277
as n approaches infinity. It is noted that when n=100,
l,—1=09765, and when n=1000, [, _, =0.9976; there-
fore, (I,,—, —1) is small when n is large.
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