The Vapor-Phase Infrared and Raman Spectra of *p*-Difluorobenzene (h₄) and (d₄)

R. L. ZIMMERMAN¹ AND T. M. DUNN²

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109

This new study of the vapor-phase infrared and Raman spectra of *p*-difluorobenzene (h₄) and (d₄) includes assignments from the high-resolution electronic spectrum, from fluorescence spectra, and one assignment from the two photon electronic spectrum. A new set of frequencies and assignments has been made for the fundamentals of this important intermediate-sized molecule. The most important changes concern the assignments previously made for the low-frequency a_u mode (ν_8), two members of the b_{2u} class (ν_{19} and ν_{20}), and one very important change for the lowest frequency fundamental of the b_{3u} (out-of-plane) class (ν_{30}), which has been observed directly in the far infrared. The results are all corroborated by the assignments of the perdeuterated analog where changes in previous assignments of Fermi resonance pairs have also been made. Some interesting differences between the Raman spectra of the vapor and the liquid perproto compounds have not been adequately explained in this study. © 1985 Academic Press, Inc.

INTRODUCTION

There have been several reasonably recent studies of the *p*-dihalogenobenzenes (1-6), and at least one study which included some perdeuterated compounds (6). In most of these, the Raman spectra were obtained from solution and liquid phases and they are not, therefore, necessarily appropriate to a study of the vapor-phase electronic spectrum or direct comparison with vapor-phase infrared frequencies. Furthermore, earlier infrared studies were mostly confined to frequencies higher than ~600 cm⁻¹, with one important exception (7), and it has been necessary to both confirm and improve upon the frequencies previously quoted for the lowest energy molecular vibrations.

p-Difluorobenzene has recently become of some considerable interest (8-10) since it is a molecule which is very stable, has excellent fluorescence and absorption spectra, and has a manageable number of vibrational degrees of freedom (30). For these reasons it has been used for studies of vibrational energy redistribution processes and allied relaxation phenomena.

EXPERIMENTAL DETAILS

The mid-infrared spectra were recorded on a Beckman IR4240 spectrometer with a resolution of $\sim 2 \text{ cm}^{-1}$ and with a calibrated precision of $\sim 1 \text{ cm}^{-1}$. The far-

¹ Present address: Eastman-Kodak, Kingsport, Tenn.

² To whom all enquiries should be directed.

infrared spectra were observed with a Digilab FTIR20 with a resolution and calibrated precision of ± 0.5 cm⁻¹ over the range 50 to 550 cm⁻¹. Water vapor, hydrogen chloride gas, and ammonia were used for frequency calibrations. Raman spectra were taken on a Spex Ramalog spectrometer with a 2-cm⁻¹ slitwidth using various argon ion and helium-neon laser lines. All spectra were taken on more than a single occasion with varying excitation wavelengths of 4880 and 6328 Å and various vapor pressures. No systematic shifts of frequency were found for different excitation frequencies.

Vapor pressures used varied from microns for the infrared spectra to ~ 2 atm for some of the Raman spectra. Depolarization ratios were calibrated with benzene and carbon tetrachloride to allow for grating bias.

The numbering convention is that for $D_{2h}(V_h)$ molecules recommended by Mulliken (11). In this scheme the number of vibrations in the various classes is $6a_g + 2\bar{a}_u + 1\bar{b}_{1g} + 5b_{1u} + 3\bar{b}_{2g} + 5b_{2u} + 5b_{3g} + 3\bar{b}_{3u}$. The superscript bar over a class indicates that the vibrations are out-of-plane. The perdeuterated compound was obtained from two sources. One sample was contributed (see Acknowledgments) and the other was synthesized by us. It analyzed to 97 atom% deuterium by mass spectroscopy with 91% d₄ species.

RESULTS

These are given in Tables I(h₄) and I(d₄) with a summary of the fundamentals in Table II. The spectra are illustrated as Figs. $1_{v,l}(h_4)$ and $1_{v,l}(d_4)$. It should immediately be noted that the fundamentals have been labeled, as previously specified, in order of decreasing frequency within a class but this must not, of course, be construed to imply that the normal coordinates and vector description of the vibrations of p-C₆H₄F₂ (h₄) and (d₄) having the same label *i* (in v_i) are similar, let alone nearly identical (3). This comment has been made because of the possibility of ambiguity arising in the discussion as to the identity of particular fundamentals. This requires us to deal specifically—and separately—with $v_i(h_4)$ and $v_i(d_4)$ rather than always simply using the same argument for both. The issue is more obvious for similar compounds such as p-C₆H₄F₂ and p-C₆H₄I₂ where, e.g., v_6 is a strongly halogenstretching motion in the latter but not in the former (3). The very significant differences between the actual motions of the h₄ and d₄ "isomers" will be discussed at some length in the analysis of the high-resolution electronic spectrum (12).

At this stage it is also necessary to point out that there are some important differences between our results and those reported previously. The first difference applies to the frequency of the $\nu_5(a_g)$ mode of d₄. Specifically, we find an intense Raman band at 793 cm⁻¹ and not at 780 cm⁻¹ as reported by Gates *et al.* (6). We find it to be the strongest band in the spectrum and almost unshifted from liquid to vapor phase.

The second difference concerns the question of Fermi resonance between $v_5(h_4)$ and (d_4) with other levels in their respective manifolds (10). There is a peculiar reversal of intensity from vapor to liquid in the h_4 case and a significant change in the relative intensities of the bands in the d_4 spectrum which are >70 cm⁻¹ apart (see below).

ZIMMERMAN AND DUNN

TABLE I

(h₄)

	Liquid			Vapour
v (cm ^{-]}) Relativ Intensi	re ty Assignment	v (cm ^{-]}	Relative Intensity
3231	(2)	[2 _{v2} (a _g)], A _g		
3199	(2)			
3084	(100)	v1 ^{(a} g)	3088	(100)
3080	*	$v_{23}(b_{3g})$	3085	(5)
		$[v_3(a_g)+v_5(a_g)+2v_6(a_g)],A_g$	3014	(2)
3004	(6)	$[2_{v_{11}}(b_{1u})], A_{g}$		
2899	(2)	$[v_2(a_g) + v_{25}(b_{3g})], B_{3g}$		
2588	(2)	$[v_{11}(b_{1u}) + v_{21}(b_{2u})], B_{3g}$		
2570	(3)	$[2_{v_{25}}(b_{3g})], A_{g}$		
1619	(11)	$v_2(a_g)$	1615	(3)
1606	(3)	$[2_{v_{9}}(b_{1g})], A_{g}$		
1388	(1)	$[2_{v_{16}}(b_{2g})], A_{g}$		
1285	(3)	$v_{25}(b_{3g})$		
1244	(42)	v ₃ (a _g)	1257	(30)
1141	(14)	v ₄ (a _g)	1140	(5)
1019	(2)	$[v_{17}(b_{2g})+v_{26}(b_{3g})], B_{1g}$	1013	(2)
895	(1)	[2 _{v6} (a _g)], A _g	897	(2)
		[2 _{v27} (b _{3g})], A _g	867	(16)
859	(68)	ν ₅ (a _g)	859	(73)
840	(89)	$[2_{v_8}(a_u)], A_g$	840	(35)
			834	(15)
799	(2)	vg(b _{lg})		
695	(5)	^v 16 ^{(b} 2g)		
636	(23)	v ₂₆ (b _{3g})	635	(6)
451	(84)	ν ₆ (a _g)	450	(37)
376	(47)	$v_{17}(b_{2g})$	374	(9)

(b) Vapour Phase Infrared

⊽ cm ⁻¹	Intensity	Contour	Assignments
3148	vw	-	
3126	vw	А	$[v_2(a_g)+v_{11}(b_{1u})]$
3091	vw	В	v ₁₈ (b _{2u})
3072	m	A	v ₁₀ (b _{lu})
3032	vw	-	

(b)	Vapour	Phase Infr	ared (continue	d)
ν cm	-1	Intensity	Contour	Assignments
2896		vw	-	
2768		vw	А	$[v_3(a_g)+v_{11}(b_{1u})]$
2559		vw	с	$[v_7(a_u)+v_{24}(b_{3g})]$
2476		w	-	
2445		vw		
2367		vw	A	$[v_4^{(a_g)+v_{12}^{(b_{1u})}]},$
				$[v_{21}(b_{2u})+v_{25}(b_{39})]$
2350)	vw	-	
2297	1	vw	В	$[v_{13}(b_{1u})+v_{25}(b_{39})]$
2227	1	vw	В	$[v_4(a_g)+v_{21}(b_{2u})]$
2074	ł	vw	-	
1995	5	W	A	$[v_3(a_g)+v_{14}(b_{1u})]$
1865	ō	m	В	$[v_{12}(b_{1u})+v_{26}(b_{39})]$
1762	2	vw	?	$[v_{15}(b_{2g})+v_{28}(b_{3u})],$
				$[v_3(a_g)+v_{29}(b_{3u})]$
1737	7	w	A	$[v_{20}(b_{2u})+v_{27}(b_{3u})]$
1633	3	w	в	$^{\vee}19^{(b}2u^{)}$
1534	1	m	А,В	$[v_{16}(D_{2g})+v_{28}(D_{3u})]$
				$[\sqrt{6}(a_g) + \sqrt{21}(b_{2u})]$
1515	5	vs	A	$v_{ll}(\mathbf{b}_{lu})$
1468	3	vw	-	
1450	5	vw	-	
143	1	m	A+C	$[v_{15}(b_{2g})+v_{2g}(b_{3u})] +$
			_	$[v_{14}(b_{1u})+v_{16}(b_{2g})]$
141	5	vw	c	$[v_3(a_g) + v_{30}(b_{3u})]$
130	6	vw	в	$v_{20}(b_{2u})$
122	9	vs 	A	$\sqrt{12} \frac{12}{12} \frac{12}{12$
121	2	m	A	$\begin{bmatrix} v_{17} & 2g \\ 2g \end{bmatrix} + \begin{bmatrix} v_{28} & 3u \end{bmatrix}$
120	1	5	۵	$\left[v_{16} \left(\frac{2g}{2g} \right) + \frac{2g}{2g} \left(\frac{3u}{3u} \right) \right]$
106	5	m	R	'`6`~g'``14`~lu''
101	د ۸	 W	A	21^{21}
101	7	1767 1767	-	13 ·= 1u'
69 87		w	А	$[v_{12}(b_{22})+v_{22}(b_{22})]$
92 92	8	vs	c	· 1/ · 2g, 29 · 3u,
00	0	••	-	28 3u

TABLE I—Continued

cm ⁻¹	Intensity	Contour	Assignments
769	vw	А	$[v_{15}(b_{2g}) - v_{30}(b_{3u})]B_{1u}$
742	vs	А	v ₁₄ (b _{1u})
686	vw	А	(impurity?)
505	S	с	v ₂₉ (b _{3u})
348	m	в	^v 22 ^{(b} 2u)
157.5	w	с	∨ ₃₀ (b _{3u})

TABLE I—Continued

Table I	(d,)

(a) R	aman Spectr	a		
	Liquid		Vap	our
v (cm ⁻¹) Relative Intensit	y Assignment	ν (cm ⁻¹)	Relative Intensity
2384	(1)	$[v_2(a_g) + v_5(a_g)], A_g$		
2367	(2)	$[v_{19}(b_{2u}) + v_{21}(b_{2u})], A_{g}$		
2328	(3)			
2307	(51)	$v_{23}(b_{3g})$ and $v_1(a_g)$	2309	(50)
			2295	(5)
2293	(17)	$[v_2(a_g)+2v_{22}(b_{2u}),A_g], A_g$	2285	(16)
2278	(11)	$[2v_7(a_u), A_q + 2v_{17}(b_{2g}), A_g],$	Ag	
2222	(1)	$[v_2(a_g)+v_9(b_{1g})], B_{1g}$		
2210	(1)	[v ₂ (a _g)+v ₂₆ (b _{3g})], B _{3g}		
1596	(8)	v ₂ (a _g)	1595	(4)
1579	(2)	$2v_5(a_g)$, A_g		
1528	(?)			
1456	(1)	$2v_{28}(b_{3u})$, $A_g/[v_5(a_g)+v_{25}(b_{3g})]$)], ^B 3g	
1242	(9)	$2_{v_9}(b_{1q}), A_{q}$	1248	(33)
1231	(30)	$[v_5(a_g)+v_6(a_g)], A_g$	1237	(15)
1202	(1)			
1010	(1)			
935	(1)			
			872	(20)
869	(40)	∨ ₄ (a _g)	866	(70)
855	(9)	$[v_6^{(a_g)+v_{27}^{(b_{3g})}]}, B_{3g}$	855	(7)

	Liquid		Va	pour
v (cm ⁻¹) Relative Intensity	y Assignment	v (cm ⁻¹)	Relative Intensity
842	(24)	$[2v_{29}(b_{3u}], A_{g}$	839	(24)
839	(18)	$[v_{14}(b_{1u})+v_{30}(b_{3u})], B_{2g}$	830	(13)
829	(6)			
793	(100)	v ₅ (a _g)	793	(100)
746	(2)	$[2v_8(a_u)], A_g$	738	(3)
622	(12)			
616	(30)	^v 26 ^{(b} 3g)	614	(11)
601	(10)		600	(?)
448	(50)	v ₆ (a _g)	446	(45)
363	(25)	v ₁₇ (b _{2g})	358	(11)

TABLE I—Continued

(b) Vapour Phase Infrared

⊽ cm ⁻¹	Intensity	Contour	Assignments
3156	vw		
3096	vw	В	$[v_{5}(a_{g})+v_{18}(b_{2u})]$
3075			
3073	vw	А	$[v_{5}(a_{g})+v_{10}(b_{1u})]$
2925		вса	$\{y_{i}, (a_{i}) + y_{i}, (b_{i})\}$
2923	~	1) <i>C</i> /A	$(v_2 (u_g) + 19 (2u))$
			$(9)^{-1}g^{-1}18^{-2}u^{-1}f^{-1}$
2975			18 2u 26 3g
2873	w	С	[v ₁₀ (b _{1u})+v ₁₆ (b _{2g})]
2075			
2716	vw	А	$[v_{12}(b_2)+v_{22}(b_2)]$
2680			18 20 27 3g
2678	w	в	$[v_{10}(b_{1y})+v_{27}(b_{2g})]$
2526	vw		10 14 27 39
2450		B,A	$[v_{11}(b_{11})+v_{25}(b_{3a})],$
			$[v_2(a_g)+v_{13}(b_{1y})]$
2426	vw		
2380	vw	В	$[v_{13}(b_{1u})+v_{24}(b_{3g})]$
2376	w	А	$[v_3(a_g)+v_{12}(b_{1u})]$
2306	w	В	v ₁₈ (b _{2u})
2302	w	с	$[v_7(a_u)+v_{24}(b_{3g})]$
2276	_	2 2	y_{1} (b) [y_{1} (b) +y_{2} (a)]
2272	m	н,н	10 ¹ 10 ¹ 11 ¹ 14 ¹ 11 ¹ 2 ¹ 2 ¹ g ¹

ZIMMERMAN AND DUNN

(b) Vapo	our Phase Infra	red (continu	ued)
~ cm ⁻¹	Intensity	Contour	Assignments
2231	VW	A	$[v_{5}(a_{g})+v_{11}(b_{1u})]$
2227	vw		
2104		A	$[v_{3}(a_{q})+v_{13}(b_{1u})]$
2098	w		
1965	vw		
1933	w	A	$[v_{14}(b_{1u})+v_{3}(a_{g})]$
1927	w		
1727	vw	A(C?)	$[v_4(a_g)+v_{13}(b_{1u})],$
			$[v_{12}(b_{1u})+v_{16}(b_{2g})]$
1650	w	A	$[v_{5}(a_{g})+v_{13}(b_{1u})]$
1585	vw		
1570	vw		
1557	w	В	$[v_7(a_u)+v_{15}(b_{2g})]$
1556	vw	A	$[v_{14}(b_{1u})+v_4(a_g)]$
1525	vw	С	$[v_5(a_g)+v_{28}(b_{3u})]$
1496	vw		
1479	vw	A	$[v_{5}(a_{g})+v_{14}(b_{lu})]$
1463	S	С	$[v_{14}(b_{1u})+v_{15}(b_{2g})]$
1440	vs	A	$v_{ll}(b_{lu})$
1404	vw	С	$[v_3(a_g)+v_{30}(b_{3u})]$
1384	m	В	$[v_7(a_u)+v_{16}(b_{2g})]$
1369	w		
1358	w		
1329	vw	В	$v_{19}(b_{2u})$
1284	vw	B,C	$v_{20}(b_{2u}), [v_{14}(b_{1u})+v_{16}(b_{2g})]$
1250	vw	В	$[v_{6}(a_{g})+v_{21}(b_{2u})]$
1220	w	c,c	$[v_5(a_g)+v_{29}(b_{3u})]$,
			$[v_{13}(b_{1u})+v_{17}(b_{2g})]$
1202	m	A	{v15 (b2g) +v29 (b3u)]
1138	VS	В	$[v_{5}(a_{g})+v_{22}(b_{2u})]$
1128	vs	Α	$v_{12}(b_{1u})$
1104	W		
1044	vw	A	$[v_{14}(b_{1u})+v_{17}(b_{2g})]$
1024	VW	С	$[v_4(a_g)+v_{30}(b_{3u})],$
			$[v_{16}(b_{2g})+v_{29}(b_{3u})]$
891	w		

TABLE I—Continued

$\frac{(b)}{\sqrt[7]{cm}^{-1}}$	Intensity	Contour	Assignments
858	s	A	v ₁₃ (b _{1n})
839	vw		15 14
800	m	в	$v_{21}(b_{2u})$
787	vw	В	$[v_6(a_q)+v_{22}(b_{2u})]$
739	w		2
730	s	с	v ₂₈ (b _{3u})
684	5	А	$v_{14}(b_{1u})$
444	m		
424	s	С	v ₂₉ (b _{3u})
416	m		
3 43	m	В	$v_{22}(b_{2u})$
156	W	С	ν ₃₀ (b _{3u})

TABLE I-Continued

Third, there are two major changes in the frequencies of the b_{2u} fundamentals, v_{19} and v_{20} , compared with previous studies [although Schmid et al. (4) also noted some disagreement with previous assignments].

Finally, there are systematic and widespread (but not exclusive) increases in the vapor-phase frequencies compared with those of the liquid, particularly in the Raman spectra.

		Grou	ind State V	ibrationa.	l Fundame	ntal Fre	equenci	es of p~C ₆ H	4F2 and p-	C6D4F2	
	'i	(h4)*	(đ ₄)*	(h ₄) ⁺	(a4) +		°i	(h ₄)*	(d ₄)*	(h4) [†]	(d ₄) [†]
•	1	3088.	2309.	3084	2313	b20	15	928	780	928	780
7	2	1615.	1595	1617	1595	• 9	16	692	600	692	600
	3	1257.3	1249.7	1245	1229		17	374.	358.	375	366
	4	1140.	866.9	1142	847						
	5	858.6	793.0	858	780	b211	18	3073.	2307.	3074	2310
	6	449.8	446.3	451	453	24	19	1633.	1328	1437	1328
							20	1306.	1286.	1285	1287
-	7	945	780	943	-		21	1085.	802.	1085	802
	8	420	367	405	-		22	348	343.5	350	348
10	9	800	614	800	614	b _{3a}	23	3085.	2304,	3084	2304
							24	1617	1523	1617	1523
1u	10	3073.	2276.	3065	2277		25	1285	1008	1285	1008
	11	1514.	1440.	1511	1435		26	635.	614.	635	614
	12	1228.	1129.	1225	1130		27	[434]	[406]	430	406
	13	1014.	858.	1012	859						
	14	740.	685.	737	685	b 311	28	838.	731.	833	732
						54	29	505.	424.	509	422
							30	157.5	155.5	170	163

TABLE II

Ground State Vibrational Fundamental Frequencies of p-C₄H₄F₂ and p-C₄D₄F₂

*From this study utilizing Infrared, Raman, Fluorescence and Absorption Studies. (See also ref. 12).

 † Previous studies - a summary. The values in Ref. 6 are given since this was the latest previous study.

Frequencies quoted correct to 1 decimal place are from vapour phase infrared, Raman, fluorescence and electronic absorption studies. Where the accuracy is only ± 1 cm⁻¹ i.e., there is no precise measurement from the electronic spectrum, and the measurement is from the vapour phase, the number is followed by a period. Out-of-plane vibrations are indicated by a bar over the vibration class (e.g. $\tilde{a}_{i,j}$).

FIG. 1. (h₄). The Raman spectrum of p-difluorobenzene(perproto); (a) liquid, (b) vapor.

DISCUSSION

The resolution of the infrared bands is sufficient for the rotational contours to be well established and the asymmetry parameter, κ , is not so small (-0.87 for h₄, -0.82 for d₄) as to cause serious deviations from the Badger-Zumwalt A, B, and C contours (13), although there are some features which indicate that the asymmetry effects are just beginning to show up. In the axis scheme which we have adopted (11), $A = B_{1u}$, $B = B_{2u}$, and $C = B_{3u}$.

Class a_g

There are six members and all are present, to varying degrees of intensity, in the Raman spectrum. There are some changes in the frequencies from the previous, usually liquid-phase, values but the main point of interest in this group is v_5 in both h_4 and d_4 species. As mentioned above, the largest difference between our results and the earlier work is our assignment of the very strong, polarized line at 793 cm⁻¹ (793 cm⁻¹ in liquid) in d₄ as ν_5 (d₄). We are unable to confirm the 828/867 cm^{-1} Fermi diad previously reported (6). There is a line at 869 cm^{-1} which we have assigned as v_4 but we find no evidence of any strong, polarized band near 828 cm⁻¹. We must conclude that the line was due to an impurity or to an extraneous line of the excitation source. Our assignment is also completely confirmed from another source-electronic spectroscopic "hot" bands (12) where the frequency is 793.0 cm^{-1} . The assignment of the relatively strong band at 866 cm^{-1} in the vapor and 869 cm⁻¹ in the liquid phase to $\nu_4(d_4)$ is placed beyond doubt by its appearance in the "hot" bands of the electronic spectrum (12) as a progression, its first member being displaced from the origin by -866.9 cm^{-1} . There is a noticeable enhancement of the peak intensity of v_6 relative to v_5 in the liquid phase compared with that in the vapor and this is coupled with an apparent reduction in the absolute intensity of v_6 . We have not carried out an extensive study, but it is at least clear that the

FIG. 1 (d₄). The Raman spectrum of p-difluorobenzene(perdeutero); (a) liquid, (b) vapor.

intensity reduction in ν_6 is not as great as it seems to be once the integrated intensity is considered, instead of only the intensity of the Q-form branch maximum. It would appear, from further consideration involving ν_{26} and ν_{17} , that liquid forces decidedly enhance Q-form intensity in the Raman spectrum, probably due to restricted rotation in the liquid, and this effect is no doubt involved in the ν_6 intensity change.

Reference to the spectra of the d_4 species in Fig. $1_v(d_4)$ shows clearly what appear to be subsidiary maxima on the high-frequency side of ν_4 and the low-frequency side of the band with a maximum of 841 cm⁻¹ ($2\nu_{29}$; see below). These maxima and the associated minima have very sharp profiles, and they are assumed to arise from a combination of Fermi resonance effects and, perhaps, asymmetric rotor splitting of the *Q*-form branches. This effect is noticeable in $\nu_3(d_4)$ and is also seen in the *Q*-form branches of the electronic spectrum (12). These features are not, therefore, assigned as separate fundamentals, overtones or combination bands.

The assignment of $\nu_5(h_4)$ also has some unusual aspects. From the vapor Raman spectrum, as confirmed by both the electronic "hot" bands and an electronic fluorescence spectrum (12), ν_5 is the band at 859 cm⁻¹ (858.6 cm⁻¹ from the electronic spectrum (12)). It is stronger than the band at 840 cm⁻¹ (839.4 cm⁻¹ from the electronic spectrum (12)) which is assigned as $2\nu_8$. In the liquid phase, however, the 840-cm⁻¹ band is *stronger* than the 859-cm⁻¹ band, and both are very strongly polarized. It was this fact that originally led to both of them being assigned as a_g fundamentals (2). This was later corrected by Stojiljkovic and Whiffen (3) who, however, incorrectly attributed the 840-cm⁻¹ band to $2\nu_{27}$ but correctly assigned the 858.6-cm⁻¹ band as $\nu_5(h_4)$.

The intensity reversal of the 859- and 840-cm⁻¹ bands in the liquid could be explained by invoking a change in the degree of Fermi interaction brought about by the liquid forces (leading to a rather large liquid shift of the 840-cm⁻¹ band) but there are some difficulties with this. A simple change in the mixing coefficients is not surprising but a *reversal* of intensity cannot occur without a reassignment of the 840-cm⁻¹ band of the liquid as $\nu_5(h_4)$ and the 859-cm⁻¹ (h₄) band as $2\nu_8$. This

is, of course, possible but it requires a very large liquid phase shift for the $2\nu_8$ level, followed by a very strong Fermi interaction. This is very difficult to believe when, in fact, $\nu_5(d_4)$ is almost unshifted by liquid forces.

The main problem with invoking any large degree of Fermi resonance is that, first, the combination bands of the a_g class are almost *exactly* predictable using 858.6 cm⁻¹ as the frequency of $\nu_5(h_4)$ and, second, even though the overtone $2\nu_5(h_4)$ is anharmonic, the problem is that the level $2\nu_5(h_4)$ is significantly *higher* (by 5.5 cm⁻¹) than 2×858.6 cm⁻¹ rather than lower—as it would be if the fundamental of $\nu_5(h_4)$ had been shifted to higher energies by $2\nu_8$. The predictability is confirmed in both the electronic absorption and fluorescence spectra (12). This conclusion also tends to invalidate the postulate that there is a very large mixing of $\nu_5(h_4)$ and $2\nu_6(h_4)$ (9) and the matter will be discussed at some length in the analysis of the electronic spectrum (12).

There is no doubt, however, that the assignment of $\nu_5(h_4)$ in the vapor is the correct one, and the electronic spectrum confirms not only this but also the assignment of the 840-cm⁻¹ band (12) as $2\nu_8$. There is a band at 842 cm⁻¹ (l) and 839 cm⁻¹ (v) in d₄ which can only be assigned as $2\nu_{29}$. The overtone of ν_8 for h₄ appears in this region but the observed frequency is far too high to be attributed to the same origin in d₄. The intensity of $2\nu_{29}$ is enhanced only because of mixing with ν_4/ν_5 and since $2\nu_8$ for d₄ has no a_8 modes nearby, it is seen neither in the Raman nor in the electronic spectra (12).

The ν_3 fundamentals of both h_4 and d_4 show significant increases in frequency of 13 and 6 cm⁻¹, respectively, in changing from the liquid to the vapor phase, and the vapor Raman values are confirmed from "hot band" studies of the electronic spectrum (12). The more precise values of 1257.3 and 1249.7 cm⁻¹ given in Table II were obtained from the electronic spectrum. It is worth noting that $\nu_3(h_4)$ has been variously described in terms of valence field approximations as containing a great deal of C-F stretching (1) or else as a C-H bending mode (3). The assignment of $\nu_4(d_4)$ and the essentially unchanged frequency of $\nu_3(d_4)$ compared with $\nu_3(h_4)$ rules in favor of C-F stretching as the preferable "form of description" in both h_4 and d_4 species.

The above conclusion is strengthened by the assignment of $\nu_4(d_4)$ as the strongly polarized line at 869 cm⁻¹ (*l*) and 866 cm⁻¹ (*v*) [866.9 cm⁻¹ in the electronic spectrum (12)]. This mode becomes Franck-Condon active in the electronic spectrum, no doubt from "mixing" with the "ring-breathing" symmetry coordinate, to yield two modes which are hybrids of the simply expressed valence field symmetry coordinate pictures [see, e.g., Refs. (3, 4, 14, 15)].

There can be no doubt concerning the indentification of the 866-cm⁻¹ frequency as the predominantly C-D bending mode. Its activity in the electronic spectrum of the d₄ species, in the absence of any activity of the 1140-cm⁻¹ frequency in the h₄ species, strongly suggests this kind of mixing. In addition, the presence of $2\nu_{29}(d_4)$ at 841 cm⁻¹ adds a third participant in any Fermi resonance.

Class \bar{a}_u

Neither of the two members of this class has been directly observed since they are infrared and Raman inactive. On the other hand, ν_8 is strongly Franck-Condon

active in the electronic spectrum both in sequences and as an overtone vibronic origin (12). The fundamental also appears as a single quantum in both the upper and lower states in the two-photon spectrum (16) of h_4 . The two-photon spectrum was not recorded at high resolution, however, and the values of ν_8^{ν} and ν_8^{ν} are not accurate to better than $\pm 2 \text{ cm}^{-1}$ (see below). From this source, $\nu_8^{\nu}(h_4) \sim 420 \text{ cm}^{-1}$.

The analysis of the electronic spectrum (12) gives a completely unambiguous assignment for the overtone $2\nu_8''$ as 839.4 cm⁻¹ (h₄) and 734.1 cm⁻¹ (d₄). The frequency of the fundamental (assumed harmonic) is therefore ~420 cm⁻¹ (h₄), ~367 cm⁻¹ (d₄), both ±1 cm⁻¹ unless the mode is very anharmonic.

Despite a careful search, no bands were found in either the infrared or Raman spectra which could be attributed unambiguously to combination bands of ν_7 or ν_8 so that the assignments rest entirely upon the two-photon and electronic overtone spectra. The overtone $2\nu_8^{\nu}$ for h_4 is seen strongly in both the liquid- and vapor-phase Raman spectra at 840 $\rm cm^{-1}$, and is the strongly polarized band originally assigned as a fundamental (2) but later reassigned (3) as $2\nu_{27}$. There can be no doubt that it is, as assigned here, $2\nu_8$. We note the fact that the polarized character of the 840 cm^{-1} band suggests possible Fermi interaction between it and $\nu_5(h_4)$ at 859 cm^{-1} but, as discussed above, it appears unlikely that any significant frequency shift occurs. This is part of the reason for the similar conclusion regarding $2\nu_{20}(d_4)$ and $\nu_4(d_4)$. There is a very weak band in the d₄ vapor Raman spectrum at 738 cm⁻¹ which we assign as $2\nu_8(d_4)$, and there is a "hot" band in the electronic spectrum -734.1 cm⁻¹ from the origin (12). Its relative intensity in both spectra (Raman and electronic) is greatly reduced compared to its h₄ counterpart and we attribute this to the relative lack of " v_5 character" because of its much larger separation from v_5 (55 cm⁻¹ in d₄ vs 19 cm⁻¹ in h₄).

We have seen no sign of ν_7 in our spectra—Raman or electronic—and the value given for ν_7 is that found in the two-photon spectrum by Robey and Schlag (16). It is probably accurate to $\sim \pm 2$ cm⁻¹ (see below).

Class \bar{b}_{lg}

Weak bands were found in the liquid Raman spectrum of h_4 at 799 cm⁻¹ and of d_4 at 622 cm⁻¹ which correspond closely to the assignments from previous work for ν_9 . Accordingly, no changes in previous assignments are proposed.

Class b_{1u}

All of these fundamentals were observed directly in the infrared spectra of the vapor and were identified from their contours for both the h_4 and d_4 species. The frequencies for h_4 are in accord with the vapor spectra obtained by Ferguson *et al.* (2) as reassigned by later authors [e.g., see Ref. (6)]. The value of $\nu_{10}(h_4)$, which has been variously reported between 3088 cm⁻¹ (5) and 3067 cm⁻¹ (6), has been firmly established as 3073 cm⁻¹. The vapor-phase frequencies for d_4 are quite similar to the liquid-phase values of Gates *et al.* (6) with two exceptions. $\nu_{10}(d_4)$ is assigned to the A-type band at 2302 cm⁻¹, in preference to the ill-defined band at 2272 cm⁻¹. $\nu_{12}(d_4)$ is assigned to the A-type band at 1138 cm⁻¹, whereas the nearby band (also A-type) at 1128 cm⁻¹ is identified as $\nu_6 + \nu_{14}$.

Class $\overline{b_{2g}}$

Only ν_{17} was observed in the vapor but ν_{16} was also seen in the liquid phase for both h_4 and d_4 . The contour of ν_{17} is somewhat broad [see Fig. $l_v(h_4)$] but the center of the band is well defined and has been taken as the origin. The bands in both d_4 and h_4 are very much sharper in the liquid phase and strongly suggest that liquid forces markedly affect the Raman selection rules probably due to restricted rotation.

Class b_{2u}

Our assignments for h_4 differ from the previous ones [e.g. Ref. (6)], for three of the five fundamentals. We identify ν_{18} with a *B*-type band at 3091 cm⁻¹, slightly to higher frequency of the stronger fundamental at 3072 cm⁻¹. Furthermore, we assign the *B*-type bands at 1633 and 1306 cm⁻¹ to ν_{19} and ν_{20} , respectively. The 1437-cm⁻¹ frequency assigned previously as ν_{19} is probably the *A*-type combination band observed by us at 1431 cm⁻¹ ($\nu_{15} + \nu_{29}$). We find no vapor-phase band near 1285 cm⁻¹, which had been assigned as ν_{20} . In this respect, we are in agreement with Schmidt *et al.* (4), who also preferred a frequency slightly above 1300 cm⁻¹ for ν_{20} .

For d₄ we assign the B-type band at 1557 cm⁻¹ as ν_{19} . The 1328-cm⁻¹ frequency quoted by Gates *et al.* (6) for ν_{19} is nearly identical with that of an *A*-type combination band observed by us at 1329 cm⁻¹ ($\nu_{16} + \nu_{28}$).

With these changes, the d₄ and h₄ assignments are completely consistent. In fact, the change of $\nu_{20}(h_4)$ from 1285 to 1306 cm⁻¹ makes sense of the $\nu_{20}(d_4)$ assignment of 1284 cm⁻¹.

Class b_{3g}

This class of vibrations is not very intense in the vapor Raman spectrum and, in fact, only ν_{26} appears with reasonable intensity, having frequencies of 635 cm⁻¹ (h₄) and 614 cm⁻¹ (d₄). In the absence of a separate C-D stretching mode in the spectrum, ν_{23} has been assigned as coincident with the a_g mode ν_1 of 2309 cm⁻¹ (d₄ vapor) and slightly resolved from ν_1 (h₄) at 3085 cm⁻¹.

Despite a careful search, no sign of the ν_{27} fundamental in either h₄ or d₄ was found. Some information is available from a sequence study (12) in the electronic spectrum but not enough to obtain an explicit value for the ν_{27} fundamental. For this reason the value has been placed in square brackets in Table II. The implicit value comes from the electronic spectrum where the overtone band 27_0^2 and the two sequences, 27_1^1 and 27_2^2 have been observed (12). This allows us to obtain a rough value for the ν_{27} fundamental.

Class $\overline{b_{3u}}$

This is one of the most interesting groups of fundamentals from the point of view of the electronic spectrum and it contains the lowest frequency molecular vibration, ν_{30} , which is so active in sequence formation in that spectrum.

The infrared vapor spectrum gives perfect C contours for the bands at 838 cm^{-1}

(h₄) and 731 cm⁻¹ (d₄), and these are clearly ν_{28} (h₄) and (d₄), respectively. The farinfrared spectrum yielded two more C-type contours at 505.0 cm⁻¹ (h₄), 157.5 cm⁻¹ (h₄), 424.0 cm⁻¹ (d₄), and 155.5 cm⁻¹ (d₄), and these are assignable as ν_{29} and ν_{30} for h₄ and d₄.

These assignments also allow rejection of the possible interpretation of the band at 348 cm⁻¹ [$\nu_{22}(h_4)$ in the infrared spectrum] as $\nu_{29} - \nu_{30}$, i.e., 505.0 - 157.5 = 348.5 cm⁻¹, since the same difference spectrum for the d₄ species would give a band at 424.0 - 155.5 = 268.5 cm⁻¹ whereas the infrared band is at 343.5 cm⁻¹ for d₄. This confirms the assignment given here. It is important to note that our frequencies for $\nu_{29}(h_4)$ and $\nu_{30}(h_4)$ are essentially identical with those obtained by Crowder and Scott (7), but they did not have the d₄ species to confirm this assignment.

The ν'_{30} fundamental of the h₄ species was also given by Robey and Schlag (16) from their two-photon study of the h₄ vapor as 122 cm⁻¹. The present study confirms that the accuracy of their measurements is more like ± 2 cm⁻¹ for the non-totally symmetric frequencies since the correct value (12) for $\nu'_{30} = 119.7$ cm⁻¹.

Using these new vapor-phase frequencies, a study of the force field of the molecule is now under way and it is hoped that this will throw some light upon some of the still unresolved aspects of this problem.

The assignments given here are strengthened by a recent study (17) of the fluorescence spectrum of the matrix isolated compound in a medium at 4 K.

ACKNOWLEDGMENTS

We are grateful to Dr. D. Steele, who was kind enough to send us a sample of $p-C_6D_4F_2$. One of us (R.L.Z.) acknowledges the receipt of a Samuel H. Baer Fellowship of the Department of Chemistry of the University of Michigan, during the tenure of which most of this work was done.

RECEIVED: August 27, 1984

REFERENCES

- 1. A. H. DELSEMMNE, J. Chem. Phys. 18, 1680 (1950).
- E. E. FERGUSON, R. L. HUDSON, J. R. NIELSEN, AND D. C. SMITH, J. Chem. Phys. 21, 1457-1463 (1953).
- 3. A. STOJILJKOVIC AND D. H. WHIFFEN, Spectrochim. Acta 12, 47-56 (1958).
- 4. E. W. SCHMID, J. BRANDMULLER, AND G. NONENMACHER, Z. f. Phys. Chem. 64, 940-945 (1960).
- 5. J. H. S. GREEN, W. KYNASTON, AND H. M. PAISLEY, J. Chem. Soc., 473-478 (1963).
- 6. P. N. GATES, K. RADCLIFFE, AND D. STEELE, Spectrochim. Acta A 25, 507-516 (1969).
- 7. G. A. CROWDER AND D. W. SCOTT, unpublished data.
- 8. L. J. VOLK AND E. K. C. LEE, J. Chem. Phys. 67, 236-241 (1977).
- 9. R. A. COVELESKIE, D. A. DOLSON, AND C. S. PARMENTER, J. Chem. Phys. 72, 5774-5775 (1980).
- 10. R. A. COVELESKIE AND C. S. PARMENTER, J. Mol. Spectrosc. 86, 86-114 (1981).
- 11. R. S. MULLIKEN, J. Chem. Phys. 23, 1997-2011 (1955).
- 12. R. L. ZIMMERMAN AND T. M. DUNN, to be published.
- 13. R. M. BADGER AND L. R. ZUMWALT, J. Chem. Phys. 6, 711-717 (1938).
- 14. C. K. INGOLD, J. Chem. Soc., 222-235 (1946).
- 15. E. B. WILSON, Phys. Rev. 45, 706-714 (1934).
- 16. M. J. ROBEY AND E. W. SCHLAG, Chem. Phys. 30, 9-17 (1978).
- 17. A. F. CHILDS, T. M. DUNN, AND A. H. FRANCIS, J. Mol. Spectrosc. 102, 56-66 (1983).