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We study softly broken supersymmetric N = 4 Yang-Mills theories. In the absence of 
finiteness constraints among the soft-breaking terms, we term these quasi-super-renormalizable. 
We show that all the constraints leading to finiteness constitute an infrared fixed hypersurface. We 
argue that an ultimate finite globally supersymmetric model requires fine-tuning; however, for the 
purpose of model building at some pseudo-infrared scale, finite theories may be useful. Thus, 
quasi-super-renormalizable N = 4 can have a nearly finite theory as its low-energy effective field 
theory. We conclude with some further observations on scale-invariant theories. 

1. Introduction 

The  e lec t roweak  and s t rong in terac t ions  are well descr ibed  by an effective field 

theo ry  be low 100 GeV. The  theory is, however,  only  a phenomenolog ica l  model  as it 

con t a in s  a large number  of  pa ramete r s  whose origin is unclear,  and  hence the Higgs 

sec tor  is bese t  by  natura lness  p rob lems  which suggest some new p h e n o m e n a  may  

emerge  at  a scale a round  1 TeV. There  are qui te  a few suggest ions as to what  these 

new p h e n o m e n a  might  be, all of  which have very a t t rac t ive  features but  none  of  

which  is free of  phenomenologica l  problems.  It happens  a l ready  in massless,  

a sympto t i ca l ly - f r ee ,  renormal izab le  field theories that  all d imensionless  rat ios are in 

p r inc ip le  ca lculable ;  however,  the physics  descr ibed  is a lways at energies below some 

cu t -o f f  A. In massless finite theories no such cons t ra in t  seems to exist; a finite 

theory,  a l though  still dependen t  on one parameter ,  may  descr ibe  physics  up to an 

a rb i t r a r i l y  smal l  d is tance  p rov ided  the " b e t a "  funct ion for the gauge coupl ing  

r ema ins  zero non-per turba t ive ly .  Supersymmetr ic  theories which are finite to all 

o rde r s  in pe r t u rba t i on  theory have indeed been cons t ruc ted  in bo th  two and four 

d imens ions ;  theories which are finite in the large-N limit  exist also in three 

d imens ions .  These  theories have no ul t raviolet  divergences in pe r tu rba t ion  theory;  

however ,  the  absence  of  any scale makes  the s tudy of  the infrared proper t ies  of  
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massless matter interacting with massless non-abelian gauge particles rather difficult. 
This difficulty may be resolved if non-singlet scalar fields develop non-zero vacuum 
expectation values, thus breaking the gauge symmetry and some global symmetries 
induced by the extended supersymmetry. This was studied by Fayet for N = 4 
supersymmetric theories [1]. However, although generating masses, this mechanism 
always leaves the massless sector finite. In fact, a successive set of these spontaneous 
symmetry breakings will reduce the SU(N)  gauge symmetry to U(1) factors describ- 
ing perturbatively non-interacting massless particles and heavier interacting par- 
ticles. Needless to say, this does not bear any resemblance to the known low-energy 
behavior of particles. It has also not been shown that the new candidate vacuum is 
indeed stable despite the flat directions in the tree approximation. A more radical 
suggestion, following an idea originated by Fubini, is that Lorentz invariance may be 
broken in scale-invariant finite theories [2]. 

Another way to study finite theories was suggested by several authors in N = 4 [3], 
N --- 2 [4] and N = 1 (which can be made at least two-loop finite) [5] supersymmetric 
theories. Dimensional parameters have been added to the iagrangian which break 
scale invariance and softly break supersymmetry. It turns out that if these mass 
parameters obey certain relations among themselves, the theory remains finite. In 
these finite but scale-non-invariant theories, the infrared problems of the gauge field 
is resolved. For scales smaller than these masses, physics is described by an effective 
non-abelian gauge theory, which, in the absence of the heavy particles, is asymptoti- 
cally free. Such a theory would presumably resolve its infrared difficulties the same 
way QCD does. The embarrassment resulting from having re-introduced mass scales 
has turned into a discovery that these mass parameters are related among themselves 
and to the gauge couplings. Thus, although some parameters have been introduced, 
they are interconnected [3-5]. Moreover, if a finite, globally supersymmetric (up to 
soft breakings) theory is a descendent of a yet-to-be-discovered finite theory of 
supergravity, these mass parameters are even less arbitrary. We find this very 
attractive for reasons we shall discuss later. In such a context the relations assuring 
finiteness are both natural and very important. 

Consider the possibility that finite, globally supersymmetric models are prototypes 
of an ultimate theory at short distances, and perhaps even gravity can be derived 
from it as a low-energy theory (such ideas have been discussed in [6]). In such a case 
one must pose the question: Are the relations leading to finiteness natural? In other 
words, suppose some hypothetical experimentalist provides us with the values of the 
dimensionful parameters at a certain distance scale. Suppose, in addition, that these 
numbers obey, within the experimental accuracy, the relations leading to finiteness. 
Can we conclude from these measurements that there is a strong indication for the 
existence of an ultimate finite theory? 

We analyze these possibilities by considering N = 4 Yang-Mills theory, softly 
broken by dimension-two and -three operators but n o t  so arranged to cancel 
ultraviolet divergences. Since these soft breakings leave the gauge coupling renormai- 
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ization finite*, the resulting theory is very much like a super-renormalizable theory, 
except that we have not established that there are only a finite number of primitively 
divergent graphs. Allowing that there may in fact be divergences in the dimensionfui 
couplings and masses to all orders in the gauge coupling, we will call this a 
q u a s i - s u p e r - r e n o r m a l i z a b l e  theory. We analyze the scale dependence of the dimen- 
sionful couplings and masses, by calculating the one-loop beta function for each. It 
turns out that the relations among effective couplings tend to those relations 
ensuring finiteness in the infrared, i.e. at long distances, and, inversely, the devia- 
tions from finiteness increase as the distance scale decreases. Thus, from a funda- 

mental  point of view, these finite but softly broken theories do not seem natural. On 
the other hand, suppose that supergravity or some other fundamental theory yields 
an effective field theory on some scale (presumably below the Planck mass) which is 
a finite, globally supersymmetric theory except for masses (i.e. a quasi-super-renor- 
malizable theory). Then our result that in the infrared limit the masses run toward 
the finite theory suggests the possibility that the finiteness relations would be 
approximate ly  satisfied for masses on a much lower scale. Just how closely the 
finiteness relations were obeyed would depend on details of the model, such as the 
gauge group and the size of the gauge coupling. However, since these relations 
become natural in the infrared, it encourages their use in model-building. 

In this paper  we concern ourselves with the naturality of non-invariant finite 
models. In a companion paper, we study the symmetry breaking properties of such 
quasi-super-renormalizable theories. The structure of the paper is as follows: in sect. 
2 we discuss super-renormalizable broken N = 4 theories and review those relations 
which render them finite. In sect. 3 we describe the calculation of the running 
dimensionful coupling constants, and assess the naturality of finiteness relations. We 
conclude in sect. 5 with a discussion of results and with some remarks on SUSY 
breaking in finite theories. 

2. Quasi-super-renormalizable broken N -- 4 supersymmetric models 

N = 4 super-Yang-Mills theory [6] in the Wess-Zumino gauge is given by the 
following lagrangian: 

( ! i :  ,.=~,~ )(D~,A~) ~(D~,B~)(D~,B:) C = T r  - 4 . ~ - -  +½(D~,Ai + 

+ Aj]2 + [B,, B,]2 + 2[A,,  B,]2) ÷ 

+ - + akz ,i:,xL]} (2.1) 

* We do not entertain breaking the supersymmetric relations among dimension-four operators because 
this introduces quadratic divergences with their attendant naturalness difficulties. 
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Throughout  the paper we shall use component notation. All fields are in adjoint 
representations of some internal group, e.g. (A,)~b = -if~b,A,c, where f~bc are the 
structure constants. The trace is over the internal indices, all repeated indices 
(i, j ,  K, L)  are summed over. For each internal degree of freedom there are six 
spin-zero fields (three scalars A, and three pseudoscalars Bj), four Majorana 
fermions ~ ,  and one massless gauge particle. The lagrangian is invariant under a 
global SU(4)-= 0(6) transformation on these indices. The & and /3' (i = 1,2, 3) are 
real antisymmetric matrices satisfying the algebra 

{ & , e ' }  = {f l ' , /3 '}  = - 2 8 q ,  [ & , e  ' ]  = - 2 e i J * c ~ * ,  

= = o .  (2.2) 

A convenient representation is 

o (0 o) (0 o,={;o 0) 
- 0 1  0 ' o 3 0 ' 0 i o  2 ' 

/31=(0 ig2) f12=( 0 1) f13=(--io 2 0 ) 
i o 2  ' - 1  0 ' 0 i o 2  . (2.3) 

It has been shown [8] that the beta function for the gauge coupling is zero to all 
orders in perturbation theory. By Symanzik's theorem [9], this beta function will 
remain zero even if one adds to the lagrangian lower dimension operators. The 
modified theory is in general super-renormalizable and the dimensional parameters 
will run as the renormalization scale is changed. The soft-breaking terms are of the 
form 

~ = 1 2 A a A a  l_h2 I~al:la 1 2 - - a ~ a  1 ~  ~ a  )ta 
- -  ~ a i j , , i , l  J - -  2 t . , i j , , i  u j  - -  ~ c ~ j / l i l J ;  - -  2 , , , p , , p , , p  

1 _ i  t . a B b B C  1 i r n a . d b - - c  1 a h c 
- -  2 P j k J a b c ' ~ i  j k -  ~q~k.l~b,'tJiVa~Ak -- 6 r e , j k f a h , . A , A , A k  

]. a b c 
-- 6SF.,jkfat, c B,  Bj B k . (2.4) 

Without loss of generality, it is always possible to choose the fermion mass matrix to 
be real and diagonal, and we have done so above. The remaining couplings are all 
real for hermiticity. In this basis, the A, ~ fields remain scalars; B 7, pseudoscalars. 
The couplings c~, q~ and s thus are all parity violating. The soft-breaking terms 
break both scale invariance and supersymmetry but not the internal gauge symme- 
try. For certain relations among these parameters (which we will review subse- 
quently), it is believed that the theory will be finite. This has been investigated for 
parity-conserving models by the authors cited in ref. [3]. Some relations have been 
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established to all orders of perturbation theory, and this belief seems plausible if not 
proved*. 

Our interest, as discussed previously, is in the naturality of the finiteness relations. 
To investigate this, we must calculate the one-loop beta functions for all the massive 
parameters to determine whether the finiteness relations are infrared or ultraviolet 
stable, to which we now turn. 

3. Renormalization group analysis 

In a general quasi-super-renormalizable theory, all dimensional couplings can be 
expected to be scale dependent. As conventionally defined, the "running" masses 
and couplings vary according to their engineering dimensions as well as because of 
an "anomalous"  dependence determined by the dynamical renormalizations of the 
theory. Our concern, however, is with the naturalness and stability of relations 
among these, so our definition of running masses and couplings will omit the naive 
variation or engineering dimension. Let m denote the 4 × 4, symmetric fermion mass 
matrix in a basis in which it is real (i.e. parity conserving) but not necessarily 
diagonal. Then the non-zero one-loop beta functions are given by 

/~a2 = C2(G)16rr_____ T [2g2tr(a 2 + b2)8i¢ -- 8 g 2 ( S i j T r m 2 - ½ T r ( a i r n o d m ) )  

+ 2r28ij i j 2q,kqjk],  + pk lpk t  + t t 

C2(G) [2 g2tr(a  2 + b 2 ) S i j -  8g2( 8,jTr m 2 + ½ Tr( f l irnBJm )) 
flb~ = 16~r------ S- 

+ 2s28,j + 2p:kPJk + qiktqL,], 

C (G) 
/3d, 16~r 2 

16~r 2 

C2(G) 
flq;* 16~r2 

13, C2(G) 
16~r 2 

C2(G) 
/~s 16~r 2 

-- [re,k,q/k + SE:k,q:k ], 

- -  [12g2p jk - -12g3 t t j kTr (ma 'B ' ) ]  , 

- -  [12g2q~k], 

- -  [ 1 2 g 2 r -  12g3Trm] ,  

- -  [ 1 2 g 2 s l  . ( 3 . 1 )  

* The lack of rigor stems from technical difficulties associated with the abscnce of a superspace 
formalism in gauges other than the light-cone gauge, and, in that gauge, power counting and the 
treatment of gauge singularities beyond one loop are problematic. 
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The fl-function for the gauge coupling g, of course, remains zero, and it turns out 
that the fl-functions vanish for the fermion masses mpq as well. As mentioned 
earlier, it is convenient to choose a basis in which m is diagonal, in which case we 
can evaluate the fermion traces in terms of the four eigenvalues of m: 

T r m  = ~ . m p ,  

Tr rn2 = F.m2p, 

Tr (  a i m a ' m  ) = Tr (  fl'rn~8-~m ) = - 2 3 U ( r n 4 m :  + m , m , ) ,  

Tr(ma ' f l  j )  = - ~ i J ( p n  4 .-1- m ~ -  m k - rn , ) ,  

where the indices j ,  k, / take the values 1, 2, 3, cyclicly. Finally, the trace over scalar 
boson masses is denoted as tr(a 2 + b 2) = a, /a j ,  + bubj, .  

Before proceeding further, we pause to emphasize that these formulae are relevant 
only at energy scales above all thresholds associated with the masses of the theory. 
At energies below some threshold, the heavy particles decouple and a more useful 
description is provided in terms of an effective lagrangian involving only the light 
fields and their interactions. Subsequently, when we speak of the infrared limit of 
these equations, we tacitly assume that we remain at an energy scale above all 

thresholds. 
After a bit of algebra, one can show that all beta functions vanish if and only if 

the following relations prevail: 

pj = eUkTr(mcdctl  ) k g 

q~k = 0, 

r = g T r m ,  

s - - - 0 ,  

t r (a  2 + b 2 ) = 2 T r m  2 ' 

= c,2, (3.2) 

Except for the inclusion of parity-violating terms, these are precisely the finiteness 
conditions derived previously [3]. This establishes that these are the only "fixed 
points"  (actually a hypersurface) of the renormalization group. 

We now wish to show that these relations are infrared stable. This could be done 
by linearizing about this hypersurface. However, it is straightforward to integrate the 
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equations exactly. Letting t = In #, the running cubic couplings are 
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Pjk = Pjk ebt + getjkTr(ma'flt) ,  

q~k = Q'jk eb', 

= R e  t't + g T r m ,  

g = Se  b', (3.3) 

where b =- 12 g 2C 2 (G)/160r 2 and all capital letters ( P/k, Q'jk, R, S)  denote constants 
determined by initial conditions. Apparently, they are measures of the deviations 
from finiteness. Already we see that, in the infrared limit (t --* - ~ ) ,  the couplings 
tend to the finiteness conditions. In particular, all parity violations entering via cubic 
couplings vanish in the infrared. 

The exact formulas for the running masses are a bit tedious and we will spare the 
reader the gory detailS. Since fld, involves only cubic couplings, we see immediately 
from the preceding that, as t --* - oo, fl,2 ~ O, since 0~k and g vanish in that limit. 

I1 J 

Thus the parity-violating mass c A ~ Ci 2, a constant in the infrared. This is the only 
low-energy residue of parity violation unless, as we remarked earlier, one crosses a 
mass threshold before the parity-violating cubic couplings become negligible. The 
parity-conserving running masses satisfy the following relation: 

S t r ) f / z=  tr(~ 2 + b2 ) _ 2Trrh2 = Neb, + bt eb,( R T r m  + Pskejk,Tr(ma~8 )) 
g 

+e2h ' (R2+ S2+½(Pj~Pj~ +Q;kQ~k) ) , (3.4) 

where N is another integration constant. Thus, in the infrared limit, the remaining 
condition for finiteness is satisfied. From the preceding, one can show that f l~ and 
flh~ vanish in the infrared, so there are no further finiteness constraints. 

It can also be seen from eqs. (3.3) and (3.4) that, in the ultraviolet regime 
(t --, + oo), there is no memory whatever of the finiteness relations, the asymptotic 
behavior being set by the integration constants representing deviations from finite- 
ness. 

We will next discuss the interpretation and significance of these results. 

4. Discussion 

The nature of the fixed point of the effective couplings has two types of 
consequences. (i) First, the fact that it is infrared attractive suggests that, in the 
present context, an ultimate globally scale-non-invariant but finite theory of nature 
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is unnatural since (a) the finiteness conditions, eq. (3.2), do not correspond to any 
known symmetry and (b) an arbitrarily small deviation from these conditions blows 
up in the high-energy limit. Although this is only a logarithmic growth (in contrast 
to the quadratic blow-up characteristic of the unnaturalness associated with scalar 
masses in non-supersymmetric theories), it makes these models unattractive candi- 
dates for ultimate unification. One might think so in any case because gravity has 
not been explicitly included, but it has been speculated that gravity might be 
dynamically generated [6]. In any case, a hypothetical experimental colleague would 
be unable to resolve the question of whether the ultimate theory is finite. (ii) On the 
other hand, since the fixed point is infrared attractive, the finiteness conditions 
emerge at low energy regardless of the values of the input couplings and masses at 
short distances. By low energy, we mean an energy scale below the initial input scale 
but above the scale of any of the masses themselves, a regime we might term 
pseudo-infrared. Below these mass scales, the effective field theory will appear to be 
renormalizable in any case and the effective gauge, Yukawa, and scalar self-cou- 
plings all begin to run (as mentioned in the sect. 1). 

Thus we regard a quasi-super-renormalizable model as an effective field theory 
relevant to an energy regime below a scale of some new unknown physics (the 
cutoff) and above the mass scales of soft breaking of supersymmetry. We have found 
that an arbitrary Set of dimensional parameters characterizing the soft breakings 
evolves at lower energy scales in such a way that the pseudo-infrared regime may 
approximate a finite, scale-non-invariant theory. This is reminiscent of the idea that 
infrared fixed points may endow an effective theory with more symmetry than the 
underlying theory [10]. In our case, however, the effective theory has no apparent 
higher symmetry but nevertheless relations among dimensionful couplings emerge! 

We note that Veltman has suggested that the low-energy effective field theories 
describing non-renormalizable interactions are themselves renormalizable [11]. 
Another  type of theory is an asymptotically free renormalizable one (such as QCD) 
which, because of confinement may be described at low energies by a super-renor- 
malizable field theory of the bound states (hadrons). We have shown that for N = 4 
softly broken supersymmetric Yang-Mills, a quasi-super-renormalizable theory 
evolves in the pseudo-infrared regime toward a low-energy finite theory. It would be 
interesting to establish whether this property holds in other softly-broken finite field 
theories (N  = 2 [31 and, possibly, N = 1 [4]). 

We have argued that softly-broken finite theories are more naturally regarded as 
quasi-super-renormalizable models. To what extent might such effective field theo- 
ries arise as low-energy approximations arising from spontaneous breakdown of a 
truly scale-invariant, underlying globally supersymmetry theory? The answer is that 
such a scenario is impossible'*! The effective potential is non-negative and, since it 

~* These observations arose in discussion with P.C. West. This also has been noted by E. Witten (private 
communication). We suppose in this di~ussion that there exists a translationally invariant ground 
state. It has been speculated that spontaneous breakdown of translational invariance might occur in 
certain theories. See Fubini [2,12]. 
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vanishes when all fields vanish, any potential ground state other than the origin must  

also have zero energy. (In fact, by scale invariance, such a state lies on a zero-energy 

ray f rom the origin.) Thus, regardless of  whether scale invariance is spontaneously 

broken,  global supersymmetry remains unbroken. Since the spectrum remains mani- 
festly supersymmetric ,  any low-energy effective field theory, obtained by " integrat-  

ing out"  the heavy fields, will also be manifestly supersymmetric.  Thus, finite 
globally scale-invariant theories could not possibly explain the origin of  masses in a 

world (such as ours) in which supersymmetry is broken. It seems possible, however, 

that  a locally supersymmetric,  scale-invariant (superconformal)  theory could sponta- 

neously  break supersymmetry and yet retain a zero value for the vacuum energy 
(cosmological  constant).  So we regard these observations as another  strike against 

finite, globally supersymmetric models. 

In a subsequent  paper, we study the effective potential in this class of  theories. It 
has been no ted*  that, in finite versions of  this type, the constraints on masses 

coming  f rom the desire for spontaneous breakdown of  gauge symmetries, on the one 

hand,  and the boundedness  of  the energy from below, on the other, are incompati-  
ble. The best  one can do is postulate that a field develops a vacuum expectation 

value in a flat direction. We will show that, in quasi-super-renormalizable models, 

scalar masses-squared can change sign with changing scale. Thus, just  as in softly 

broken renormalizable models, the incompatibil i ty of these conflicting constraints 
can be resolved. 
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