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Let A be a unital alternative algebra over a commutative ring R. The 
unital universal multiplication envelope U,(A) of A is an associative algebra 
such that there is a one-to-one correspondence between left U,(A)-modules 
and alternative A-bimodules. We call A separable over R if U,(A) is a 
separable associative R-algebra. 

Our main theorem states that a unital alternative R-algebra A is separable 
over R if and only if A is the direct sum of ideals B and C such that 

(i) B is a separable associative R-algebra, 

(ii) C is finitely spanned and projective of rank 8 over its center 
Z(C), 

(iii) C has a nondegenerate quadratic form n(x) over Z(C) such that 
~(XJJ) = n(x) n(y) for all x, y E C, and 

(iv) Z(C) is a separable associative R-algebra. 

In Section 1 we establish basic properties of separable alternative algebras. 
In Section 2 we prove the main theorem in the case where R is isomorphic to 
the center of A. We show in Section 3 that a commutative associative algebra 
is separable in the associative sense if and only if it is separable as an alter- 
native algebra. The results of Sections 2 and 3 are combined to prove the 
main theorem in Section 4. 

All rings, algebras, subalgebras, modules, bimodules, and homomorphisms 
are assumed to be unital. Throughout this paper, R denotes a commutative 
ring and A an alternative R-algebra [ 11, p. 271. For any R-algebra B, let 
Z(B) be the center of B [ 11, p. 141. If x, y E B, let x 0 y = xy + yx and 
(x, y] = xy - yx. If S and T are subsets of B, let [S, T] be the set of all [x, 
y], x E S, y E T. If S is a subset of B, let (S) be the subalgebra of B 
generated by the elements of S (and 1). We call B finitely spanned over R if 
it is finitely spanned as a R-module. 
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Certain properties of modules and separable associative algebras over 
commutative rings are summarized in [2, pp. 113-l 151. References of the 
form [Mi] and [Ai], i an integer, refer to these. 

In [9], Miiller formulated a concept of separability for an arbitrary 
nonassociative R-algebra linitely spanned and projective over R and its 
center. He proved parts of our Lemmas 1.5, 1.8, and 1.9 in this context. This 
point of view was pursued further by Wisbauer in [ 121. 

1. BASIC PROPERTIES OF SEPARABLE ALGEBRAS 

Basic properties of separable Jordan algebras over commutative rings 
containing f are presented in Sections 1 and 2 of [2]. We establish the 
analogous results for alternative algebras in this section. In particular, if A is 
separable over R, then A is finitely spanned and projective over Z(A) and 
there is a one-to-one correspondence between the ideals of A and the ideals 
of Z(A). If A is finitely spanned over R, then A is separable over R if and 
only if A/mA is separable in the classical sense over R/m for every maximal 
ideal m of R. 

Let V,(A) be the unitul universal multiplication envelope of A [7, p. 1031. 
U,(A) is an associative R-algebra such that there is a natural correspondence 
between left U,(A)-modules and alternative A-bimodules. There are R- 
module homomorphisms A and p from A to U,(A) such that 

U,(A) = (AA,-@), (1) 

(a’y = (a”)’ and (a 2)” = (UP)*, (2) 

(aby - uAbA = [aA, bP], (3) 

and 

(ub)P - bPd = [bP, a”] (4) 

for all a, b E A [7, p. 861. Setting b = a in (3) and using (2) shows that 

[aA, UP] = 0. (5) 

Linearizing (2) shows that 

(a 0 b)* = u’ o b’ and (a 0 b)O = up 0 bP. (6) 

Since -(ax) b + u(xb) = (bx) a - b(xu) holds in any alternative algebra [ 11, 
p. 271, it follows as in [7, p. 961 that 

[d, bP] = [d’, b’] = -[b’, uPI = -[b”, a”]. (7) 
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In order to extend the results of [2] to alternative algebras, we need to 
observe that, if A is finitely spanned over R, then so is U,(A). We prove a 
more general result below for use in Section 4. 

LEMMA 1.1. Let S be a subalgebra of Z(A) such that A is finitely 
spanned over S and 

(S’, Sp> c Z[U,(A)]. (8) 

Then U,(A) is finitely spanned over (SJ, S’). 

Proof: Let T denote (S’, SO). By (8), we can consider U,(A) as an 
algebra over T. Let V= (a,,..., a,} span A over S. Equations (3), (4), and (8) 
imply that (sa,)’ = s”a) and (sai)O = spa; for s E S and a, E V, so 

A’cc Ta:, APcx Tap. (9) 

Then (1) shows that U,(A) is generated as a T-algebra by the a: and af. 
Thus U,(A) is spanned as a T-module by elements of the form 

b;’ . . . bl;p, biE V, YiE {‘,pI. (10) 

We call an element of the form (10) a monomial of degree d. 

Claim 1. Every monomial f of the form (10) is a T-linear combination of 
monomials of the form 

b: .a. b: b;,, ... b;, b,E V. (11) 

We prove this by induction on the degree d ofJ: If all the yi in f are p’s, then 
f has the required form. Assume that some yi is A, and let ys be the first such 
yi. If s > 1, we use (3) in the form 

together with (8) and (9) to write f as a T-linear combination of monomials 
of degree <d which have ys-, = ;1. Repeating this argument shows that f is a 
T-linear combination of monomials of degree <d which have y1 = a. Then 

f = ,?Ia) gi, where each g, is a T-linear combination of monomials of degree 
at most d - 1. By induction, each gi is a T-linear combination of monomials 
of the form (I I), and hence so is f: 

Let Md be the T-subspace of U,(A) spanned by the monomials of the form 
(11) having degree d. We write ai < aj if i <j. We call a monomial of the 
form (11) ordered if b, < ..= <b, and b,,, < .a. <b,. 
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Claim 2. Every monomial g of the form (11) is a T-linear combination 
of ordered monomials. We prove this by induction on the degree d of g. If 
bi > bi+ 1 for some i such that 1 < i < k, then (6), (8), and (9) imply that g is 
congruent modulo Mdel to -1 times a monomial of the form (11) where 
bi < bi+ I and the other b’s are as in g. If bi = bi+, for some i such that 
1 < i < k, then (2), (8), and (9) imply that g E Mdml. It follows that g is 
congruent modulo Md-i to either zero or * a monomial of form (11) 
satisfying b, < ..- < b,. Applying the analogous argument to bk+,,..., b, 
shows that g is congruent modulo M,-, to either zero or f an ordered 
monomial. The claim follows by induction. 

Since U,(S) is spanned over T by monomials of the form (lo), Claims 1 
and 2 imply that U,(S) is spanned by ordered monomials. Hence U,(S) is 
finitely spanned over T. 1 

In the case S = R 1 c Z(A), Lemma 1.1 yields the following result. 

LEMMA 1.2. If A ispnitely spanned over R, then so is U,(A). 

Let B be a nonassociative algebra over a field R. We call B semisimple if 
it is finite dimensional over R and a direct sum of simple ideals. We call B 
classically separable if B OR F is semisimple, where F is the algebraic 
closure of R. 

LEMMA 1.3. Let A be finite-dimensional over a field R. Then A is 
classically separable if and only if U,(A) is classically separable. 

ProoJ If F is the algebraic closure of R, U,(A OR F) is isomorphic to 
U,(A) OR F [ 7, p. 881. Thus, by field extension, we can assume that R is 
algebraically closed. If A is semisimple, the representation theory of alter- 
native algebras shows that every A-bimodule is completely reducible [8]. 
Then every left U,(A)-module is completely reducible, so U,(A) is 
semisimple [6, p. 4001. Conversely, if U,(A) is semisimple, then A is a direct 
sum of irreducible U,(A)-modules [6, p. 4001, so A is a direct sum of simple 
ideals. 1 

We call A separable over R if U,(A) is a separable associative R-algebra. 
A separable R-algebra A is called central separable if the map r + rl is an 
isomorphism of R onto Z(A). 

As observed in [2, p. 1251, Lemmas 1.2 and 1.3 imply that the 
results 1.1-1.8, 2.1-2.5, 2.8, and 2.9 of [2] extend to alternative algebras. 
This yields the following six results, 

LEMMA 1.4. If R is afield, then A is separable over R ifand only ifA is 
classically separable over R. 
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LEMMA 1.5. Let A be finitely spanned over R. Then A is separable over 
R if and only if AImA is either zero or classically separable over R/m for 
every maximal ideal m of R. A is central separable over R 1 (1 E A) if and 
only if A/mA is either zero or central simple over Rfm for every maximal 
ideal m of R. 

LEMMA 1.6. if A is separable over R, there is an idempotent e E U,(A) 
such that 

el = I, xe = (xl)A e = (~1)~ e (1 E A, x E U,(A)). (12) 

Accordingly, eA = Z(A) is a direct summand of A as an R-module. e is called 
a separability idempotent of A. 

LEMMA 1.7. If A is separable over R, then A is central separable,flnitely 
spanned, and projective over Z(A). 

LEMMA 1.8. Let A be separable over R. 

(i) If S is a commutative associative R-algebra, then A OR S is either 
zero or separable over S, and Z(A OR S) E Z(A) OR S. 

(ii) If I is an ideal of A, then A/IA is either zero or separable over 
R/I and Z(A/IA) E Z(A)/IZ(A). 

(iii) If 4 is an algebra homomorphism of A onto an R-algebra B, then 
B is separable over R and Z(B) = qi[Z(A)]. 

(iv) If S is a commutative associative R-algebra and A is an S- 
algebra such that R acts on A via R 1 c S, then A is separable over S. 

LEMMA 1.9. If A is separable over R, there is a one-to-one correspon- 
dence between the ideals I of A and the ideals a of Z(A) given by I + I n 
Z(A) and a + aA. 

2. STRUCTURE OF CENTRAL SEPARABLE ALGEBRAS 

We prove that A is central separable over R if and only if R is the direct 
sum of ideals R , and R, such that R 1 A is a central separable associative R ,- 
algebra and R,A is an octonion R,-algebra. To establish this, we extend the 
results in Section 3 of [2] to alternative algebras and show that a separable 
alternative algebra is a direct sum of homogeneous components. We prove 
that the nonassociative component is an octonion algebra over its center by 
extending the results on generic minimum polynomials in Sections 1 and 2 of 
[4] to alternative algebras. 
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Let R [n’] denote the associative R-algebra of n-by-n matrices over R, n a 
positive integer. Let {ev} be the usual basis of R [n*]. Let d be the involution 
of R[4] determined by ed - d- d- 11-e229 e22-elly e12---e12, ed - 21 - -e,,, and R- 
linearity. We define an alternative R-algebra R [8] as follows: let R [8] be 
isomorphic to R [4] @ R [4] as an R-module, let b, + vb, E R [8] denote the 
image of (b,, b,) E R[4] @ R[4] under this isomorphism, and define 
multiplication in R [8] by 

(b, + 4(b, + ub,) = (b,b, + b,bff) + u(b& + b,b,) (13) 

[ 11, p. 471. 
If R is an algebraically closed field, the R [i] represent the distinct 

isomorphism classes of finite-dimensional simple alternative R-algebras [ 11, 
p. 561. Since R [i] is i-dimensional over R, the isomorphism class of a finite- 
dimensional simple alternative algebra over an algebraically closed field is 
determined by its dimension. Together with Lemmas 1.4-1.9, this implies 
that proofs of Theorem 3.1 and Corollary 3.3 of [2] can be extended from 
associative to alternative algebras. This yields the following two lemmas. Let 
X be the union of (8) and the set of all squares of positive integers. 

LEMMA 2.1. If A is separable, it can be written uniquely as a direct sum 
of ideals A(i), i E X, such that the following condition is satisfied: tf S is any 
commutative ring such that A is a separable S-algebra, m is any maximal 
ideal of S, and F is the algebraic closure of S/m, then 

A (i)W (i> Cihrn F 

is either zero or a finite direct sum of algebras isomorphic to F[i]. Only 
finitely many of the A(i) are nonzero. Each nonzero A(i) is a projective 
Z(A,)-module of rank i. 

LEMMA 2.2. Let A be separable over R. 

(i) If S is a commutative associative R-algebra, then (A OR S)(i) g 
A(i) OR S. 

(ii) If Z is an ideal of R, then (A/IA)(i) ? A(i)/IA(i). 
(iii) If 4 is a homomorphism of A onto an R-algebra B, then 

B(i) = 4[A(i)]. 

Using Lemmas 1.6 and 1.7, we can extend the proof of Lemma 5.3 of [2] 
to alternative algebras. This yields: 

LEMMA 2.3. If A is central separable over R, there is a Noetherian 
subring R’ of R and an R’-subalgebra A’ of A such that A’ is central 
separable over R’ and A’ OR, R is isomorphic to A. 
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LEMMA 2.4. In R[n’], set a, = 0 and 

for 2 < s < n. Then R[n’] is generated as an R-algebra by a,, and en,,. 

Proof: We induct on n, the case n = 1 being clear. (a,,, enn) contains 
anen,, = en-l,n and ennan = e, n-, , so it also contains 

and 

a,-en-,,,-en,,-, =a,-, 

en-l,nen,n-l = e n-1,n-1’ 

Then (a,, en,,) contains (a,-, , e,- ,,n-I), and the latter contains all eii for 
1 < i, j < n - 1 by induction. Then (a,, enn) contains e,+ ,e,- ,,n = e, and 
e nn-len-li=eni for l<i<n-1, so (a,,e,,) contains all eij, 
1 ki,j<n: I 

LEMMA 2.5. If A is separable, then @A(n2) is associative. 

ProoJ We can assume that A = A(n’) and R = Z(A) [Lemma 1.81. 
First assume that (R, m) is local and that A/mA is isomorphic to 

(R/m)[n2]. By Lemma 2.4, A/mA is generated by two elements. If a, b E A 
are preimages of these two elements, A = (a, b) + mA. Since A is finitely 
spanned over R [Lemma 1.71, Nakayama’s Lemma yields A = (a, b)(M6]. 
Then A is associative, by Artin’s theorem [ 11, p. 291. 

Next assume that R is Noetherian. Let R* be the completion of R in the 
m-topology for a maximal ideal m of R, and write A OR R* as A*. As in the 
proof of [2, Lemma 5.21, there is a commutative associative R*-algebra S 
such that S is a finitely spanned free R *-module, (S, mS) is complete local 
Noetherian, and (A* OR’ S)/mS(A* OR* S) is isomorphic to (S/mS)[n2]. 
The preceding paragraph shows that A* OR* S is associative. Since S is a 
free R *-module, A * is associative. Since this holds for every maximal ideal 
m of R, it follows that A is associative [ 1, pp. 40, 108, 1 IO]. 

Finally, let R be arbitrary. There is a Noetherian subring R ’ of R and an 
R’-subalgebra A’ of A such that A’ is central separable over R’ and 
A z A’ 01(, R [Lemma 2.3). Lemma 2.2 implies that A’ = A’(n’). The 
preceding paragraph shows that A’ is associative, whence A is 
associative. I 

LEMMA 2.6. The following conditions are equivalent: 
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(i) A is a central separable alternative R-algebra such that 
A =@A(n*). 

(ii) A is a central separable associative R-algebra. 

Proof We first note that a finitely spanned associative R-algebra B is 
separable in the alternative sense if and only if it is separable in the 
associative sense. This holds because B is separable in either sense if and 
only if B/mB is either zero or classically separable over R/m for every 
maximal ideal m of R [Lemma 1.5, A4]. 

If A satisfies (i), Lemma 2.5 shows that A is associative. Since A is finitely 
spanned over R [Lemma 1.71, the preceding paragraph shows that A 
satisfies (ii). Conversely, if A satisfies (ii), then A is finitely spanned over R 
[A7], so the paragraph above shows that A is central separable in the alter- 
native sense. Since F[8] is not associative for any field F [ 11, p. 471, 
Lemma 2.1 implies that A(8)/mA(8) is zero for every maximal ideal m of R. 
Since A is finitely spanned over R, A (8) = 0 [M6] and A = @ A (n ‘). 1 

The proof of Lemma 3.21 of [ 1 l] yields: 

LEMMA 2.7. Let A have an ideal N such that N2 = 0. Assume that R[4] 
is a subalgebra of A and that there is w E A such that w* = 1 and 
aw E wad (mod N) for all a E R[4]. Then there is v E A such that v = w 
(mod N), v2 = 1, and av = vad for all a E R[4]. 

LEMMA 2.8. If A is central separable over (R, m) complete local 
Noetherian and A/mA is isomorphic to (R/m)[8], then A is isomorphic to 
RLf31. 

Proof: We identify A/mA with (R/m)[B] and consider (R/m)[4] as a 
subalgebra of (R/m)[8]. Let {e;} be the usual basis of (R/m)[4], and letp be 
the canonical map of A onto (R/m)[8]. A is finitely spanned over R 
[Lemma 1.71, so A is complete in the m-topology [ 1, p. 1081. Since A is 
power-associative, the proof of [ 10, p. 5 1 ] shows that there is an idempotent 
e,, E A such that pe,, = e;,. Set e22 = 1 -e,,, so the eii are orthogonal 
idempotents such that e,, + e2* = 1 and pe,, = efi. Let A, = eiiAejj be the 
Peirce decomposition of A [ 11, p. 321. Take e,, E A,, and f,, E A,, such 
that pe,,=e{, and pf2,=e;,. e,,f,,=e,,+a for aEmA,,. Since A is 
complete in the m-topology, set b =Z(-l)i ai, i> 1, and e2, =fil(ell + b). 
Then bEmA,,, e2,EA21,pe2,=e;,, and 

e e 12 u = e12(f21(ell + b)) 

= (e12f21)(e,l + b) 111, P. 351 

=(e,, +a)(e,, +b)=e,,. (14) 
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e2ie,, E A,, [ 11, p. 351, so e2iei2 = ez2 + c, c E m4,,. Then 

e,, + c = e,,e,, = (e21ell)e12 

= (e21@12e21Ne12 (by (14)) 

= (e21e12)(e21e12) 111, P. 291 

= (e22 + c)' 

= e22 + 2c + c2, 

so c = -c2. It follows that c E m”A for every positive integer n, so c = 0 [ 1, 
p. 1101. Thus e2,e12=ez2. Reference [ 11, p. 351 shows that e:, = 0 = e:, . 
Since A is finitely spanned and projective over R [Lemma 1.71 and the 
peij = e; are linearly independent over R/m, it follows that the eij are linearly 
independent over R [5, p. 241. Thus A contains a subalgebra B isomorphic to 
R(4] such that pB = (R/m)[4]. We identify B with R[4]. 

Since A/mA is isomorphic to (R/m)[8], there is w E A such that w2 = 1 
and aw z wad (mod mA) for all a fZ R[4]. Applying Lemma 2.7 to the ideal 
N = mAlm2A of A/m2A shows that there is w, E A such that w, = w 
(mod mA), w: = 1 (mod m2A), and aw, = w,ad (mod m2A) for all a E R[4]. 
Then applying Lemma 2.7 to the ideal N = m2A/m4A of A/m4A shows that 
there is w2 E w, (mod m2A) such that wi = 1 (mod m4A) and aw, = w2ad 
(mod m4A) for all a E R [4]. It follows by induction that for every positive 
integer i there is wiEA such that wi E wi- 1 (mod m2”A), 
wf = 1 (mod m2’A), and aw, = wiad (mod m2’A) for all a E R[4]. Since A is 
complete in the m-topology, we can set u = lim wi. Then u = w (mod mA), 
v2 = 1, and au = uad for all a E R[4]. It follows as in [ 11, pp. 46-471 that 
multiplication in R [4] + vR [4] is given by (13). Since the pe, and p(Ueij) 
form a basis of A/mA over R/m and A is finitely spanned and projective over 
R, the eij and veij form a basis of A as a free R-module [5, p. 241. Hence A is 
isomorphic to R [ 81. 1 

We require the following analogue of Lemma 1.1 of (41. 

LEMMA 2.9. Let A = A(8) be central separable over (R, m) complete 
local Noetherian. Then there is a commutative associative R-algebra S such 
that 

(i) S is a free R-module offinite rank and (S, mS) is complete local 
Noetherian, and 

(ii) A OR S z Z[8] Oz S, where Z[8] is central separable over Z. 

Proof. As in he proof of [2, Lemma 5.21, there is a commutative 
associative R-algebra S satisfying (i) such that (A OR S)/m(A OR S) is 
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isomorphic to (S/mS)[8]. L emmas 1.8 and 2.8 imply that A OR S is 
isomorphic to S[8]. Clearly S[8] E Z[8] &S, while Lemma 1.5 and [ll, 
p. 561 show that Z[8] is central separable over Z. 1 

A quadratic form n(x) on a finitely spanned, projective R-module is called 
nondegenerate if its associated bilinear form n(x, y) = n(x +v) - n(x) - n(y) 
is nondegenerate in the sense of [MS]. 

An octonion algebra C over R is a (unital) nonassociative R-algebra C 
such that 

(i) C is a finitely spanned, projective R-module of rank 8, and 

(ii) C has a nondegenerate quadratic form n(x) over R such that 
n(xy) = n(x) n(y) for all x, y E C. 

If C, and C, are octonion algebras over commutative rings R 1 and R,, it 
follows that C, @ C, is an octonion algebra over R, 0 R,. 

LEMMA 2.10. If C is a nonassociative R-algebra, the following 
conditions are equivalent: 

(i) C is a central separable alternative R-algebra such that C = C(8). 

(ii) C is an octonion algebra over R. 

Moreover, let C be an octonion algebra over R, and set t(x) = n(x, 1) and 
xd = t(x) 1 -x. Then d is an involution of C, x2 - t(x)x + n(x) 1 = 0, and 
xxd = n(x) 1 = xdx for all x E C. 

Proof: Let C satisfy (i). Using Lemmas 1.7-1.9, 2.1-2.3, and 2.9, we can 
extend the results 1.3-2.3 of [4] on generic minimum polynomials to alter- 
native algebras. Thus there is a linear map t and a quadratic map n from C 
to R such that x2 - t(x) x + n(x) 1 = 0 for all x E C, where t(x) = n(x, l), 
n(xy) = n(x) n(y), n is nondegenerate, xd z t(x) 1 -x is an involution of C, 
and xxd = n(x) 1 = xdx for all x, y E C. C is a projective R-module of rank 8 
[Lemma 2.11, so C is an octonion algebra over R. 

Conversely, let C be an octonion algebra over R. n(x) = n(lx) = n(1) n(x) 
for 1, x E C. Since n is nondegenerate, R is generated as an additive group 
by the n(x), x E C. Thus n(1) = 1, so it follows as in [8] that C is alter- 
native. For every maxima1 idea1 m of R, C/mC is an octonion algebra over 
R/m, so C/mC is central simple over R/m [8]. Hence C is central separable 
over Rl, 1 E C [Lemma 1.5). Since C is projective of rank 8 over R, 
localization shows that C is a faithful R-module [5, p. 241, so R E Rl c C. 
The last sentence of Lemma 2.1 implies that C = C(8) since C has rank 8 
over R. Thus C satisfies (i). u 

PROPOSITION 2.11. The following conditions on a nonassociative R- 
algebra B are equivalent: 
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(i) B is a central separable alternative R-algebra. 

(ii) R is the direct sum of ideals R, and R, such that R,B is a central 
separable associative R ,-algebra and R 2 B is an octonion algebra over R z. 

ProoJ If B satisfies (i), let R, be the preimage in R of @Z[B(n’)], and 
letR,bethepreimageinRofZ[B(8)].ThenR=R,OR,,R,B=OB(n’), 
and R,B=B(8). Each R,B is central separable over Ri, 
R,B = CD (R,B)(n*), and R,B= (R,B)(8) [Lemmas 1.8, 2.2). R,B is a 
central separable associative R,-algebra [Lemma 2.61, and R,B is an 
octonion algebra over R, [Lemma 2. lo]. Conversely, if B satisfies (ii), 
Lemmas 2.6 and 2.10 show that each R,B is a central separable alternative 
R,-algebra. Then B = R 1 B 0 R,B is an alternative algebra whose center is 
naturally isomorphic to R, OR, = R. Since each U,i(R,B) is a separable 
associative R,-algebra, U,(B) g @ URi(RiB) is a separable associative R- 
algebra [5, p. 471. Hence (i) is satisfied. I 

3. CENTERS OF SEPARABLE ALGEBRAS 

We prove that a commutative associative algebra is separable in the alter- 
native sense if and only if it is separable in the associative sense. The proofs 
are analogous to those in Section 1 of [3]. 

Lemmas 1.5, 1.6, and 1.8 show that the proof of Proposition 1.1 of (31 can 
be generalized to alternative algebras. This yields: 

LEMMA 3.1. If A is separable over R, then Z(A) is a separable 
associative R-algebra. I 

If B is an associative R-algebra, we observe that 

[ab, c] = [a, c] b + a[b, c], [a, b] = - [b, a] (15) 

for a, b, c E B. We define the opposite algebra B” = (6” 1 b E B} to be an R- 
algebra with operations r(a”) = (ra)‘, a“ + b” = (a + b)“, and a”bo = (ba)“, 
a, bEB, rER. 

In U,(A)‘, (2) implies that 

(a’)” = (a*‘)‘, 

Also 

(a2)00 = (aDo)‘. (16) 

(ab)“” - aPobPo = ((ab)” - bpap)“ 

= [bP,a’]“ (by (4)) 

= [b’, ap]” (by (7)) 
= (aDo, b”‘] (17) 
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and 

(aby” - bAoaJo = ((aby - &by 

= [a”, bP]” (by (3)) 

= [up, bA\10 (by (7)) 

= [b*“, up“]. (18) 

Comparing (2), (3), and (4) with (16), (17), and (18), respectively, shows 
that there is an R-algebra homomorphism from U,(A) to U,(A)” taking u* 
to ape and a0 to a*” for all a E A [7, p. 881. Hence there is an 
antiautomorphism of U,(A) exchanging an and up for all a E A. We call this 
the canonical involution of U,(A). 

LEMMA 3.2. If S is a commutative associative R-algebra, then 

Ia’, bPl E Z[u,(S)l, 

la*, bP] [a*, cp] = 0 

(19) 

for all u, b, c E S. 

Proof. Interchanging a and b in (3) and using the commutativity of S 
shows that (ab)’ - b*aA = [bA, aP]. Subtracting (3) from this gives 

[a’, bA3] = [b*, uPI - [a*, bP] 

= -2[aA, bp] (by (7)). 
(20) 

Applying the canonical involution to (20) gives [b”, aP] = -2[b*, up] = 
2[u’, b”], by (7). Together with (20), this yields 

[aA, 6’1 = [up, bP]. (21) 

Direct verification shows that 

[[a~,b*],c~]=(c~ob~)oa~-((c*ou~)ob~ 

= 4 [ (cb) a - (cu) b]’ (by (6)) 

= 0. 

Together with (21), this gives 

[[up, bP], c”] = 0. (22) 
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We have 

[b”,@‘j,aP]= [[aA,uP],bP] + (a”l, [bP,aP]] (by (15)) 

=o (by (5) and (22)). (23) 

Applying the canonical involution to (23) gives 

Then 

0 = [aA, [bA, UP]] 

= - (d, [a’, b”]] (by (7)). (24) 

(a2b)* = (cd)” u* + [(a/~)~, up 1 (by (3)) 

= a’b’ta” I- [a’, bP] a’ + [a’b” + [aA, b”], aP] (by (3)) 

= a’b’a” -I- ad[aA, b”j + [a’b”, au] (by (23) and (24)) 

= a*b%? -t aA[aA, b”] + aA[bA, a”] + [aA, aPI bA (by (15)) 

z aabaaA (by (5) and (7)). (25) 

Hence 

(u2bc)A = aA( aA (by (25)) 

= aAbAcAaA -k aA [bA, co ] un (by (3)). (26) 

On the other hand, 

(dbc)’ = (db)’ c’ -t [(u’b)“, c”) (by (3)) 

= aXbaaAcA + [u*b*d, cp] (by (25)). 

Subtracting (26) from this gives 

0 = uAbA [d, c”] - ua [b’, co] a* + [uAbAuA, c“] 

= -2aAbA (a’, P] - an [bA, P] a’ + [d, co ] bAu” 

+ d[b”, co] aA + a”b”[u”, c”] (by (20) and (15)) 

= -aAbA [aa, c”] + [d, P] baa” 

= [ba, aa][aa, co] - baaA[uA, cp] + [ [aa, cp 1, ba] aA 

+ b’[d, co] uA 

= (b’, aA][ua, co] + [ [aa, cp], bA] ua (by (24)). (27) 
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Replacing a by a + 1 in (27) gives 

o= [bQz* + l][a” + l,c”] + [[a” + l,cPl,bA](~J + 1) 

= [b*, d][d, cP] + [[aA, cp], b*](uA + 1). 

Subtracting (27) from this gives 

0 = [[a*, cP], bq. 

Applying the canonical involution to (28) yields 

0 = [bP, [c*, UP]]. 

(28) 

(29) 

Equation (19) follows from (l), (28), and (29). Then 

[a*, bP][d, cp] = [[a*, bP] uA, cp] (by (19)) 

= [ (aby a* - u*b-w, cP] (by (3)) 

= [(ub)” aA - (dbp, cP] (by (25)) 

= [-[(aby, UP], cP] (by (3)) 

=o (by (19)). m 

LEMMA 3.3. Let S be a commutative separable associative R-algebra, 
and let I be the ideal of U,(S) generated by [S’, Sp]. Then U,(S)jI is a 
commutative separable associative R-algebra, and there is an R-algebra 
isomorphism of S @JR S onto U,(S)/I taking a 0 b to uAbp + I, a, b E S. 

Proof Let an’ and up’ denote the images of u’ and up in U,(S)/I, 
a E S. (3) and (4) imply that a”ba’ = (ab)” and uprbpr = (ab)P’, a, b E S. 
Thus there is an R-algebra homomorphism 4 from S OR S to UR(S)/I taking 
a @ b to ua’bp’, a, b E S, since [S”, Sp’] = 0. Since (2), (3), and (4) hold 
in S OR S if we replace each u’ by a @ 1 and each up by 1 @ a, a E S, there 
is an R-algebra homomorphism from U,(S) to S OR S taking uAbp to a @ b 
[7, p. 881. Since S OR S is commutative, this induces an R-algebra 
homomorphism v/ from U,(S)/1 to S OR S taking a’ ‘bp’ to a @ b, a, b E S. 
Equation (1) implies that 4 and w are inverse isomorphisms. Since S is a 
commutative separable associative R-algebra, so is S OR S [ 10, p. 121, and 
hence so is U,(S)/Z. I 

LEMMA 3.4. Let S be u commutative separable associative R-algebra. If I 
is the ideal of S generated by [Sa, Sp], then I = I’ for every positive integer 
t. 
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ProoJ: We write U,(S) as U. Since U/I is commutative [Lemma 3.31, 

[U, U] CI. (30) 

If a, b E S and x, y E U, 

[x, [a”,bply] = [a”,b”l[x,vl (by (19)) 

c I2 (by (30)). 
Then 

[U,Il c12, (31) 

since (19) implies that I is spanned by elements of the form [aA, bP] y. 
Let p: U+ U/I and q: I -+ 1/1* be the canonical maps. We can make I/I* a 

two-sided associative U/1-module by defining (px)(qy) = q(xy) and 
(qy)(px) = q( yx), x E U, y E I. Fix z E U. Equations (30) and (3 1) imply 
that there is a well-defined map 4 from U/I to 1/1* such that $(px) = q[z, x] 
for all x E U. $ is a derivation of U/I into its two-sided module I/I*, since 

Q((PX)(PY)) = #(P(XY)) = qIz9 XVI 

= dX~GY1 + k xl Y) (by (15)) 

= (PXMZ~YI) + (4kT Xl)(PY> 

= (PX)($Y) + (4X)(PY) 

for x, y E U. Since U/I is a separable associative R-algebra [Lemma 3.31, 
every derivation from U/I to a two-sided associative module is inner [ 10, 
p. 431. The image of any inner derivation of U/I into I/I* is contained in 

P/w~21= [P~~q~l=qN.ul 

= q(12) (by (3 1)) 
= 0. 

Hence $ = 0. Then [U, U] c I’, so I c I*, and the lemma follows. i 

LEMMA 3.5. If S is a commutative separable associative R-algebra, then 
U,(S) is commutative. 

Proof. First assume that R is a field. Let F be the algebraic closure of R. 
S OR F is spanned over F by orthogonal idempotents [A3], so the Peirce 
relations imply that U,(S OR F) is commutative [ll, p. 341. Since 
U,(S OR F) is isomorphic to U,(S) OR F [7, p. 881, U,(S) is commutative. 

NOW let R be arbitrary. Since S is a separable associative R-algebra, so is 
S OR S [ 10, p. 121. Let 

C Cwi 0 xi> 0 (Yi 0 zi)” E (s OR s, OR (s OR s)” 
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be a separability idempotent for S OR S as a separable associative R-algebra 
[A2]. Then 

and 

~wiyi@xizi=l@lES@,S (32) 

0 = z: (UWi 0 bXi) 0 (vi 0 Zi)’ - (Wi 0 Xi) 0 (YiU 0 Zib)” 

for all Q, b E S. 

(33) 

Let V= {wi,xi,yi,zi}. Let K be the ideal of U,(S) generated by all 
[aa, b”], a E V, b E S. Write U,(S)/K as B. We claim that B is a separable 
associative R-algebra. 

Let uf and a* denote the images of un and ap in B. Equation (7) and the 
definition of B imply that 

[a’, b”] = 0 = [b’, a*], aEV, bES. (34) 

Then (3) and (4) yield 

atbE = (ub)! = b’d, uE V, bES, (35) 

and 

a*b” = (ub)” = b&u”, UE V, bES, (36) 

since S is commutative. Let 4: S OR S + B be the R-module homomorphism 
taking a @ b to u’b”, u, b E S. Let 4”: (S OR S)‘-+ B” take (a @ b)” to 
(u’b”)“. 

Set 

f = x wfxf @ (yfz;)’ E B OR B”. 

Let ,u: B gR B” + B be the R-module homomorphism taking a 0 6” to ub, a, 
b E B. Then 

/If = s wfx; yfz; 

= c wfyfxfzj (by (34)) 

= ~ (Wi yi)r (XiZi)’ (by (35) and (36)) 

=4(X wi Yi 0 xizi ) 

= #Cl 0 1) 

= 1. 
(by (32)) 

(37) 
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If a, b E S, 

(a’b’ @ 1“ - 1 6~ (a’b&)“)f 

= 1 a’w!b”xf @ ( y’z$’ - wfx; C?J (y,fa’zib”)’ (by (34)) 

= x (awi)’ (bxi)” @ (y!Z;)” - W’X” @I ((y,a)‘(z,b)‘)’ i i 

(by (35) and (36)) 

= (4 0 4”) [S (awi 0 bXi) 0 (yi @ zi)’ - (wi 0 xi) 0 (yia 0 Zib)’ 
I 

= (ti 0 6x0) 0-v (33)) 

= 0. (38) 

If we write afbt as ci for ai, b, E S, induction on n shows that 

@I *.a c,@ l”)f= (1 0 (c, *** c,)O)fi 

the case n = 1 is Eq. (38), and, if n > 1, 

(39) 

(c, *.. c, 0 l”)f 

= (c, .*. c,_, 0 1°)(C” 0 l”>f 

= (c, *.* c,-, 0 10)(1 0 cxf (by (38)) 

= (Cl ..* c,-, 0 c3f 

= (1 @ c;)(cI *.a c,-, @ 1”)f 

= (1 @ cz)( 1 @ (cl . . . c,, _ ,)“)f (by induction) 

= (1 @(c, **. c,)O)$ 

Equations (39) and (1) imply that (x @ l”)S= (1 @ x“)f for all x E B. 
Together with (37), this shows that f is a separability idempotent in the 
associative sense for B, so B is a separable associative R-algebra [A2]. 

Write Z(B) as Z, and let m be a maximal ideal of Z. S OR Z/m is a 
separable associative Z/m-algebra [A5]. Thus the first paragraph of the 
proof shows that U,,,(S OR Z/m) is commutative. U,,,(S OR Z/m) is 
isomorphic to U,(S) OR Z/m [7, p. 881, and there is a homomorphism of the 
latter algebra onto B (&Z/m z B/mB. Hence B/mB is commutative. The 
preceding paragraph shows that B is a separable associative R-algebra, so 
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the center of B/mB is the image of Z in B/mB [A5]. Thus B = Z + mB for 
every maximal ideal m of Z. B is finitely spanned over Z, since B is a 
separable associative R-algebra [A7]. Hence Nakayama’s Lemma yields 
B = Z [M6], so B is commutative. 

Let I be the ideal of U,(S) generated by all [a”, bP], a, b E S. The 
preceding paragraph shows that I c K. If V has n elements, Lemma 3.2 
implies that K”+’ = 0. Then Lemma 3.4 yields I = In+’ c K”+’ = 0. Hence 
U,(S) is commutative, by Lemma 3.3. 1 

PROPOSITION 3.6. Let S be (I commutative associative R-algebra. Then 
S is separable as an alternative R-algebra $and only if,!? is separable as an 
associative R-algebra. If so, U,(S) is a commutative separable associative R- 
algebra, and there is an R-algebra isomorphism of S OR S onto U,(S) taking 
a @ b to aabO, a, b E S. 

ProoJ If S is separable as an alternative R-algebra, Lemma 3.1 shows 
that S is separable as an associative R-algebra. Conversely, if S is separable 
as an associative R-algebra, then U,(S) is commutative [Lemma 3.51. It 
follows that U,(S) is a separable associative R-algebra isomorphic to 
S OR S [Lemma 3.31, so S is separable as an alternative R-algebra. 1 

We remark that the results on Jordan algebras in [3] can be used to give a 
much shorter proof of Lemma 3.5 under the additional hypothesis that 
f E R. To see this, let S be a commuative separable associative R-algebra, 
4 E R. Let U;(S) be the unital universal multiplication envelope of S 
considered as a Jordan algebra, and let r be the canonical map from S to 
U;(S) [7, p. 1031. Let M be an alternative S-bimodule, so M is an 
associative U,(S)-module. The split null extension S @M is an alternative 
algebra, so (S @M)+ is a Jordan algebra [7, pp. 15, 801. Then M is a 
Jordan S-bimodule, so A4 is an associative U;(S)-module such that 
a’x = +(a” + aP) x for a E S, x E M. It is proved in [3, p. 349 ] that U”(S) is 
commutative. Thus, for any a, b E S and x E M, 

0 = [a*, b’] x 

=$[aA+aP,bA+bbP]x 

= a([aA, b*] + [aA, b’] + [aO, bA] + [up, b”])x 

= b(-2[aA, bP] + [a*, bP] + [aA, bP] - 2[a”, bP])x 
(21)) 

= -f [a’, bP] x. 

(by (7), (20), and 

U,(S) is an associative U,(S)-module via left multiplication, so it can be 
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considered an S-bimodule. Taking x = 1 E U,(S) above shows that 
[a”, bP] = 0 for all a, b E S. Then [a’, bA] = 0 = [aP, bP] by (20) and (21), 
so (1) implies that U,(S) is commutative. 

4. STRUCTURE OF SEPARABLE ALGEBRAS 

We recall that A denotes an alternative R-algebra. We prove that A is 
separable over R if and only if A is the direct sum of a separable associative 
R-algebra and an algebra C octonion over Z(C), where Z(C) is a separable 
associative R-algebra. To prove this, we use Proposition 3.6 to reduce to the 
central separable case analyzed in Proposition 2.11. 

PROPOSITION 4.1. If Z(A) is a separable associative R-algebra, then 
@WA, -WY’) is a separable associative R-algebra contained in the center 

ProoJ We write Z(A) as Z and (Z”, Zp) as T. The inclusion Z c A 
induces an R-algebra homomorphism from U,(Z) to U,(A) with image T [7, 
p. 881. U,(Z) is a commutative separable associative R-algebra 
[Proposition 3.61, hence so is T [A5]. Let E denote the centralizer of T in 
U,(A). E is a subalgebra of U,(A), and E contains T since T is 
commutative. Since T is a separable associative R-algebra, every derivation 
of T into E is inner [ 10, p. 431. Every inner derivation from T to E is zero, 
since T is in the center of E. Hence every derivation of T into E is zero. 

Let a E A, and let S be the subalgebra of A generated by a and Z. S is a 
commutative associative R-algebra, since A is power-associative [ 11, p. 291. 
Hence Lemma 3.2 yields 

[ [ayl, Z*], Z”] = 0, (40) 

yi E {A’, p’}, where ;1’ and p’ are the canonical maps from S to U,(S). The 
inclusion S c A induces an algebra homomorphism from U,(S) to U,(A) [ 7, 
p. 881, so (40) holds for yi E {A, p}, where A and p map A to U,(A). Thus 
[ayl, ZY*] cE for yi E {n,p}. Hence (15) implies that [a’, T] cE for 
y E {&p}, since T= (Z”, Zp) is a subalgebra of E. Then x + [a’, x] is a 
derivation of T into E, so the preceding paragraph shows that [a’, T] = 0. 
Thus T is in the center of U,(A), by (1). m 

The proof of Lemma 2.3 of [3] establishes: 

LEMMA 4.2. Let S and T be commutative associative R-algebras. Let A 
be a separable S-algebra such that A is an R-algebra via R 1 c S. Then 
A OR T is either zero or separable over S OR T. 
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We can use Lemmas 1.4, 1.8, and 4.2 to extend the proof of Lemma 2.4 of 
[3] to alternative algebras. This yields: 

LEMMA 4.3. Let S be a commutative separable associative algebra over 
a field R. Let A be a separable S-algebra such that A is an R-algebra via 
R 1 c S. Then A is separable over R. 

PROPOSITION 4.4. The following conditions are equivalent: 

(i) A is separable over R. 

(ii) A is separable over Z(A) and Z(A) is a separable associative R- 
algebra. 

Proof. Lemmas 1.7 and 3.1 show that (i) * (ii). Conversely, assume that 
A satisfies (ii). Write Z(A) as Z and (Z”, Z”) as T, where A, p: A -+ U,(A). T 
is a commutative associative R-algebra [Proposition 4.11. Let m be a 
maximal ideal of T. A OR T/m is either zero or separable over Z OR T/m 
[Lemma 4.21, and Z OR T/m is zero or a separable associative T/m-algebra 
[A5]. Then A OR T/m is zero or separable over T/m lLemma4.31, so 
U,,,(A OR T/m) is zero or a separable associative T/m-algebra. 
UT,,(A OR T/m) is isomorphic to U,(A) OR T/m [7, p. 881, so the latter is 
zero or separable over T/m. U,(A) is naturally a T-algebra, by 
Proposition 4.1. Thus there is a T/m-algebra homomorphism of 
U,(A) OR Tfm onto 

U,(A) Or T/m g U,(A)ImU,(A). 

Hence U,(A)/mU,(A) is zero or a separable associative T/m-algebra [A5]. 
Then [A41 implies that U,(A) is a separable associative T-algebra, since 
u,(A) is finitely spanned over T by Lemmas 1.1 and 1.7 and 
Proposition 4.1. Since T is a separable associative R-algebra 
[Proposition 4.11 and U,(A) is separable over T, the transitivity of 
separability implies that U,(A) is a separable associative R-algebra [5, 
p. 461. Thus A satisfies (i). 1 

THEOREM 4.5. The following conditions on a nonassociative R-algebra B 
are equivalent: 

(i) B is a separable alternative R-algebra. 

(ii) B is the direct sum of ideals D and C such that D is a separable 
associative R-algebra, C is an octonion algebra over Z(C), and Z(C) is a 
separable associative R-algebra. 

Proof First assume that B satisfies (i). B is central separable over Z(B), 
and Z(R) is a separable associative R-algebra [Proposition 4.41. By 
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Proposition 2.11, B is the direct sum of ideals D and C such that D is a 
central separable associative Z(D)-algebra and C is an octonion algebra over 
Z(C). Since Z(B) = Z(D) @ Z(C) is a separable associative R-algebra, so 
are Z(D) and Z(C) [A5]. Then D is a separable associative R-algebra, since 
D is separable over Z(D) and Z(D) is separable over R [Al 1. 

Conversely, let B satisfy (ii). Since D is a separable associative R-algebra, 
D is separable associative over Z(D) and Z(D) is separable associative over 
R [Al]. Proposition 2.11 shows that B = D @ C is a central separable alter- 
native algebra over Z(B) = Z(D)@ Z(C). Since Z(D) and Z(C) are 
separable associative R-algebras, so is Z(D) 0 Z(C) [5, p. 77). Hence B is a 
separable alternative R-algebra, by Proposition 4.4. I 

Let B be a separable alternative R-algebra. We remark that the decom- 
position B = D @ C described in Theorem 4.5(ii) is unique. To see this, let M 
be a maximal ideal of Z(B). Since Z(D) Z(C) = 0, M contains either Z(D) 
or Z(C). If M contains Z(D), then B/MB s C/MC has dimension eight over 
Z(C)/MZ(C). If M contains Z(C), then B/MB E D/MD is a central simple 
associative algebra over Z(D)/MZ(D) [A5, A8], so its dimension is a 
perfect square. Since B = @B(i) where B(i) has rank i over its center 
[Lemma 2. I], it follows that D = @ B(n’) and C z B(8) (mod MB) for every 
maximal ideal M of Z(B). Since B is finitely spanned over Z(B) 
[Lemma 1.71, it follows as in [2, p. 1261 that D = @ B(n*) and C = B(8). 

Combining Proposition 4.4 and Lemma 1.8 with the proofs of 
Theorems 3.1 and 3.2 of [3] yields the following two corollaries. 

COROLLARY 4.6. Let S be a commutative separable associative R- 
algebra, and let A be a separable alternative S-algebra such that A is an R- 
algebra via RI c S. Then A is separable over R. 

COROLL.ARY 4.7. Let A = @ Ai be a finite direct sum of alternative R- 
algebras. Then A is separable over R if and only if each Ai is separable over 
R. 

COROLLARY 4.8. If A is an associative R-algebra, the following 
conditions are equivalent: 

(i) A is separable as an associative R-algebra, i.e., A is a projective 
A OR A”-module. 

-(ii) A is separable as an alternative R-algebra, i.e., U,(A) is a 
separable associative R-algebra. 

(iii) A a,, A0 is separable as an associative R-algebra. 

(iv) A is a projective U,(A)-module. 

(v) There is an idempotent e E U,(A) satisfying (12). 
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Proof: Theorem 4.5 shows that (i) 3 (ii). 
(ii) * (iii) Equations (2), (3), and (4) hold in A OR A ’ if we replace u’ by 

a@ I0 and up by 1 @ a0 for all a EA. Thus there is an R-algebra 
homomorphism of U,(A) onto A OR A0 [7, p. 881. Since U,(A) is a 
separable associative R-algebra, so is A OR A0 [A5]. 

(iii) 3 (i) First assume that A is finitely spanned and not separable over 
R. In this case there is a maximal ideal m of R such that, if F is the algebraic 
closure of R/m, then A ORlm F conains a nonzero nilpotent ideal N [A4]. 
Then N@,N’ is a nonzero nilpotent ideal of 

(AImA ORlm F) OF (AIM ORlm F)’ 

E AImA OR,,,, (A/~)’ ORlm F 

= [(A @,AW@ @,A”)1 ORlmK 
contradicting the fact that A @R A0 is a separable associative R-algebra 
[‘441. 

Now let A be arbitrary. Write Z(A OR A’) as S. A OR A” acts on A via 
left and right multiplication. This induces an action of S on A which 
commutes with the action of A OR A’. It follows that A is an S-algebra. 
Since A OR A0 is a separable associative R-algebra, A OR A0 is finitely 
spanned over S [A7]. Hence A is finitely spanned over S, since 
A = (A OR A’) 1 for 1 EA. A OS A” is a homomorphic image of 
A OR A0 OR S, so A as A” is a separable associative S-algebra [A5]. Thus 
the preceding paragraph shows that A is a separable associative S-algebra. 
Since A OR A” is a separable associative R-algebra, so is S [Al 1. Then A is 
a separable associative R-algebra, since A is separable over S and S is 
separable over R [5, p. 46 I. 

(ii) * (iv) e (v) These hold by the proofs of Propositions 1.2 and 1.4 of 
121. 

(v)* (i) As in the proof of (ii) * (iii), there is an R-algebra 
homomorphism 4 of U,(A) onto A OR A” such that #(a’) = a @ lo and 
$(a”) = 1 @ u” for all a EA. Equation (12) yields (a @ 1”) #e = qh(de) = 
#(de)= (1 @a”)# e f or all a EA. vu = (40) a for all u E U,(A) and a E A, 
where A OR A” acts on A via left and right multiplication. Then 
(#e) 1 = el = 1 for 1 E A, by (12). Hence e is an associative separability 
idempotent for A, so A is a separable associative R-algebra [A2]. 
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