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A simple method to compute the carrier energy states, 
miniband parameters and dispersion characteristics for single 
and multiple quantum well and superlattice structures is 
presented. The method utilizes the continuity of the 
envelope function across the heterojunctions according to the 
boundary conditions that both the wavefunction # and the 
particle current density ~'/m* be continuous at each 
interface. The nonuniform potential distribution encountered 
in doped or compositionally graded materials is approximated 
by piecewise constant potential functions. In addition to 
being conceptually simple, the method is readily adopted to 
fairly complex structures where other more sophisticated 
methods such as LCAO, reduced Hamiltonian and tight binding 
theories may become unfeasible or unmanageable. It is shown 
that for an arbitrary stepped potential variation, the 
eigenvalues (or the energy states) of quantum wells or a 
finite number of coupled quantum wells can be found by 
utilizing a transverse resonance method which is readily 
implemented on a digital computer for the computation of 
these eigenvalues. For the case of periodic superlattices, 
the miniband parameters and the dispersion characteristics 
are computed from a suitably defined transmission matrix 
associated with a unit cell of the superlattice which may 
itself consist of multiole layers. Typical results for the 
computed parameters for several wells and simple, biperiodic, 
binary and polytype superlattices consisting of various 
AlxGa1_xAS and InxGa1_xAS alloys are presented. 

I. INTRODUCTION 
A considerable amount of work has 

been done in recent years on the evalua- 
tion of the electronic properties of 
various compositional and doped quantum 

1 -I0 
well and superlattice structures. 
One of the most successful methods used 
in deriving the eigenvalue equations for 
quantum wells and dispersion equations 
for periodic structures has been the use 
of plane wave type solutions with 

assumed I-3 or derived 6'7'11'12 boundary 
conditions or connection rules. Even 
though more accurate methods such as 

LCAO 5, r e d u c e d  H a m i l t o n i a n  9 and o t h e r  

microscopic theories 8 are available 

particularily for thin structures, the 
wave equation approach with appropriate 

boundary conditions 11'12 is conceptually 
simple and can be readily applied to the 
multilayered wells and simple and 

13 
polytype superlattice problems. In 
this paper a unified systematic approach 
that utilizes a transverse resonance 
condition for quantum wells and a 
transmission matrix method for periodic 
structures is presented. 

II. THEORY 
T e---~genvalues of the quantum 

wells and multiple coupled quantum wells 
and the miniband parameters of periodic 
quantum well structures are found by 
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solving the one-dimensional Schrodinger 
wave equation with the potential 
variation specified by the conduction 

and valence band discontinuities 14. It 
is assumed that each layer contains a 
sufficient number of atomic sublayers 
such that the effect of atomic 
potentials in each region can be assumed 
to be at least partly included in the 
effective mass. Each layer acts like a 
crystal modified at most by a slowly 
varying potential and the effective mass 
wave function is a modulated Bloch wave 
with an envelope governed by the 
Schrodinger equation. In addition, the 
layers are assumed to be sufficiently 
thin with low doping levels such that 
they are modelled by wells and barriers 
of uniform thickness even in the 
presence of an applied bias voltage. 
The interface connection rules for the 
effective mass wave function at the 
abrupt heterojunctions correspond to the 
continuity of the slowly varying 

envelope function introduced by Bastard 6 
and subsquently reinforced by White et. 

11 
al. Alternately, the connection rules 

derived by Kroemer and Zhu 12 may be 
utilized which will obviously lead to 
slightly different results depending 
upon the discontinuity in effective mass 
across the interface. That is, the wave 
function in the jth region is a solution 
of 

W 

d2~j 2mj (E-Vj) ~j=0 (I) 

dz ~ + 

d,j 
with * dz and ~ being continuous 

m. 
3 

across the heterojunction if the 
continuity of envelope function as 

derived by Bastard 6'7 for type I super- 
lattices (e.g., GaAs-A£.Ga I .As)is to be 
utilized. It should be mentloned that 
both boundary conditions conform to the 
continuity of the probability current 
density. In addition, for the case of 
type II (InAs-GaSb type) superlattices 
where the periodic part of the host 
material Bloch function cannot be 
neglected, the corresponding connection 
rules for the envelope function" can be 
utilized. 

The solution of the above equations 
for simple cases of potential wells and 
superlattices are well known. For more 
complex stepped or graded potential 
variation due to compositional changes 
in the structure, it is convenient to 
solve for the eigenvalues of quantdm 
wells and dispersion characteristics of 
periodic structures by utilizing known 

results for analogous systems in layered 
media, cascaded guided wave structures 
and other engineering problems. It is 
to be noted that we do not necessarily 
have to utilize this analogy in that all 
the results can be obtained by 
constructing the solution of the wave 
equation subject to the given boundary 
conditions. 

In the notation of linear system 
theory the state vector x] 
characterizing the one dimensional 
system is a solution of: 

d 
x] = [A]x] (2) 

A x I 
where x] = x2 ] = I d~ ] and then the 

• *dz 
3m 

characteristic matrix is given by 

0 -jm 
[A] = [_j 2(E-V) 0]. me state 

~2 

variables x I and x^ z are continuous at 
the heterojunctions between individual 
layers. 

The solution of the wave equation 
in each layer can now be expressed in 
terms of a propagation constant and a 
characteristic impedance which are given 
by 

y = / ~*(V-E) (3) 
~2 

and 

*2 
Z = / m ~ (4) 

• v / (~7-E~v) . 
The cnaracterlstlc impeaance parameter 
represents the ratio [~/1 d~] 

jm*dZ 

associated with an electron wave 
traveling in the positive z direction. 
It should be noted that in the regions 
where E<V, Y is real and Z o imaginary 
and the solution represents evanescent 
modes. Each layer of width £ is 
completely characterized in terms of ¥ 
and Z given above and the solution of 
compl~x boundary value (multiple 
interface) problems can be facilitated 
by recalling some of the transmission 
and translational properties of x]. me 
transmission matrix for the two 
variables is given by 

jm d at z=£ 
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.... I d~ (5) 
* 

jm at z=0 

The translational property is 
characterized in terms of the 

impedance .(~/ I, ~_~)d~ seen at a distance 

"m 
£ from a discontinuity. For example, if 

I d~ Z£~ [~/jm* ~] is specified at a given 

plane (z=£ I) then the impedance at a 
distance £ from that plane is given by 

Z£1+Zotanh¥£ 

I d~ = Zo Z + Z£ tanh¥£ 
jm* ~z- at z=Z1-£ o I (6) 

III. QUANTUM WELL STRUCTURES 
For the case of isolated or coupled 

quantum well structures, represented by 
a finite number of stepped potential 
regions, the eigenvalues are found by 

utilizing the transverse resonance 

condition. That is, the net (~/ I d~) 
m* dz 

or total impedance is either zer6 or 
infinity at every plane along the 
structure. In order to illustrate the 
procedure, we consider the case of the 
symmetrical stepped potential strucutre 
shown in Table I, case (d). The total 
impedance at the axis of symmetry is 
readily found by utilizing the 
translational property of impedance as 

given by eqn. (6) and is found to be 

zl 
I Z 3+Z 2tanhx2£2 1 

ZI Z2 Z2+Z3tanhY2£2 + Z1tanh71£1___ 

= ~-- | Z3+Z2tanh~2£ 2 " 
at the t ZI+Z2 z2+z3tanh72£ 2 tanh¥1£1 
axis --2-- 
of symmetry 

Setting this impedance equal to 0 or ~ 
leads to eigenvalues asociated with odd- 
and even-eigenfunctions respectively. 
These eigenvalue equations together with 
other typical cases are given in Table 
I. 

IV. PERIODIC STRUCTURES 
The dispersion equation for the 

periodic structures or the superlattices 
is readily derived by utilizing the 
tranmission matrix as given by Eqn. (5). 
The overall transmission matrix of the 
unit cell of a periodic structure where 
the unit cell itself consists of N 
layers, is given by, 

E:J s I 
= ~- I z~sinh~j coshxj gj j = l  ~j 

(8) 
Then the d i s p e r s i o n  equat ions fo r  the 
periodic structure are readily found in 
terms of the elements of the ABCD matrix 
and is given by 

A+D 
- cos k d (9) 

2 
where d is the total length of each unit 

N 
= £j) and k is the wave number. cell ( j~1 

The derivation of the dispersion 
equation then simply ammounts to 
multiplying the transmission matrices to 
find overall transmission parameters A 
and D and is given in Table II for the 
cases of a simple and an ABC polytype 
superlattice. 

V. RESULTS AND DISCUSSION 
The eigenvalue equations for 

quantum well structures are of the form 
FI (E,Pl,O~,..o )=0 and the dispersion ~z n 
equations for periodic structures are of 

the form F2(E,Pl,P2,..pn)-cos kd=0. In 

both cases pl..pn are known variables 
such as effective mass and potential 
associated with the individual layers. 
The effect of nonparabolicity of the 
conduction and valence band of each 
layer can be included in the effective 

mass 14. A convenient method to solve 
these equations is the use of standard 
multiple variable optimization 

programs 15 Here we define a utility 

functionIF112 for quantum well problems 

and IF2-cos kd~ 2 for superlattice 
dispersion problems and seek the minima 
(zeros) of the utility function with 
energy as a variable. The eigenvalues 
for some quantum well structures and the 
miniband parameters such as the 
dispersion diagrams are shown in Figs. 
(I)-(5) for some typical cases of wells 
and superlattices consisting of various 
AIxGaI_xAS and InxGa1_xAS alloys. 

A unique, and useful feature of the 
optimization procedure chosen to compute 
the characteristic solutions for quantum 
well structures is its amenability to 
design synthesis of such structures. We 
can solve for a set of parameters p., 

.l 
Pi+1' "''' Pi+j such that the remalnder 
parameters p4, p~, ..., o 1; .i z . ~- Pi+~+1 
Pn have deslred speclfled values rot 
a system of n variables. A trivial 
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Table I: Schematics and eigenvalue equations for 

various stepped-potential structures. 

m 2 2m 1 E £ m2 E --] ~--v tan " - vT'~ '~-~/  (Odd) 
ml" or 

( - - t - - ~  /2m1*E2ml*E / i n  * (V  E) 
(a) tan Y - ~ r - - - ' - ~  " - I Z ' (even/  

Syltmet ric Well 1 1  m 2 

V~ ,m~l m2 E m 3 E 

/ ~  (v 3 -E ) 
• tan £ 

/ "" [ m2 V 2 h m 2 m 3 ;,2 
m J 1 + . 

1 m 1 (V2-E) (VI-E) 

(b) 
N o u - S ~ e t  r i c a l  Wel l .  

m VI 
KA ÷ E E 

m1* tan £ - - 

(c)  

Aslnametrlc stepped p o t e n t i a l  w e l l  

where K~ - m/F~1*~ E 
m 1 (V3-E) 

m~3 (V2"E) 2m2" 

I + / " ,  tanh ~ 4 2 
m 2 (',,'3 - E) 

I m * 
I 

m ' ~  Z 1/2 
{d) Sylmlzetrical s tepped 
p o t e n t i a l  wel l  

b 

J B2 
[ where~ K - 

tan ~ " - ml ~ ' ~  K; (Odd) 

tan 2-- " - m2 £ 

(V2-E) ÷ tanh ~ 2° 
(y3_E) (E-V2) £2 

(odd) 

I + F * ( V 2 - Z )  / ~ 2 "  ( z -v  2 ) 
m2.(V3_E ) tanh , ,~2 ~2(E<V; ) 

m * m2* I V2 

v~ ~ V n _ l  mn-T i . "  vj..~ m3.l-" v3 

,,__P-7 
(e) General m u l t i p l e  stepped p o t e n t i a l  s t r u c t u r e  

(oven)  

Z 1 ' = Z 1 , 

Z 1' + Z 2 tanh Y2L2 
Z2' = Z2 Z 2 + z 1 ' tsnh y2Z 2 ; 

z j+  I z j  z j  ÷ z~ t a .  TI ,  1 
z j  + Z j .  1 tanh Y j l j  ; 

Z n' + 2 n " 0 ~ i g e n v a l u e  equat ion)  

D 

m 1 V 1 

m ~i2 
z j  - ~ )  
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Table II Schematics and Dispersion Relation for 

Two Superlattice Structures 

77 

~2 

(a) 

Simple AB type SL 

1 ~2 m1* 81 m2" 

2 I 

+ cosh Y2L2 cos 61t I - cos k(¢1~2); 0<E<V 

m) V2 

(b) 
ABC polytype SL 

Z I Z 2 
+ js~n B1tl{sinn T2~ 2 cosh Y]L3[~"~. ~" ~] 

Z Z 2 1 
t ' I +  3: slnh "~3~[3 Cosh Y2 2 L ~  ~1;}  - cos k ( t  I + t 2 + t ] ] ;  O<E<V 1 

* The d i s p e r s i o n  e q u a t i o n s  f o r  t~ese  c~ses and Eor ABCD po ly type SL a r e  

9 l v e n  in Referenc~ 7. 
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Figure I Variation of electron subband 
(n=1) energy in a symmetrical stepped- 
potential GaAs-AlxGa1_xAS quantum well. 

example would be: given a simple GaAs - 
AI0.~Ga_~ ./-As superlattice, to calculate 
the wel~ and barrier lengths such that 
the superlattice has a desired effective 
energy band gap and band width. This 
problem is easily solved by simply 
looking at the plots of miniband energy 
parameters as a function of the two 
lengths and the results are found to be 
the same. 

IV. CONCLUSIONS 
A uni£ied approach to analyze and 

compute the eigenvalues of a class of 
nonuniform general stepped potential 
quantum well strucutes and miniband 
parameters of superlattices consisting 
of such coupled quantum wells has been 
formulated. A transverse resonance 
method for the derivation of the quantum 
well eigenvalue equations and a 
transmission matrix approach for the 
derivation of the dispersion equation 
for the periodic structures has been 
used to compute the characteristic 
parameters of some typical structures. 
The methodology presented is applicable 
to fairly complex structures with 
multiple layers where other more 
accurate computational methods become 
unfeasable. In addition to help 
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Fi@ure 2 Variation of electron subband 
(n=1) energy with step dimension in a 
symmetrical stepped potential 
GaAs-AlxGa1_xAS quantL~ well. 
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Figure 4 E-k diagrams for a 
In Ga As - GaAs strained layer 0.4 0 . 6  
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Figure 5 Width of the first miniband as 
a function of barier thickness 12 in a 
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predicting the electronic properties of 
various quantum well and superlattice 
structures, the analytical and numerical 
techniques described are adaptable to a 
design synthesis procedure for such 
structures via parameter optimization or 
other analytical techniques that have 

been used for analogous systems 16. Even 
though the analysis and results 
presented in the paper are directly 
applicable to type I superlattices, the 
same procedure can be applied to the 
case of type II superlattices. For the 
latter case the state variables are 
redefined and the expressions for Z i are 
modified such that the corresponding 
boundary ~onditions as derived by 
Bastard v'" are satisfied. That is, all 
of the eigenvalue and dispersion 
equations derived in the paper also 
characterize type II quantum wells and 
superlattices provided the expressions 
for Zj are modified accordingly. 
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