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We directly measured the activity of the enzymes xanthine oxidase and 
xanthine dehydrogenase in rabbit and rat hearts, using a sensitive radio- 
chemical assay. Neither xanthine oxidase activity nor xanthine dehydrogenase 
activity was detected in the rabbit heart. In the rat heart, xanthine oxidase 
activity was 9.1 -+ 0.5 mIU per gram wet weight and xanthine dehydrogenase 
activity was 53.0 + 1.9 mIU per gram wet weight. These results argue against 
the involvement of the xanthine oxidase/xanthine dehydrogenase system as a 
mechanism of tissue injury in the rabbit heart, and suggest that the ability 
of allopurinol to protect the rabbit heart against hypoxic or ischemic damage 
must be due to a mechanism other than inhibition of these enzymes. ® 1986 Academic 
Press, Inc. 

Recent studies have emphasized the participation of toxic oxygen metabo- 

lites in acute cardiac injury caused by ischemia or hypoxia (I). One postu- 

lated source of these metabolites is the enzyme xanthine oxidase which is 

thought to be formed from xanthine dehydrogenase by calcium-activated 

proteases during ischemia (2). Ischemia and hypoxia also activate a cascade 

of purine degradation to increase the availability of substrates for xanthine 

oxidase and xanthine dehydrogenase, hypoxanthine and xanthine (3,4). Upon 

reperfusion or reoxygenation, oxidation of these substrates concomitantly 

forms the univalent reduction products of molecular oxygen, 02 - and H202, 

which can react with transition metals (e.g., Fe 3+) to form highly toxic .OH 

(5). The ability of allopurinol to reduce acute ischemic or hypoxic damage to 

hearts of various species, including rabbit (6-8), may therefore have great 

applicability to human medicine. The major pharmacologic action of this drug, 

inhibition of xanthine oxidase, further supports the injury mechanism outlined 

above. Nevertheless there are data (9-11) which do not support this scheme, 

at least in rabbit myocardium. In particular, we have shown that purines 

washed out of reperfused ischemic rabbit heart do not include expected 

products of xanthine oxidase or xanthine dehydrogenase activity, xanthine and 

0006-291 X/86 $1.50 
Copyright © 1986 by Academic Press, Inc. 
All rights qf  reproduction in any .[brrn reserved. 1104 



Vol. 141, No. 3, 1986 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 

uric acid (11). This indirectly suggests an absence of the xanthine oxi- 

dase/dehydrogenase enzyme system. Xanthine oxidase and xanthine dehydrogenase 

activity have never directly been measured in the rabbit myocardium, but have 

been demonstrated in the rat myocardium (12). The absence of this enzyme 

system in nonischemic rabbit heart would certainly make it an unlikely 

participant in the ischemic/hypoxic damage process. 

In this paper we report the absence of directly measured xanthine oxidase 

and xanthine dehydrogenase in the rabbit myocardium using a radiochemical 

assay. This novel finding implies: I) a species variation of the myocardial 

xanthine oxidase/dehydrogenase enzyme system and consequently a variation in 

the mechanisms of ischemic injury, 2) that the mechanism of allopurinol cardi- 

oprotection cannot be universally ascribed to its inhibition of xanthine oxi- 

dase, 3) the extension of animal data and pharmacologic approaches to protect 

the myocardium from ischemic damage may or may not be applicable to the human 

situation. 

METHODS 

Animals: Six New Zealand rabbits and a parallel set of six Sprague-Dewey rats 
were used for these experiments. The rats were killed by decapitation, the 
rabbits by cervical dislocation and exsanguination. Hearts were immediately 
excised and perfused in a retrograde fashion (Langendorff) with oxygenated 
(95% oxygen and 5% carbon dioxide) physiologic saline solution for 5 min 
(7,8,13). The ventricles were removed and immediately immersed in liquid 
nitrogen. The frozen ventricles were weighed (wet weight) and immediately 
placed in an ice cold buffer containing 0.125 M tris(hydroxymethyl)amino- 
methane, 10 mM dithiothreitol, I mM phenylmethylsulfonyl fluoride, and 0.1 mM 
EDTA, at a pH of 9.0. The dithiothreitol and phenylmethylsulfonyl fluoride 
prevent in vitro conversion of xanthine dehydrogenase to xanthine oxidase 
(14). The heart tissue was minced with scissors and homogenized in 9 ml of 
buffer for each gram of tissue. The homogenate was spun at 12,000 g for 20 
min at 4°C. The supernatant was dialyzed at 4 ° C in a 200:1 dilution of the 
buffer overnight to remove enzyme inhibitors and endogenous purines. Aliquots 
were then assayed for enzyme activity. 
Enzyme Assay: The radiochemical enzyme assay for xanthine oxidase/dehydro- 
genase has been described elsewhere (15,16). The buffer constituents and the 
pH were modified to optimize the enzyme activity according to the method of 
Mousso~t al. (17). The reaction mixture contained 30 ~l of buffer and I0 ~i 
of [8-'~C]hypoxanthine (final concentration of 95 ~M), warmed to 37°C in a 
shaking water bath before 10 ~i of the dialyzed supernatant (sample) was added 
to start the reaction. Six aliquots of each sample were reacted with r8- 

14C]hypoxanthine under different conditions. Aliquot #I: To assess the 
combined activities of xanthine oxidase and xanthine dehydrogenase, NAD + 
(final concentration I mM) was included in the reaction mixture (18). Aliquot 
#2: Identical samples run in the absence of added NAD + were used to assess 
xanthine oxidase activity. The difference between the two values, if any, was 
used to calculate enzyme activity due to xanthine dehydrogenase alone. 
Aliquots #3 and #4: Two other aliquots (with and without NAD +) were run in 
the presence of allopurinol (I mM final concentration) to assess its ability 
to pharmacologically inhibit the enzymes. All sample counts were adjusted by 
subtracting from the raw counts the counts obtained by controls (aliquots #5 
and #6) to which perchloric acid (283 mM final concentration) was added to the 
reaction medium prior to the addition of dialyzed supernatant. All the 
mixtures were incubated in a shaking water bath at 37°C for 15 min, as Watts 
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et al. have shown nonlinearity of the reaction rate after incubation times in 
excess of 20 min (19). The reaction was stopped by adding 10 ~i perchloric 
acid (280 mM final concentration) and immediately chilling the reaction 
mixture in ice. The reaction mixture was spotted on electrophoresis paper and 
the substrate and products of the reaction were separated with high voltage 
electrophoresis as previously described (16). The spots were identified with 
ultraviolet light, cut, and radioactivity counted by liquid scintillation 
spectrometry. Enzyme activity was computed and is expressed in mIU per gram 
wet tissue weight, which corresponds to I nmol of hypoxanthine oxidized per 
minute. 

RESULTS 

No xanthine oxidase or xanthine dehydrogenase activity was detected in 

the rabbit hearts. Under conditions used to assess xanthine oxidase and 

xanthine dehydrogenase activity of dialyzed rabbit heart supernatants, the 

radioactivity of electrophoresis spots containing xanthine plus uric acid 

minus the background counts (perchlorate-pretreated samples) was 2 + 28 

counts/min. This mean count was not different from the background count (p > 

0.9; paired t-test). Furthermore, no individual radioactivity value in the 

enzyme assay mixture exceeded the background radioactivity by one standard 

deviation. The corresponding activity measured under conditions to assess 

xanthine oxidase activity minus background was -2 + 20 counts/min. Again, 

this mean was not different from background (p > 0.9) and no individual count 

exceeded the background by one standard deviation. This indicates that there 

was no xanthine oxidase or xanthine dehydrogenase activity detected in rabbit 

Table I: Xanthine Oxidase and Xanthine Dehydrogenase Activities 

in Non-isehemic Rabbit and Rat Ventricular Myocardium ~ 

Enzyme Activity (mIU/g wet weight) 

Xanthine Oxidase 
+ 

Xanthine Dehydrogenase Xanthine Oxidase 

Rabbit (N : 6) none detected none detected 
Rat (N = 6) 62.1 ± 2.2 9.1 ± 0.5 
Inhibition by I mM 99.9% 100% 
allopurinol 

~The reaction buffer constituents are described in the Methods section. 
Xanthine oxidase and xanthine dehydrogenase activities were obtained by 
assaying formation of xanthine and uric acid from labelled hypoxanthine in 
the presence of I mM NAD +, for 15 min as described in the text. Xanthine 
oxidase activity was measured in the absence of NAD +. Pharmacologic 
inhibition of xanthine oxidase or xanthine dehydrogenase activity was 
assessed by including I mM allopurinol in the reaction medium, with or 
without NAD +. Nonenzymatic formation of ×anthine and uric acid was 
measured by perchloric acid inactivation of dialyzed supernatant prior to 
incubation of the reactants, and the obtained value (counts/min) was 
subtracted from those of all other samples. One mIU of enzyme equals the 
oxidation of I nmol of hypoxanthine per minute. 
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myocardial samples. A second set of six rabbits were also assayed after 20 

minutes of ischemia prior to immersion in liquid nitrogen. Again, no xanthine 

oxidase or xanthine dehydrogenase activity was detected. Finally, dialyzed 

supernatants from two additional rabbit hearts were reacted with [8- 

14C]hypoxanthine for 60 minutes, yet no xanthine oxidase activity was measured 

even with this prolonged reaction time. In contrast, spots obtained with rat 

myocardial samples incubated with NAD + were 7,691 ± 283 counts/min above 

background (p < 0.001), and those incubated without NAD + were 1,258 ± 58 

counts/min above background (p < 0.001). The computed enzyme activities are 

shown in Table I along with allopurinol inhibition data. The calculated value 

of xanthine dehydrogenase activity in the rat myocardium from this data is 

53.0 ± 1.9 mIU/g wet weight. The counts/min for the allopurinol containing 

reaction mixtures in rat ventricular homogenate also were not different from 

the background counts (p ~ 0.7). 

DISCUSSION 

Allopurinol protection of the myocardium against ischemic injury has been 

postulated to be due to its inhibition of the enzyme xanthine oxidase (1,2). 

Although allopurinol has shown to be protective in both rabbit and rat 

ischemic/hypoxic heart models (6,8,13), recent data has raised the suspicion 

that rabbit heart may lack xanthine oxidase and xanthine dehydrogenase (9- 

11). This experiment shows by direct measurement the absence of xanthine 

oxidase or xanthine dehydrogenase in the rabbit myocardium. 

Our values for both xanthine oxidase and xanthine dehydrogenase in the 

rat hearts are slightly higher than values previously reported (12). This 

most likely is due to the fact that we optimized a sensitive radiochemical 

assay for enzyme activity, whereas prior studies used a less sensitive 

spectrophotometric assay (12,18). Despite the optimized assay conditions, no 

activity was seen in the rabbit myocardium. This study therefore documents 

species variability of the xanthine oxidase and xanthine dehydrogenase enzyme 

system. Our findings suggest that the mechanism of ischemic or hypoxic myo- 

cardial injury is species specific, at least as it pertains to purine 

catabolism or oxygen radical generation by the enzyme that we studied. 

Although toxic oxygen metabolites have been implicated as participating in 

injury to the ischemic or hypoxic rabbit myocardium, they must be generated by 

a mechanism other than xanthine oxidase. 

This study also implies that the mechanisms of allopurinol cardiopro- 

tection are more varied than previously thought. Although inhibition of 

xanthine oxidase may be important in the rat, this is clearly not the case in 

the rabbit. Allopurinol may have direct myocardial protective effects either 

by vasodilation (20), by enhancing purine salvage (21), or through other 

metabolic effects (22). 
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Since there is little data concerning the presence of activity of these 

enzymes in human myocardium, at least as assessed by current methods using 

fresh tissue and controlled experimental conditions, we suggest caution in 

extending the results of animal data to the human situation. 
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