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1. 

In this paper we continue our earlier studies (cf., e.g., [l-4]) and consider 
the nonlinear boundary value problem 

Eu=Nu (1) 

where N is a nonlinear operator over a real Hilbert space S and E is a linear 
differential operator over a bounded domain G of R" with homogeneous 
boundary conditions and possessing a finite-dimensional kernel. 

The particular case when NU = g(u) +f has been the subject of much 
study in recent years and sufficient conditions in terms of g(co), g(-co) and 
f, patterned after the results of [8], have been discussed by several authors. 
In these studies a key hypothesis is that 

d--00) <da>. (2) 

We have established in [ 1 ] that these results may be treated as particular 
cases of a general abstract theorem [3] and have extended these ideas to the 
case when E has an infinite-dimensional kernel [4]. 

We study in this paper the case when (2) is not true; more specifically we 
assume that 

d-a) = g(=))* (3) 
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Existence results for (1) when (3) is assumed have been obtained in [5-71. In 
this paper we show that these results may be once again derived as particular 
cases of the abstract theorem. We obtain in the process existence results for 
problem (1) when (3) is true which are not covered by the earlier work. In 
particular, we do not restrict f to be orthogonal to ker E as, for instance, is 
done in [5]. 

2. 

We first recall an abstract existence theorem, and present a variant of it, 
which relates to the case of hypothesis (2). Thus, let S = L,(G) be the direct 
sum of orthogonal subspaces S,, and S, , and let P: S + S be the projection 
operator with nullspace S, and PS = S,, (Z - P)S = S,, S, = ker E, 
S, = range E and E: 'i)(E) c S -+ S. We assume that S, = ker E is nontrivial 
so that (1) is a problem at resonance. Since E restricted to S, n B(E) is one- 
to-one and onto S,, its partial inverse H: S, -+ S, n B(E) is a single-valued 
linear operator. We assume that the following natural hypotheses hold: (hi) 
Z-Z(Z-P)Eu = (Z-P&, (hJ EPu=PEu and (h3) EH(Z-P)Nu= 
(Z - P) Nu. Then (1) is equivalent (cf. [ 11) to the system of equations 

u=Pu+H(Z-P)Nu, PNu=O. 

Since every u E S has a unique decomposition u = U* + u1 , U* E S,, 
U, E S,, U* = Pu, u, = (Z - P)u, then the above system can also be written 
in the form 

u,=H(Z-P)N(u*+u,), (4) 
O=PN(u*+u,), (5) 

or, equivalently, as a single operator equation 

u,=H(Z-P)N(u*+u,)+PN(u*+u,), u=u*+ul. (6) 

Let ( , ) and ]I. I] denote the inner product and norm in S. We shall denote by 
L the norm of H(Z - P) in S. 

Let r, R, be positive numbers and let &! denote the set 

a=fX,XQ,, QO={u*ES,, Jlu*IJ<R,}, fl,=(u,ESl, IIulll<r}. 

Thus, by using the Leray-Schauder principle, we can state: if there are 
numbers r, R such that the equation 

u1 =yH(Z-P)Nu + yPNu =O, u = u* + Ul, (7) 
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has no solution on aI2 for any 0 < y < 1, then (1) has at least one solution 
u = u* + 24, in 9. 

A simple set of sufIicient conditions to satisfy the above is the following: 
let there exist numbers r and R such that 

IIfw-~)N~lI G r for llu*ll <R,, llullI =r, 
(Nu, 24 *) < 0 (or 20) for Il~*ll=4,, lI~,ll< r, 

where u=u*+ur, u*ES,, u,ES,. 
Then (1) has at least one solution in a. 
For the equation 

(8) 

(9) 

Eu + g(x, 44) =f(x), xEG, (10) 

where fE L,(G) and g(x, s) is a continuous real-valued function on G X R, 
any solution uy of (7) must satisfy 

Uly= yH(Z-P)Nu,, PNu,= 0. 

Writing g = g, + g, , g, E S,, g, E S, we have from 

u,,=yH(Z-P)Nu, 

that 

UIY = yqz - m-g(u) +fl 
= yqz - m-go - g, +.6l +fi 17 

and 

Il%yll < Ull g1 II + Ilfl II). 

Also, if U, = ZZ(Z - P) Nu we have 

Eu, = (I-P)Nu, 

or 

(11) 

(Eu,,u,)=((Z-P)Nu,u,)=(Nu,u,). 

Let 1, be such that (Eu,,u,)>l, ~Ju~(~~, U, ES,. Then 

4 II4 II2 < (-g(u), %I + (f, a 
Then 

(Nu, u*) = (-g(u) +f, u*) = (-g(u) +f, u) - (-g(U) +f, 4) 

< (-g(u), u) + (f, u> - 4 II Ul II*. 
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Thus, if we assume that 

(-g(u), u> + (f, u) G 4 II u, /12~ (12) 

then(Nu,u*)~Oforeveryu*ES,,IIu*lJ=Roandcorrespondingu,ES,, 
Ilu,ll~randu,=H(I-P)Nuwithu=u*+u,. 

As a corollary of the above considerations we have the following situation 
from [ 11: let E: B(E) c S + S, be a nonnegative self-adjoint operator in the 
real Hilbert space L*(G) where G is an open bounded set in R”. Suppose that 
dim(ker E) = 1, and let 8 # 0 belong to the kernel of E. Let I/ = D(E"*) 
with the graph norm and let A: V x V+ R be the associated quadratic form 

A@, u) = (E’%, E’%), u, u E v. 

For every u E L,(G) we consider the linear functional 1: V-1 R defined by 
I(U) = (u, v), v E V. Then SUP,,~ ]Iu]J-’ I(u, v)] defines a norm on L,(G). Let 
V’ be the completion of L,(G) with this norm. The form ( , ) extends from 
V X L, to V X V’ and with this pairing V and V’ are duals. We assume that 
Vn L,(G) is dense in V and the imbedding V-+ L,(G) is compact. Letfbe 
any element of L,(G). 

Let g(x, s) be a continuous real-valued function on G x R such that 

g(x, co) =-lim kf g(x, s), 

g(x, -co) = Em&f g(x, s), 

and let us assume that 

Further let: 
g(x, -03) < g(x, a), x E G. (13) 

for every E > 0 and any continuous real-valued function 

M(x), x E G with g(x, co) > M(x) for all x E G, (14) 

there exists p > 0 such that g(x, s) > M(x) - E for all x E G and s 2 p. 
Similarly if g(x, -a~) < M(x) for all x E G there exists p > 0 such that 
g(x, s) < M(x) + E for all x E G and s < -p. It must be noted that as in [9], 
the case g(x, co) = co, g(x, -co) = -a~ is not excluded. 

Then it can be proved that the equation Eu + g(x, u) =f(x) has at least 
one solution u E V provided 

+jeco g(x, de& 
for all 0 E ker E, 8 # 0 (cf. [8, 1, 31). 



A CLASS OF NONLINEAR BOUNDARY VALUE PROBLEMS 67 

It can be shown that assumptions (13) and (14) imply (12) and thus (8), 
whereas (15) implies (9) and this may be seen by an argument similar to the 
one in [l]. 

3. 

As remarked in Section 1, the main thrust of this paper will be the case 
when (13) does not hold. More particularly we will consider the case when 
hypothesis (3) is true. Before we go into the details, we first present an 
existence result for the problem Eu + g(x, u) = f which will be utilized in the 
following discussions. This existence result states sufficient conditions for (8) 
and (9) to be satisfied when dim(ker E) < co. 

LEMMA 1. Let H be compact and let the continuous real-valued function 
g(x, s) on G x R be such that: 

(i) there exist positive constants a, p such that 

tgt4 P~)T PW) 2 UP (16) 

for all w E ker E with I( o IJL2 = 1; 

(ii) there exist positive constants c and k such that 

I &G s)l Q c9 

Ig(x,s+h)-gtx,s>l~kIhI 

(17) 

forallxEGandforalls,hER; 

(iii) L [ctmeas G)“’ + Ilf IL,] 4 r; (18) 

(iv) kr + Ilf IL2 < a. (19) 

Then the equation Eu t g(x, u(x)) =f (x) has at least one solution 
uEL,(G)withu=u*+u,,u*EkerE,u,E(kerE)’,IJu*)I~p,)Iu,II~r. 

Proof It suflices to verify (8) and (9). Thus we have Nu = -g(u) +f and 
with u = pw t ul, w E ker E, u, E (ker E)‘, 11 u1 (I< r we have 

II~,II=ll~~~--P)~-~~~~P~+~,~+fllI 

G WI &v PO + UJIL., + Ilf IL,) 
< Wmeas G)'12 t Ilf IL,) 
< r. 
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Thus (8) and (9) are satisfied with R, = p, and hence Eu + g(x, u) = f has 
at least one solution. 

An example to illustrate the applicability of the above lemma to the case 
when g(--03) = g(c0) = 0 is the foliowing. 

EXAMPLE. Consider the nonlinear differential problem 

u” + u + g(u) =J; 

u(0) = u(n) = 0. 
(20) 

Then Eu = to’ + U, G = (0, n), ker E = (sin x) and we can take w  = (Z/~L)“’ 
sin x so that w  E ker E and llollL, = 1. Thus, meas G = 71 and it is easy to 
see that L = j. 

Let g(s) = 1 - cos s, s > 0 and g(s) = -1 + cos s for s < 0, so that c = 2. 
Then we have 

(g(p), pw) =jr [ 1 - COS@(~/Z)~‘~ sin x)] p(2/n)“* sin x dx 

= 2p(2/n) i’2 - 
s 

R cos@(2/n) “I sin x) p(Z/x)” sin x dx. 
0 

We now estimate the second term 1 on the right-hand side. It can be written 
as I = 2 1: cos(o sin x)u sin x & where Q = p(2/7r>“‘. Thus, setting sin x = t, 
we have 

I=2a 
I 

1 

cos(ut) t( 1 - t2) - “’ dt. 
0 

For Q large, let k, be the largest integer with u-‘&n + 7r/2) < 1 and Iet 
t S = u- ‘(srr + 742), s = 0, l,..., k,. Then 

z=Zu lj-ofo+ zo’ j-;+‘+/-; 
m 
1 cos(at)t(l -t2)-“‘dt. 
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Here t, -+ 0 and 1 - tkm + 0 as u -+ co. Also t(l - t2)-“’ is an increasing 
function of t. Thus I+ 0 as o + co. Hence, 

(dP)9 PW) > 2pwv* - E for 

p sufficiently large when E > 0 is given. Relations (18) and (19) now reduce 
to 

3 -‘(27P2 + llfll) < r and r + llfll < 2(2/?7)“’ - E. 

Solving the above inequalities one obtains estimates on llfll and r. Hence, by 
the preceding lemma we conclude that 

UN + u + g(u) =s, 

u(0) = u(n) = 0, 

has at least one solution provided IlfjlL, satisfies the estimate obtained above. 
We conclude this example by noting that for the g(x, s) discussed here, 
g(-co)=g(co)=O. 

4. 

Another example where g(-co) = g(co) = 0 and the problem 
Eu + g(u) =f has infinitely many solutions is as follows: 

UN + g(u) =f(x), 

u’(0) = u’(a) = 0. 
(21) 

In this case ker E = {w} where w  is the constant function w(x) = u-l’*, 
0 < x < a, and (1 cc)(ILz = 1. We define g(s) as in the previous example so that 
g(-a) =g(co) = 0. Also, g(s) = 0 for all s = 2klr, k= 0, &l, f2 ,..., and 
I g(s)1 < 2. For the function f(x) we choose a constant&, 0 <fO < 2. Then, f, 
belongs to ker E, and further there exists I such that g[(2k + 1)~ f A] =f,, 
0 < Iz < 71. Then the constant functions 

z+(x) = (2k + 1)~ k A, 0 < x < a, k = 1, 2 ,..., 

are all solutions of the nonlinear problem (21). Thus (21) has infinitely 
many solutions u with )( ~11 as large as we want no matter how smallf=f, is 
in ker E with Ilf,ll < 2~2”‘. 

We now consider the case when in (21) f =fO +fi, f0 E ker E and 
fi E (ker E)‘, both not identically zero. Also, instead of the specific function 
g(s) chosen in (21), we assume now that g is any continuous bounded 
function with 1 g(s)1 Q c, sg(s) > 0, g(0) = 0, g(s) = 0 also at countably many 
points s = sk, k = f 1, k2 ,..., with ks, > 0, sk + f co as k + f 00, and g is not 
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equal to zero otherwise. Clearly the function g of (21) has all the properties 
assumed here. 

First, a remark concerning the eigenvalue problem a” + lu = 0,O < x < a, 
with u’(O) = u’(a) = 0. The first eigenvalue Lo = 0 has the normalized 
constant eigenfuction v. = o(x) = a - l’*. The other eigenvalues 
Ak = @/a)’ k*, k = 1, 2 ,..., have normalized eigenfunctions vk = (2/a)“’ 
cos(nkx/a), 0 f x < a. Thus the smallest nonzero eigenvalue is L, = (n/a)*, 
and L = llHl[ = A;’ = u2/n2. 

Now we consider the decompositions f = fO + f 1, g@o + u 1) = g, + g, , 
fO, g, E ker E, fi, g, E (ker E)‘. From PNu = 0, that is, P(-g + f) = 0, we 
derive f0 = g,. 

Again as in Section 2, we consider the equation 

u, = yH(I - P) Nu + yPNu, o<y< 1. (22) 

Let I== [s E R, g(s)=01 be the set of zeros of g and let E,,= [s E R, 
] g(s)] < a] where o > 0. We assume that for all u > 0 sufficiently small there 
are infinitely many p = pk > 0 such that dist@,w, Z=,) > d > 0 for a fixed 
d > 0. For any ui E (ker E)‘, ]]u,]]<r and p>O, let Bb=[xEG, 
I u&>l 2 PI so that 

,B’ meas Q jc uf dx < r*. 

Thus meas < r’p-‘. We assume r*j?-’ < u and then ]u,(x)] < /I for all 
x E G -B, where meas(G -B,) is greater than or equal to a- r2p-*. 

Ifwenowletp=d,thenpw+u,(x)~~~forp=p,andallxEG-B,. 
Hence, 

ago = 5, g@w + uI(x)) dx = I,., + j 
a EL3 

> u meas(G -B,) - c meas 

> aa - ar2/3-* - cr’p-*. 

Also by (11) we have that for any solution of (22), 

II u, II G W@=s W1’* + IW - WI) 
= (u2/7T2)(cu1’2 + 11 fi II). 

Thus for fixed o, p = d and 

(23) 

(24) 

r*d-* ( a, cm > (o + c) r*d-‘, (a2/7r2) cu’j2 < r, 

11 foil < c~-“~(au - (o + c) r2d-*), (u2/7r2) )I fi II < r - ca5~*/7r2, 
(25) 
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we have 

(1 go/J = (meas G)“* (g,J > a-“*[aa - (a + c) r2C2] > 11&/1, 

and then (22) cannot have a solution U(X) = po + u1 for p = pk, (1 U, (1 < r and 
any 0 < y < 1. Thus (2 1) has at least one solution u = po + U, with p < pk, 
(Jui1( < r provided (25) is satisfied. 

In the particular case of (21) where g(s) is defined by g(s) = 1 - cos s, 
s > 0 and g(s) = -1 + cos s for s ,< 0 and a is chosen to be 1, we can verify 
(25) as follows. Here the zeros of g are 2kq k = 0, f I, *2,..., and with 
O<a< 1 we takep,=(2k+l), d=z-r, r=arccos(l-a), 0<2<7r/2, 
and relations (25) become 

ry7r - t)-’ < 1, (T > (a + 2)(7r - q-2 r2, (1/7r2)2 < r, 

llfoll < [Q - (0 + 2) r2@ - r>-*I, (l/n”) IIS, II < r - 2/n*. 

By choosing 0, r, &[I, llfrI[ suitably it can be shown that (21) has at least 
one solution for f = f, +f, . 

5. 

In the proof of existence of solutions using (13), (14) and (15) that we 
have sketched in Section 2, it is not restrictive to assume g(x, s) < 0 < 
g(x, -0) for all x E G and all s, o 2 k for k suitably large so that 

and this property is relevant in the proof. 
We now assume that g(x, -co) = g(x, co). Without loss of generalitly we 

can then assume that 

g(x,--ao)=g(x,o3)=0, XE G. (27) 

It does not then automatically follow that (26) holds, e.g., consider the 
function g(x, s) = -s”*(l + s)-’ for s > 0, g(x, -8) = g(x, s), and then 
g(x, --co) = g(x, co) = 0 but Inf sg(x, s) = -co. However, if we know that 
for some k > 0 sufficiently large we have sg(s) > 0 for s > k and s < -k, 
then clearly (26) follows. 

Thus assuming (26) and (27) as hypotheses we consider the problem 

Eu + g(x, u) =f(x), x E G, fE L*(G). (28) 

Here we assume that E is a nonnegative operator, namely, we assume that 
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2, = 0 is the smallest eigenvalue and 0 < A, < A, < . . a are the remaining 
eigenvalues with Ak+ co, so that 

6% 3 4) 2 4 II u1 II2 

for all u1 E (ker E)‘. In place of (26) we assume 

(I”f, sg(x, s> > -P, OQp<m,xEG. (29) 1, 

Then, as in Section 2, we consider for 0 < y < 1 the corresponding 
equations 

ul=yz-z(z-P)Nu, PNu = 0. (30) 

LEMMA 2. For any solution u = pw + u, of these equations with 
0 < y < 1 we have 

Il%lI < dP2 + 1) 

where c = c(A,, Ilfll, ,u, meas G). 

Proof: For any solution u = pw + u, of (30) we have 

Eu,=y(Z-P)Nu. 

Thus, by (29) and u =pw + u,, )JwJJ = 1, we have 

~,IIu~II’~(~u,,u,)=(y(Z--P)Nu,u,) 
= (y(Z - P) Nu, pw + u,) = (yNu, u) 

= Y[(-g(u), u) + u u>l 

\Y < [-J ~@~+u,~@~+~,~~+ll~lIllull] 
G 

< lu meas G + llfll @ + Ilu, ll>l~ 

Hence, 

4 11~1112 - llfll IMI - 01 meas G + llfll PI < 0, (31) 

and this implies the existence of a constant c > 0 such that for ]I u, )I > 
c@“* + 1) the above inequality (31) is not solvable and c = c(;l,, ]]f]], ,u, 
meas G). 

Lemma 2 may also be seen in [9]. However, for our purpose, we can 
obtain the following stronger result. 
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LEMMA 3. For 0 < p ( p0 and r > (A; ‘,a meas G)“’ there exists 6 > 0 
such that u1 = yH(I - P) Nu has no solution on the boundary of the ball 
I1~,1I~~fo~llf1l~~=~@,,~,,~, measG,b). 

Proof: Following Lemma 2, if U, is a solution of U, = yH(I - P) Nu then 
(31) holds and this can be rewritten as 

(IlUtli- 2-‘1;’ llfib’ - 4-1~;2[/)f//2 + 4&y meas G + 4A, l]f]]~] < 0. (32) 

If ]]f]] = 0 then we get 

JIu1112 --A;$ meas G < 0 (33) 

and this is clearly impossible if ]] u i // > (A; ‘p meas G)1’2. 
Now let ]]ui]] 2 (2;‘~ meas G)“’ + c for some c > 0. Also let 6, be such 

that for ]]f]] < S, and 0 <p <p,, we have 

4-1~;2wl12 + 41s meas G + 4d, ]]jJlp] < 12;‘~ meas G -t c2/4. (34) 

For 0 < 6, < c/2 we have 

[(A.; ‘p meas G)“’ + c - 6,]’ > ((3L;1p meas G)“’ + c/2)’ 

> A; ‘,u meas G + c2/4. 

) 

Thus, for iIf]\ < 21,6, we have 

(Ilu,II - 2-‘1;’ Ilfll)’ > ((A;% meas G)l” + c - 6,)’ 

> 1; ‘p meas G + c2/4. (35 

We now choose ]]S]] such that ]]jJ] < S = min(b,, U,S,] and 0 < p < p. 
Then both (34) and (35) are true for all 0 < p < pO, and hence 

(Ilu,II - 2-‘A-’ Ilfll)’ >A;‘p meas G + c2/4 

> 4-1~;2[llfl12 + 41,~ meas G + 41, llfll P]. 

In other words, for such choice of ]] U, ]], (3 1) could not be true. Hence we 
conclude that for 

Ilf II G 69 O<P<P,, r>(A;‘p measG)“‘+c, 

there cannot be any solution of U, = yH(I - P) Nu + yPNu on the boundary 
of bail ]] u, ]] = r. 
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Before we consider the existence of solutions of (28) under (26) and (27), 
we examine the above estimates in the case p = 0. In this case (32) reduces 
to 

For ]]f]] = 0 this reduces to ]]ui]]* < 0, which is impossible. Now let ]] u,]] > c 
for some c > 0. Choose 6 > 0 such that for ]]f]] < 6, and 0 < p < p,, we have 

4-1~;2[llfl12 + 41, IlfllPl < c2/4. (37) 

Also, given c > 0, let 0 < 6, < c/2. 
Then we have (c - 6,)’ > (~/2)~ and hence for ]]f]] Q 246, we have 

(II u, II - 2 - 9;’ ll$ll)’ > (c - 82)’ > c*/4. (38) 

Finally, for ]]f]] < 6 = min[b,, U,S,] and 0 <p<pO, both (37) and (38) 
are true so that 

(Il%ll - 2-w Ilfll)’ > c*/4 > 4-1~;2[Ilfl12 + 41, IlfllPL 

and this relation contradicts (36). The same argument holds as before. 

We now return to an analysis of (28) under hypotheses (26) and (27). For 
x E G and any u > 0 let Z,(x) be the set defined by 

Z,(x) = {s E R: sg(x, s) < 0, or g(x, s) < u for s > 0, 

or g(x, s) > -0 for s < 0). 

Also, for given p > 0 and o E ker E, ]]o]] = 1, let d(x) = dist{po(x), 
Z,(x)} > 0. We now assume (Z’): there exist positive numbers I, h, u, a with 
0 < L < meas G and infinitely many numbers pk > 0, pk -+ co as k --t 00, such 
that for p = pk, for any w  in ker E with I( o ]] = 1 and any measurable subset 
S of G with meas S 2 Iz, we have 

s 4x) d.x 2 k (39) s 
and for any measurable subset ,?Z of G of measure >(meas G) - L we have 
I, I o(x)l dx > a* 

The function g(s) of the examples discussed in the previous sections 
clearly satisfies (r). For the sake of simplicity we shall write below g(s) 
instead of g(x, s). 
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Now, for any &-integrable function u1 E (ker E)’ with (] U, ]( < r let 

S, = {x E G: po + u,(x) E Z,}. 

Then PO(X) f u,(x) E Z,, and x E S, with meas S, > I. is possible if and 
only if ] u,(x)] > d(x) for x E S, and 

(meas G) “* r>tmeasG)“* IIAI >~Gl~,@)i~~>~s IWIdx 
0 

> i 
d(x) dx > h. 

SO 

This implies that for ((u~]( < h(meas G)-“’ we can have 
PO(X) + u,(x) E ZO only in a set S, of measure <A. Thus PO(X) + u,(x) & .X,, 
in the set G - S, and hence ] g@o(x) + u,(x))] > u in the set G - S, of 
measure >(meas G) - 1. Moreover in G - S, we certainly have 
g@w + %tx)wtx) + u,(x)> > 09 i.e., g@w + al(x)) and pw + u,(x) have 
the same sign and their product is >a[po(x) + u,(x)]. Thus 

! g@utx) + Qx))@QJ + ~1) dx 
G 

=I,-, +i, 0 (I 

> -p(meas S,) + (7 [ Iw+u,ldx 
‘G-S, 

2 -heas G) + UP I,-, 
0 

where meas(G - S,) > meas G - 1. Hence, 

Finally, 

J, gb-0) + G4)@~ + u,> dx 
> - p(meas G) + upa - u I] u1 ]I (meas G)“*. 

(Nu, u) = j I-g@o + ~1) +fl@w + ~1) dx 
G 

< -wa + ,dmeas G) + Q II ul II (meas G)“* + llfll @ t II u1 II) 
= -(au - ]]f]])~ + ,u meas G + (u(meas G)“* + IIf]]) II a, I]. 
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Thus, we need to show that for p = pk sufficiently large, for (]ur ]] Q 
(A;’ ,U meas G)l12 f E for E > 0 sufficiently small and for j]fl] Q 6, for 6, > 0 
sufficiently small, we have 

-@a - llfll)~ + P meas G + (+eas G)“’ + llfll) lIul II < 4 llu, 112, (40) 

11 u, 11 < (meas G)-1’2 h. (41) 

For P = 0 these conditions imply 

IIUIII G 63 Ilu,ll < (meas G)-l12 h, 

(I, llulll - a(meas G)“’ - Ml) II Ul II > -@ - llfll)P 

These relations are clearly compatible: for one could take 
E < (meas G)- ‘I2 h, (]tl,l( < E, [If]] < ao/2. Then we verify that 

(-u(meas G) 1’2 - W/2)& > -(au - ua/2)p, 

or 

(uu/2)p > us((meas G)“’ + u/2). 

This is achieved by taking p = pk sufficiently large. Then we determine 6 
given by Lemma 3 for 0 < p < pk and we take l]jJ] Q 6, = min[uu/2,6]. 

The discussion when ,U > 0 proceeds similarly. Thus for ,U > 0 we first 
ensure that 

@;‘.u meas G)“2 < h(meas G)-‘12 

or 

,u < I,(meas G)-2 h2. 

Then we choose c < (meas G)-‘j2 h - (A; lp meas G)li2 and ]I U, I] < 
(12;‘~ meas G)“’ + c, ]]f]] Q uu/2. Now we have to verify that 

(-u(meas G) ‘I2 - ua/2)[(~;‘~ meas G)‘j2 + c] > -(uu - uu/2)p, 

or 

(o@)p > c[(meas G)1’2 + a/2][1;‘p(meas G)1/2 + c], 

and again this is achieved by taking p = pk sufftciently large. As above, once 
pk is fixed we choose 6 from Lemma 3 and we take ]]f]] < 6, = min[uu/2,6]. 
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Thus we conclude that: 

THEOREM. If g(x, s) is a continuous function on G x R satisfying (26), 
(27) and (T) and 0 <p < I,(meas G)-*II’, then there is some 6, > 0 such 
that 

Eu + g(x, u) =f(x) 

has at least one solution provided 11 f (( < 6,. 

6. 

We conclude this paper with the related case in which 

g(x,-co)=O=g(x, 001, (42) 

and there are numbers C > 0, 0 < a < 1, h > 0, it4 > 0 such that 

I g(x, sl G c for all x E G, s E R, (43) 

g(x,a) sgnaahs-” for all M<]la(<s, s>M. (44) 

We shall denote by ]A 1 the measure of any measurable set A. Under 
assumption (43) the auxiliary equation ur = H(I - P)N@w + u,), o E ker E, 
IJw(( = 1, p > 0, u, E (ker E)‘, is solvable for every p and o, with 
)I ur ]I < LC = r. Let us prove that there are numbers y, R, > 0 such that for 
every p = R,, w  E ker E, (Iu, I( Q LC, /If/l < y, we have 

i k(x,pNx) + ul(x)) -f(x)1 P(X) dx > 0. G 

To prove this we shall assume that: 

There is a number w0 > 0 such that /w(x)] < w,, for all x E G and 
oEkerE, ]]w]]=l. (45) 

Given 0 < E < o0 there is k > 0 such that, for every o E ker E, 
llwll=l,and~,=[x~G(lo(x)l~&],thenI~:,I~k&. (46) 

We can take o,, sufficiently large so that I( WI] ( o,, and then 

./Xx) PW(X> dx G PO, lkfll. 
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First, for every N > 0 let C, = [x E G: ( luI(x)l >N] so that N* (Z,( < 
llUll12 <L2CZ, and hence /Z, ( < L2C2N-*. For the sake of simplicity we 
shall write g@o + u,) for g(x, pm(x) + u,(x)). Then 

I=Jcg@w+u,)pwdx= (1 +J- +j ) g@w+u,)pwdx 
G-Z,-1, Z, X2 

=1,+1, +I,. ’ 

For x E G - EC, -Z’, we have E < 1 w(x)1 < q,, 1 z+(x)1 Q N, and hence 

b(x) + Ul(X)l <P% t N, IP(X) t u,(x)1 2 PC - N, 

and for PE - N 2 M, we also have sgn@w t u,) = sgn w, and 

g@co t u,) sgn o > h@o, + N)-“, 

g@o + UAW > M/w, + NJ-” PC, 

I,~IG-~,-~21hps@o,tN)-“, 

with (EC, ( < L*C*N-*, (C,/ < kc. Hence 

I, > (IGJ -L*C*N-’ - ks) h&m,, t N)-@, 

and for 

L2C2N-* < 4-‘IGJ, k&<4-‘jGJ, 

also 

1,,>2-‘IGI hpe@o,+N)-a. 

On L’, we have 1 u1 ( > N, ( g(s)/ < C, /L, ( < L2C2N-*, and hence 

)I, ) < IZ, 1 Cpw, < C~O+,(L~C~N-~). 

On EC, we have (o(x)1 < E, ( g(s)( Q C, (C, ( < kc, and hence 

lI2lG P2I ‘3~ Q Cb2. 

Thus, 

I>p[2-’ IGI hs@o, + N)-” - Cw,(L*C*N-*) - Cke2]. 

We shall now take 

CW,(L~C’N-~) < 2-3 ICI he@o, + N)-“, 

Cke2 < 2-3 (G( he@o, + N)-“. 

(47) 

(48) 
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We must show that relations (47), (48) and PE -N> A4 are compatible. 
First, we can write these relations as follows: 

ka<4-‘JGJ, k&~2-3/G/C-‘h@wo+N)-*, 

L2C2N-2 <4-’ ICI, L2C2N-2 < 2-3 IGI C-lw,lhs@w, + N)-“, (49) 

p--NM. 

We shall assume 

2-‘C-‘&q + N)-” < 1, (50) 

so that of the relations (49) the second one is stronger than the first one, and 
the fourth is stronger than the third one. Then the fourth relation (49) yields 

L2C2N-2 < 2-3 IGI C-‘w,‘h@o, + N)-” . 2-3k-1 IG( C-‘h@o, + N)-” 

= 2-6 JG12 C-2h2(kq,-1 @o,, + N)-2a 

or 

N-2 < 2-6 IG12 L-2C-4h2(kq,-1 @q, + N)-2a, 

or 

@q, + N)“< 2-’ IGI L-‘C-2h(kw,)-1’2 N. (51) 

Thus, for 0 < (x < 1, we may take pw, > N and 

ke = 2-3 IGI C-‘h@o, + N)-“. 

Thus, ke < 2-3 IGJ C-‘lWU, 

2-‘C-‘&q, + N)-” < ~-‘-V-‘ZZN-~, 

and we can take N sufficiently large so that this last expression is <I, and 
(5 1) holds. Moreover 

PE = 2-3k-1 (G( C-‘hp@w, + N)-” 

and for any N we can take p > o;‘N sufftciently large so that the last 
expression is >M + N, that is, PE - N > M. Now, for 0 < a < 1, we have 
satisfied all five relations (49), and 

Z~~=~-‘IGI~E@O~+~?-~PEPO~Y. 

For a = 1 relation (51) can be satisfied only if 

A = 2-3 IGI L-1C-2h(ko,)-1’2 > 1. 

5o5/5a/ 1-6 
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Actually, under this restriction, relation (51) reduces to pw, < (A - 1)N. If 
we take 

pw, = (A - l)N, 

then pw, +N=HV, and relation (50) becomes 2-‘C-‘M-‘N-’ < 1, which 
we satisfy by taking 

N= 2-‘C-‘M-‘. 

Finally, we take 

Then 

E = 2-3k-1 /GI C-‘h@w, +N)-‘. 

E = 2-3k-1 IG( C-‘M-‘N-’ 

= 2-3k-’ JG1 C-‘M-1 . (,-I,-1M-7-1 

= 2-*k-l ICI, 

pc = o,‘(A - 1). 2-‘C-‘M-l . 2-*k-l IGI 

=COo -‘(A - 1). 2-‘C-‘h/i-’ . 2-*k-’ . 23&C2h-1(kq,)‘/2 

= co, ‘(A - 1) Ck- 1L(ko,)1’2. 

Finally, relation ps - N > M becomes 

(A - l)w,‘LCk-‘(km,,)“* >2-‘C-‘M-’ +M. 

For A = o;1LCk-‘(ko,)1’2, B = 2-‘C-‘/r, this relation becomes 

/l(li-l)A>B+M/i, 

or 

If &, denotes the positive root of this equation, and A, = max[ 1, A,,], then for 

A = 2-3 IGIL-‘C-*h(kw,)-“* >Ao, 

all relations (49) are satisfied, and again 

We conclude with the following theorem. 
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THEOREM. Under assumptions (42), (43), (44), (45), (46) and 0 < a < 1, 
there is y > 0 such that for (1 f 11 < y, Eq. (28) has at least one solution. For 
a = 1, the same is true provided 2-3 IGI L-‘CT-*h(ko,)-“* > A,. 

Indeed, in either case, we have, for )( f 11 < y, 

and the statement follows by [3]. 
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