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Summary--A long circular cylinder with radius R and thickness t transmits a longitudinal 
eccentrically applied force to a rigid half-space. We study the influence of the eccentricity of the load 
and the ratio R/t on the stress state of the cylinder using the theory of thin shells in bending. The elastic 
displacements are presented in the form of a Fourier expansion, the coefficients of which are found by 
the variational formulation of the problem combined with the penalty approach for a numerical 
implementation of contact conditions. Results are applied to certain problems of buckling of a 
circular bar and compared with previous approximate solutions. 
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N O M E N C L A T U R E  

parameter of the thickness, defined by equation (10) 
eccentricity of the force 
Young's modulus 
functional of energy of elastic deformation 
dimensionless energy of elastic deformation 
moment of inertia 
stiffness of the artificial spring 
length of the cylinder 
bending moment 
twisting moment 
membrane axial force 
tangential force 
dimensionless axial, tangential forces and bending moment, respectively 
force 
dimensionless effective (KirchhotVs) shearing and tangential forces 
shearing force 
dimensionless shearing force and twisting moment 
end rotation 
radius of the cylinder 
dimensionless parameter defined by (41) 
thickness 
components of elastic displacements of the cylinder 
dimensionless displacements 
translational rigid body displacement 
axial coordinate 
dimensionless axial coordinate 
circumferential angular coordinate 
extent (polar angle) of the region of contact 
Poissons ratio 

I N T R O D U C T I O N  

Consider a circular semi-infinite cylinder of radius R and thickness t, one end of which is at 
rest on a half-space (see Fig. 1). The cylinder transmits an axial force P applied with some 
eccentricity e to the half-space. The strength of materials solution (bending plus compression) 
applies if e ~< R/2, but otherwise predicts tensile tractions, indicating that separation will 
occur. We treat the case e >/R/2 for which the solution of elementary strength of materials is 
not applicable. 

A solution of the problem described enables us to deal with a set of related problems. 
Suppose, for example, that two cylinders with nominally conforming ends are pressed 
together. Suppose also that as a result of imperfectness, the axes of the cylinders are not quite 
correctly aligned, or one of the cylinders has a contact surface which is not quite 
perpendicular to its axis. The following question present itself: how does the area of contact 
develop with the growth of the force, and what is the pressure distribution? 

As another example, consider a cylinder placed between two rigid half-spaces (Fig. 2a). The 
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FtG. 1. Geometry of the problem. 
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FIG. 2. Examples: (a) a cylinder placed between two rigid half-spaces; (b) one point scheme of 
buckling; (c) a cylinder with an imperfect face. 

length L of the cylinder is sufficiently large for edge effects on the two ends to not interfere. 
The elementary solution predicts two extreme situations; (a) full contact between the surfaces 
if the force is smaller than some critical value; (b) one point contact (Fig. 2b) if the force is 
sufficiently large for instability to occur. The structure is sensitive to the imperfection shown 
in Fig. 2(c), and an accurate picture of the intermediate state is needed for an adequate 
evaluation of  the critical load. The present paper provides results which can be used to deal 
with problems of that type. 

We treat the cylinder using the theory of thin shells in bending. The elastic displacements 
are presented in the form of Fourier expansion, the unknown coefficients of which are found 
by the variational formulation of the problem, combined with the penalty approach for a 
numerical implementation of the contact conditions. 

G O V E R N I N G  E Q U A T I O N S  A N D  B O U N D A R Y  C O N D I T I O N S  

If we introduce dimensionless quantities by 

u --  E t u / P  ( I ) 

v = E t v / P  (2) 

w = E t w / P  ~3) 

x = x / R  (4) 

the dimensionless version of the governing equations [1] for a cylindrical semi-infinite shell in bending can be 
written. 

U " + ( 1 --  v) /2u'"  + ( 1 + v ) / 2 v '  + w '  + C2[(1 -- v ) / 2 U  -- w'" 

+(1 -v)/2w'  ] = 0 (5) 
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(1 + v)/2u'" + w + (1 - v)/2v" + w" + c213(1 - v)/2v" 

- (3 - v) /2w' - ]  ffi 0 (6) 

vu' + v" + w + c2[(1 - v) /2u  . . . .  u "  - (3 - v)/2v"" + w "  

+ 2w"- +w.-.. + 2w. + w ]  ffi O. (7) 

In these equations x, /S are the axial and angular coordinates, respectively, a, v, w are respectively axial, 
circumferential and radial displacements, v is Poisson's ratio, and 

( )' = c~/c~x (8) 

( ) .  ~ ~/~/S (9) 

c 2 ffi t21(12R2) .  (10) 

The most  interesting quant i ty- - the  dimensionless membrane force N,  is given by 

N ~  ffi N x R / P  = (1 - v2) - 1 [u'  + vv" + v w  - cZw']. (11) 

The dimensionless bending moment,  effective Kirchoff 's shearing and tangential forces which are needed for 
formulation of the boundary conditions, are 

M~(x,/S) ffi M ~ / P  - ,  cZ/(1 - v 2) [w" + vw'- - u' - w ' ]  (12) 

Q.z = 0.~ + ~MalO/S = R/P(Q~, + I /R OM,eI~/S) 

ffi c2 / (1  - v 2) [w" + (2 - v)w . . . .  u" - (3 - v)/2v'" + (1 - v)/2u"] (13) 

Te s ffi Nxp  - M ~  s ~ R / P ( N  o - Mx~/R) 

= 0.5/(1 +v)[u" + (I + 3cZ)v ' - 3c:w"'[. (14) 

In these equations dimensional quantities are denoted by bold type. 
The boundary conditions at x ffi 0 can be written as follows. 

M~(0,/S) ffi 0 all/S (15) 

Q,$ (0,/S) = 0 all/S (16) 

T.~ (0,/S) = 0 a l l /S  (17) 

u(0,/s) = o I/sIg 0 ( is )  

u(0,/s) ~ o I/st ~ 0 (19) 

N.,(o,/s) = o I/sI ~ o (2o) 

Nx(0,/s) g 0 I/sI ~ o (21) 

~ " N,(0,/S)d/S ffi (22) 1 

~* N~(0,/S) cos (8)d/s ffi M I P R  ffi e/R, (23) 

where M ffi Pe is the moment  of  the applied force about  the diametral axis at  the contact surf~e.  The polar angle 0 
denotes the area of  contact. Equation (l 8) and inequality (19) state that  the surfaces coaform in the area of  contact, 
and there is no  overlapping in the area out of  contact. Equation (20) states that  out  of  contact  the edge is stress free; 
inequality (21) states that no tensile stresses are permitted in the region of  contact. Finally, equations (22) and (23) are 
equations of  equilibrium for the whole cylinder. This is a complete set of  equations and inequalities that  dafmes the 
solution to the problem, including the unknown area of  contact in terms of  the angle O. 

The solution depends on six parameters: v, £,  t, R, P, and M. We note, however, that all the dimensionless 
relationships (and hence the solution) depend on three non-dimensional parameters R/t, v and e / R .  O n c e  the 
problem is solved, an average rotation and translation of  the lower edge can be found in the form 

u.~ = Oo + 0 .5  O, cos  (~). (24 )  

It is more convenient for computat ional  purposes to invert the problem, namely to prescribe the angle of  rotation 
01/2R and find e / R  from the solution. 

S E R I E S  R E P R E S E N T A T I O N  

The displacements are sought in the form 

u(x , /S )  ffi Uo(X) + u l  (x)  cos ~ )  + ~ A.  cos (m/S) exp (s~,x) (25) 
m ~ 2  

v(x , /S)  --  vl  (x)  sin (/S) + '~  B .  sin (m~) exp (g,x) (26) 
m ~ 2  

w(x,/S) ,= Wo(X) + wl (x) cos (.8) + ~ C .  cos (m/s) exp (s.x), (27) 
m f f i 2  
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The terms with subscripts 0 and 1 have different (non-decaying) structure and correspond to rigid body 
displagements and the elementary solution of a pure compression and bending. After introducing equations (25) to 
(27) into (5) to (7) the factoring out cos (mE) exp (s,,x) or sin (m#) exp (s=x), we obtain a system of three linear 
equations for each m (m = 2, 3 . . .  ). Equating the determinant of this system to zero, we get the following equation 

s a - 2(2m 2 - v)s 6 + [(1 - v)/2 + 6m2(m 2 - 1)Is 4 - 2mZ[2m 4 - (4 - v)m z 

+ (2 - v)]s 2 + m*(m 2 - 1) 2 = 0 128) 

for finding complex roots s~. = r~. + ipm ( j  = 1 to 8). Discarding roots with positive real parts which correspond to 
non-decaying solutions, we obtain the following expressions for the m-th term of the series (m/> 2). 

I/-m(X, ~) =: COS (mE) {exp (rlmx) ['Aim cos (plmx) + A2= sin (pt,,,x)] 

+ exp (r2,.x) [Aa= cos (P2,,,x) + A,t,. sin (p2,.x)] } 129) 

v.(x,  #) = sin (roB) {exp (rt,,x) [Bt,, cos (Pt,.x) + B2,. sin (Px,.x)] 

+ exp (r2wx) FB3m cos (P2mX) + B , ,  sin (p2=x)] } (30) 

win(x, 8) =: cos (mE) {exp (rt ,x) [Ctm cos (pl,,,x) + C2m sin (pl=x)] 

+ exp (r2mx) ['C3m cos (P2ntX) + Ca, sin (p2,x)] }. (31) 

Equations (25) to (31) can be found in [I],  but they are repeated here in the interests of clarity. 
Only four unknown coefficients (say, C1,,, C2=, C3=, C,.,) are independent. The others can be found in terms of C's 

from the system of three linear equations mentioned above. Moreover, since series (25) to (27) are orthogonal, the 
global equations (15) to (17) are uncoupled among m's. Therefore, these equations can be used to eliminate three of 
the four coefficients C~,, leaving one unknown coefficient for each m. This can be done analytically, but the explicit 
expressions for the displacements are awkward and not especially useful. It is therefore more convenient to perform 
the operation numerically for any particular set of the three dimensionless parameters R/t, v, e/R. In further 
considerations we assume that the procedure of elimination is already performed. The remaining series of 
coefficients has to be found from the contact boundary conditions (18) to (23). The unknown extent of the contact 
region 0 introduces a non-linearity into this stage of the solution, which is treated by the variational formulation of 
the problem discussed in the following sections. 

V A R I A T I O N A L  F O R M U L A T I O N  

If the cylinder were of finite length L, we could have stated the problem in terms of minimization of the functional 
[2, 3]: 

f(a,  v, w) ~= V(n, v, w) - Pn(L, #(P)) (32) 

on the kinematically admissible set of functions n, v, w. In (32), V(a, v, w) is the energy of elastic deformation of the 
shell ~L,  #(P)) is an axial displacement at the end x = L and /~ corresponding to position of the force. The 
admissibility in particular requires that for any p 

a(0, 8)/> 0. (33) 

The functional (32) cannot be used directly in our case, because the energy of elastic deformation is infinite. This 
difficulty arises because of the non-decaying terms, corresponding to the uniform compression and bending of the 
cylinder which are hidden in (25) to (27) in terms with subscripts 0 and 1. It can be circumvented by finding these 
terms from other considerations and introducing them in (32) as known values. The form of (25) to (27) provides that 
these terms are orthogonal in the energy of elastic deformation with the others, and therefore, they have no influence 
on m i n m t i o n  of (32) and can be omitted. It seems at first sight that these terms should be present in (33), but their 
contribution can he absorbed in the rigid body translation in the axial direction and rotation. The most convenient 
way of satisfying the constraint (33) is to introduce the rigid body rotation of the lower end of the cylinder g t/(2R) as 
an input, and find e/R later when the problem is solved. 

The functional (32) is more general than is required for our p u ~ .  In particular, the variational statement 
described includes not only conditions 08  ) to (22), but also equations of equilibrium (5) to (7) and the natural 
boundary conditions (15) to (17) which have already been satisfied. After elimination of unnecessary terms, 
corresponding to (5) to (7) and (15) to 07), the functional of boundary conditions [4, 5] can be written 

1 12~ 
f ( L  v, w) --- ~ Jo a(0, fl)Nx(0, ,8)Rdf l -P%t, ,  (34) 

where ~., is the translational rigid body displacement of the cylinder. The dimensionless form of (34) is obtained by 
factoring out P' /Et  from (34), giving 

_ 1 f2f 
F(u, v, w) - 2Jo u(0, #)N~(0, # ) d # -  u,b (35) 

with the constraint 

u(0, 8) 1> 0, 136) 

where Nx is given by expression (I 1). 
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NUMERICAL IMPLEMENTATION 

The problem of minimization of (35) with the constraint (36) can be replaced by the problem of unconstrained 
mi~imiTation, using the penalty approach [6-8]. We elected the exterior penalty method in which the functional (35) 
is replaced with 

I f2 .  1 fa,  
F(u, v, w) = ~ Jo u(0,/~)tv,(o, #)d~- u,~ + ~ Jo ku(O, #)2 d/~, (37) 

where k is equal to zero if u >I O, and is otherwise eq,ml to a large number. 
The form (37) has an obvious mechanical explanation. The last term in this ftmaional can be viewed as a spring 

with a large stiffness k which is ineffective if there is separation of the surfaces, and effective if there is some 
overlapping. Thus, overlapping would be discouraged in the process of minimization. 

In the software used (FORTRAN in MTS system) there are several subroutines available for the minimization of 
an unconstrained functional, based on [9-12]. It turned out, however, that for this problem a procedure in which (37) 
was indDimiT~d directly by giving small increments to all C's in turn, was more ~ t .  We adopted a strategy in 
which we started with a relatively rough increment. When after a few iterations this increment could not decrease the 
functional (37) any more, the increment was halved and the procedure was repeated several times until the minimum 
was reached with some prescribed accuracy. 

Since the terms with m ffi 0, I were omitted from the elastic energy, we cannot obtain the corresponding derivatives 
needed for the stresses, directly from the series representation. However, they can be recovered from other 
considerations, thus the membrane force on the surface can be found using the artificial spring 

Nz(O, #) = ku(O, I~). (38) 

This is the most interesting stress in the problem. If necessary, the uniform compression and pure bending parts can 
be separated from it. 

N U M E R I C A L  R E S U L T S  

The algorithm described was used to obtain results for R/t ranging from 5 to 50, e/R from 0.5 to I and v = 0.3. The 
relationship between the load eccentricity, e/R, and the extent of the area of contact is presented in Fig. 3. 

An approximate solution to the problem can be obtained by 'unwrapping' the cylinder, to give the plane stress 
problem of periodic patch-like contact between an elastic body with a wavy surface and a r ig id  plane. This 
approximation is used for a related thermoelastic problem by Burton eta/. [ 13]. It is of interest to know how the shell 
thickness ratio, R/t, affects the accuracy of this approximation---i.e, the extent to which shell bending ir~uences the 
contact problem. 

An elegant complex variable solution for the contact of a sinusoidally wavy surface and a plane was given by 
Westergaard [14]. The stress function, the contact pressure distribution and the extent of the periodic contact 
patches were all obtained in closed form. More recently, a series solution of the same problem was given by Dundurs 
et al. [15] who were apparently unaware of Westergaard's paper. Results from [14] are shown in Fig. 3, from which 
we see that the unwrapping approximation slightly overestimates the area of contact. The error increases with 
increasing R/t, as we should expect, since for thin shells, shell bending effects will be more important. The Hertzlan 
approximation to the plane stress solution is also shown in Fig. 3 for comparison. 

Shell bending has a more noticable effect on the flexibility of the shell as can be seen from Fig. 4 which shows the 
angle of rotation between the half-plane and the mean plane of ;he shell end surface, as a function of load 
eccentricity. In the following section we use these results to investigate the stability of certain contact problems for 
the circular cylinder. 

T " ~ - ~ / - "  3 Reference [14] 
3-~ \ - - - R / ,  • 5 

sere,- I \ 50 
anQieof ~' ~\~,, .............. Hertz oppcox~mo~1on 

-o,i \ 
s ! ..... \ , x , .  

i ........ ,~. 

i %.% 

0 ~ ~ . . . . .  

o o,5 o.6 0.7 0.8 oe I 
e /R (M/PR)  

FIG. 3. Influence of the thickness parameter R/t on the relationship between the eccentricity of the 
load, e/R, and the extent of the area of contact. 
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FIo. 4. Influence of the thickness parameter R/t on the relationship between the eccentricity of the 
load (e/R) and the rotation of the face omEtR/P. 

E X A M P L E S  

We now return to the problem illustrated in Fig. 2. We first discuss the elementary solution and then show how this 
is modified when contact and shell bending are taken into account. Figure 2(b) shows the buckling-type deformation 
of a cylinder with initially conforming contact faces. This type of deflection is possible only if the force is greater than 
some critical value. The elementary theory ([16] p. 14) predicts that an equilibrium solution for this configuration 
gives an end rotation 

PRL tan (s) 
a = ~ - - 7 - -  (39)  

or 
=L /R  = 12s tan (s) l, (4O) 

where 

s = 0 . 5 ~  = 0.5L/R ~ .  (41) 

This r~lution h u  a branch in inch of the ranges 0 < s < x/2 and g/2 < s < x, which are shown as broken lines in 
Fig. 5. However, if the cylinder has initially conforming ends, only the upper branch is physically possible, since the 
othzr would involve interpenetration of the planes by the cylinder. 

If thm'e is an initial mi~I/gnmcnt at the contact surfuces as shown in Fig. 2(c), the same equations (39) to (41) are 
applicable, but the cylinder will now follow the lower branch on loading, until the load is sufficiently large to produce 

\ 

/ 

~,L/R ,1"0 
3"0 @ I 

X \  
\ 

0~ 

3- 

i / 

- -  - -  - -  Ea~ , ,o t ion  ( 3 8 )  

P ~ ' t i o !  c o n t a c t  s o l u t i o n  

0 2 ~, 6 i3 
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FIG. 5. Solution of the buckling problem of Fig. 2. The elementary strength of material solution is 
shown by broken lines, and the shell bending solution by solid lines. 
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a rotation at the ends which closes the gaI>---say at point A in Fig. 5. On further loading, the ends remain in complete 
contact and the loading curve follows the straight line AB in Fig. 5, until the upper branch is reached at B, when the 
system becomes unstable. 

To obtain a more accurate solution we must take account of the fact that the force P is distributed over a finite area 
and hence the moment PR must be replaced by Pe. Equation (39) then becomes 

2,~xEtR e L tan s 
P = R R T " (42) 

The eccentricity ratio e/R can be eliminated numerically from (42), using the curves in Fig. 4 and we are left with a 
relation between the rotation ,, and the load which replaces (40) and the upper branch of which is shown as solid line 
in Fig. 5 for the parameters L/R ffi 10 and R/t ~ 50. 

In the case of initial gap with the angle "o, the governing equation (42) is unchanged, but e/R should be treated as a 
function of I~ - 0to I rather than of [,v [. Results for "oL/R = 1 and goL/R ffi 3 are shown in Fig. 5. We note that the 
buckling loads are, respectively, 6 and 20 00 less than those given by the elementary theory. 

C O N C L U S I O N  

It  is easy tO a d d  fu r t he r  examples .  In  pa r t i cu la r ,  the  use  o f  F igs  3 a n d  4 is n o t  p r e c l u d e d  fo r  

large  d i s p l a c e m e n t s  w h i c h  m i g h t  o c c u r  fo r  a suff ic ient ly  l o n g  cyl inder .  T h e  a p p l i c a t i o n  o f  

e q u a t i o n s  (5) to  (7) is jus t i f ied  i f  the  ang l e  o f  re la t ive  r o t a t i o n  o f  t he  ha l f - space  a n d  the  face  o f  

the  cy l inde r  is small .  
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