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We examine non-minimal supergravity models by omitting some of the usual simplifying 
assumptions. In particular, the SU(2)x U(1) breaking is uncoupled from the higgsino mass 
parameter, and the photino to gluino mass ratio is not rigidly fixed. We construct and examine in 
detail an interesting, and perhaps phenomenologically relevant model, with heavy squarks and 
light gluinos; the lightest supersymmetric particle is a higgsino ia, so the photino decays $ ~ "tia. 
We discuss ways to determine all of the parameters of the model, and its experimental implica- 
tions. One interesting consequence is a new way to produce Higgs bosons, e ÷ e - ~  Z ° ~  ~.---, 
lalaH °, with a rate that depends on the ~. mass but could be as large as almost one percent of all 
Z ° decays even for mrt up to about ] of Mz; the signature is H ° + missing energy, which is quite 
good for detection. 

I. Introduction 

D u r i n g  the last few years,  a great  deal  of  effort  has  been devoted  to s tudy ing  

g r a n d  uni f ied  theories coupled  to N--- 1 supergravi ty  and  their  low-energy predic-  

t ions  [1]. In  par t i cu la r  it was p roved  that  spon taneous ly  b roken  N = 1 supergrav i ty  

induces  a rel ic  soft b reak ing  of  N = 1 supe r symme t ry  [2] which can tr igger rad ia t ive  

b r e a k i n g  of  the e lect roweak theory  [3-8],  and  be consis tent  with the recent ly  

r e p o r t e d  top -qua rk  mass  [9], m t = (40- t -10)  GeV.  The  ent ire  supersymmet r ic  spec- 

t rum d e p e n d s  on four pa rame te r s  (once we have fixed m t and  the gauge coupl ings) :  

m3/2 ( the grav i t ino  mass),  m~ (a c o m m o n  M a j o r a n a  gaugino  mass  at M x ) ,  m 4 (a 

s u p e r s y m m e t r i c  higgsino mass)  and  A (a p a r a m e t e r  [1] re la ted to the super -Higgs  

mechan i sm) .  The  condi t ion  for SU(2) × U(1) b reak ing  de te rmines  m 4 so that  we are 
left  wi th  three  free pa ramete rs :  m3/2, m~ and  A. 

On  the o ther  hand,  much  effort  has also been  given to p ropos ing  and f inding  

poss ib l e  expe r imen ta l  s ignatures  of  supe r symmet r i c  par t ic les  [10]. Supersymmet r i c  
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theories usually have a conserved discrete symmetry, R-parity, which requires 
supersymmetric particles to be pair produced and the lightest supersymmetric 
particle (ESP) to be absolutely stable. The LSP interacts very weakly with matter, so 
the cleanest signal for supersymmetry is missing energy. Thus the large transverse 
energy mono-jets with large missing transverse momentum at the CERN p~ collider 
reported [11] by the UA1 collaboration are the types of events expected from 
supersymmetry. 

In early 1984, the analysis of data from the 1983 run at the CERN ~p Collider (at 
= 540 GeV) by the UA1 collaboration resulted in the report of monojets which 

seemed to be unexplainable by the standard model [11]. In the fall of 1984, more 
data were taken at a slightly higher energy, ~ = 630 GeV. More than twice the 
luminosity (as compared to the 1983 run) was collected. It seems clear from the 
recent report on the 1984 data [12] that the missing-energy events which are seen are 
(for the most part) less dramatic and possibly explained by standard model 
backgrounds. 

Recently, a general study of all supersymmetric processes giving rise to missing 
energy events, subject to UA1 1984 running conditions, has been performed by 
Barnett et al. [13]. Under the assumption that the photino is the LSP, Barnett et al. 
find that scalar-quarks and gluinos must be quite heavy (whether the UA1 data 
contains an anomalous missing momentum signal or not): M~ >_ 65-75 GeV and 
M~ > 60-70 GeV (similar conclusions have been obtained in ref. 14). On the other 
hand, if the higgsino is the LSP, these limits are substantially weakened. In this case, 
when scalar-quarks and/or gluinos are produced, they decay into photinos which 
subsequently decay into higgsinos. The missing-energy distribution is therefore 
softened, and fewer events pass the UA1 cuts and triggers. Barnett et al. estimate 
that the new limits are M,i > 45-60 GeV and Mg >__ 40 GeV, although they argue 
that light gluinos (Mg < 5 GeV) cannot be ruled out. The reason [15,13] for this is 
that the gluino fragmentation further softens the photino energy spectrum; this 
effect becomes more pronounced as the gluino mass is reduced. Thus, for light 
gluinos, not enough events pass the UA1 cuts and triggers for this scenario to be 
excluded if the higgsino is the LSP. 

Using the above results for motivation, we have studied the possibility of 
constructing low-energy supergravity models with light gluinos, heavy squarks [16] 
and the higgsino as the LSP. We require that these models satisfy constraints from 
cosmology so that higgsinos which have survived since the big bang do not lead to 
too much mass in the universe. In the case of a pure higgsino, no relation exists 
between the higgsino and gluino mass. Thus, a higgsino la, with a mass M~ _< O(100) 
eV, is from a cosmological point of view similar to light massive neutrino and is 
therefore acceptable. 

This possibility is, however, difficult to reconcile with SU(2)x U(1) radiative 
breaking in the usual low-energy supergravity for the following reason. By studying 
the neutralino mass matrix we find that, for the experimentally allowed range of the 
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top quark mass, m h = m 4. However, m 4 is related to the parameter  m 2 which 
governs the electroweak breaking scale by the relation 

m~ = Bm3/2m 4 , (1.1) 

where B = A -  1 at M x is a number  of order unity. Relation (1.1) implies the 
radiative breaking condition m 4 = O ( m 3 / 2 )  which is incompatible with such a light 
higgsino. This time even the solution of electroweak breaking triggered by the heavy 

'" up"  quark of a fourth generation is unacceptable; in that case the supersymmetric 
spectrum would contain an axion with a mass around 1 MeV, in conflict with 
particle physics experiments. 

The essential problem here is that the same parameter  m 4 governs the higgsino 
mass and electroweak breaking, via the relation (1.1). The way out is to construct a 
model where the higgsino mass and the electroweak breaking scale get decoupled; 
i.e. a model where m 4 and m23 are two independent parameters.  There is nothing 
against this possibility from the point of view of a softly broken supersymmetric 
theory. In fact the renormalization group equation of m~ is [3] 

dm32 1 
d# - (4~r) 2 { ( - 3 g ~ - g ?  + 3lht l2)m~ 

- (6g~M2 + 2g2xMa-6Alht l2m3/2)m4},  (1.2) 

where M i = o t i / a G U T m  ~. If m 4 4: 0, then even if m3 z = 0 at Mx,  a non-zero value for 
m 3 is generated at lower scales by the renormalization group equation. However if 
m 4 = 0  the equation for rn] is homogeneous (although it is a soft breaking 
parameter)  and has a fixed point at zero. In that case, if eq. (1.1) holds, then m ] = 0 
at all scales; but if eq. (1.1) does not hold, even if m 4 = 0, m ] 4:0 at any scale 
provided that m32(Mx) 4: 0. 

It is usually argued that the decoupling of the A and B parameters  (which is to 
some extent related to the decoupling of the rn 4 and m32 parameters) can be 
accomplished in a general N = 1 supergravity theory with non-canonical kinetic 
terms by complicating sufficiently the K~ihler potential. (We show an alternative 
way to do this.) The advantages of such a situation have been recently stressed in 
ref. [20]. It was shown that by keeping the relation B = A -  1 and trying to fit 
supersymmetr ic  spectra to the possible supersymmetric mechanisms for monojet 
production,  only very restrictive values of the A parameters (for instance 2.95 < A < 3 
or some negative values) are found [20,21], but by letting A and B behave as free 
parameters  all restrictions on A disappear. However in the only well-known N = 1 
supergravity theory with non-canonical kinetic terms, the no-scale models [22], the 
relation A = B leads to similar constraints. On the other hand the flat limit, and the 
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separation between hidden and observable sectors, is not so well defined in general 
non-minimal supergravity as it is in minimal supergravity, so that to postulate the 
existence of such a non-minimal model may be risky. 

Looking for a model based on N = 1 supergravity with canonical kinetic terms 
and where m32 and m 4 get decoupled may seem, at first sight, a complicated task. 
However the low-energy theory depends on the particular super-Higgs mechanism 
we choose in the hidden sector. Actually two years ago Soni and Weldon [23] 
studied the most general super-Higgs mechanism consistent with the flat limit of 
the theory and showed that, even in the case of canonical kinetic terms, the 
low-energy theory had much more freedom than was usually thought. Since in the 
low-energy theory the parameters depending on the super-Higgs mechanism are 
usually considered as free parameters, or boundary conditions, there is no reason to 
consider only the low-energy theory coming from a particular super-Higgs mecha- 
nism. On the contrary, only after the most general super-Higgs mechanism has been 
used in the hidden sector of the theory are we allowed to consider the soft-breaking 
parameters, which appear in the low-energy limit of the observable theory, as free 
parameters or boundary conditions. We have found that, in the standard supersym- 
metric model, the low-energy effective theory depends on five parameters: m3/2, 
m~,, m4, A and m32. Only in some special cases does eq. (1.1) hold and then one gets 
the usual result. 

The super-Higgs mechanism leading to the most general low-energy theory is 
shown in appendix A. It is an adaptation of the Soni and Weldon mechanism and 
we have included it for completeness. In addition, we discuss the low-energy theory 
in the fermion sector in this more general case. 

To put it somewhat differently, we do believe it is important to construct 
theoretical models to guide thinking and analysis of experimental data. Interest- 
ingly, attempts to interpret the reported monojet data in terms of N = 1 broken 
supergravity models appear likely to fail in the case of the minimal softly broken 
theory. We do not believe that the understanding of supergravity theories is 
currently developed to the stage where all of the usual simplifying assumptions need 
be kept, so we have reexamined the ideas and constructed a class of attractive 
models (with a light higgsino) which are consistent with cosmological constraints 
and with a heavy-squark, light-gluino interpretation of the monojet data. In ad- 
dition to finding some interesting models, we have also found that some new and 
exciting ways to detect supersymmetric signals and perhaps even a Higgs boson also 
arise. 

Sect. 2 discusses how to obtain SU(2) x U(1) breaking in the more general theory 
we consider. Sect. 3 constrains parameters to obtain the spectrum with heavy 
squarks and light gluinos that we are interested in studying. Sect. 4 examines the 
general constraints on the relation between photino and gluino masses, and the 
extent to which they should be considered related. Sect. 5 examines a number of 
phenomenological implications of our model. Some are unexpected and possibly 
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important and can be relevant in many models. Our lightest supersymmetric particle 
is a higgsino la, so photinos produced at colliders decay, ~ ~ "fla. Then monojet 
events will be accompanied by photons, and analyses will have to be reinterpreted. 
Also, the process e+e - (or qC:l)~ Z° ~Ta2", followed by 2,--, laH °, occurs with a 
sizeable rate, possibly of order 1% of all Z ° decays, and leads to an excellent way of 
searching for a Higgs boson. Details of the general form of the low-energy theory 
are given in appendix A. Appendices B and C provide useful information relevant 
for the phenomenological analysis of our model. 

2. SU(2) × U(I) radiative breaking 

This section is devoted to the study of SU(2)x U(1) radiative breaking in the 
most general renormalizable low-energy effective theory obtained from the flat limit 
of N = 1 supergravity with canonical kinetic terms, as described in appendix A. 
Notations, conventions and many results will be borrowed from ref. [8]. 

The supersymmetric superpotential g which appears in (A.11) and (A.13), and is 
responsible for Yukawa couplings, is chosen as usual 

g = h tUCQH2 + m 4 H I H  2 , (2.1) 

where only the top Yukawa coupling has been kept in (2.1) since it is the only 
relevant one for the renormalization group equations [8] and //1, H z denote the 
Higgs doublets giving mass to the matter fields. The supersymmetric mass m 4 which 
gives rise to a higgsino mass term, m4/~1/42, plays a crucial role for SU(2) x U(1) 
breaking in the usual low-energy theory (w(~') - 1), if the top-quark mass is inside 
the experimental allowed range, 30 GeV ~< m t ~< 50 GeV. Furthermore, m 4 cannot 
be much smaller than the electroweak scale (since it governs the electroweak 
breaking); this means that in the usual case the higgsino cannot be made arbitrarily 
light so as to become the LSP. However, in the low-energy theory described in 
appendix A there is another (soft-breaking) superpotential h which can be written, 
without loss of generality, as 

h = m ' 4 H a H  2 (2.2) 

(the inclusion of a trilinear coupling in (2.2), as in (2.1), would only change the 
definition of the A-parameter in (A.11), which is dependent on the super-Higgs 
mechanism and, therefore, arbitrary.) The new mass parameter rn] is independent 
of m4, and will be responsible for the electroweak breaking of the low-energy theory 
as we will see in what follows; it is not related to the higgsino mass which can be 
put small at will without paying any penalty. In short, the essence of the low-energy 
theory given by (A.11) is the separation of the electroweak breaking parameter from 
the higgsino mass and, as a bonus, we get one more parameter to describe the 
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low-energy phenomenology. To put if differently, there is no known physical reason 
to couple the Higgsino mass and the electroweak breaking. It is an artificial 
restriction which we will not impose until an argument emerges in the future to 
suggest it. 

The scalar potential (A.11) can be written, using (2.1) and (2.2), as 

O-~g : I r),,n,, (2.3) V= Oy + ml/:[Y"12 + ( Ahtm3/2VCQH2 + m2H'H2 + h'c') + ~-~ ~ ' 

where y"  are all the scalar fields and the parameters A and m 2 have, as boundary 
values, 

A(Mx)  = A ,  

m~(Mx) = ( Bm4( Mx) + Cm'4( Mx))m3/2, (2.4) 

where A, B and C are the parameters defined in (A.11). 
Hereafter, and for the purpose of renormalization group equations, we will use as 

independent soft-breaking parameters A and m~. 
The scalar potential involving the neutral components of Higgs scalars, which will 

be denoted by H 1 and H2, is given by 

v(n l ,  H2) = m21n~l 2 + mZln2l 2 - m~(H1H2 + H]H*2) 

+ l ( g 2  + g t ) 0 H l l 2  ]H212)2 + AVrad , (2.5) 

where AVra d is the one-loop correction [8] to the effective potential and parameters 
rn~ and m~ have as boundary conditions 

m2(Mx)  = m 2 ( M x )  = m~/2 + m 2 ( M x ) .  (2.6) 

We define the vacuum expectation values (Hi )  = v i and introduce the notation 
v~ = v cos 0, v 2 = v sin 0. Neglecting the radiative corrections in (2.5), the tree-level 
potential is minimized for [3] 

v 2= 2 ( m 2 -  m2) - 2(m 2 + m~)cos2e 

(g22 + g?)cos 20 
(2.7) 

As was shown in ref. [8] all renormalization group equations can be integrated 
analytically if the top-quark is sufficiently light, actually for m t < O(100) GeV. In 
that case it is convenient to choose as an input parameter, instead of h t ( M x )  or 
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h, (Mw),  

fo (h') 2, r 2 =  log( x /  W t d t  _ _  
4~  

(2.8) 

related to the top-quark mass by 

(r2) 
mt 2=2sin20 N l + 6 r  2 -  , (2.9) 

where N is the parameter defined in ref. [8] which takes the value N = 21.83 in the 
minimal model*. Actually r 2 is a small parameter: for m~= 0(40) GeV, r 2= 
O ( 1 0 - 2 ) .  

The SU(2) x U(1) breaking condition, M 2 = ,7(1 g22 + g~)v2, gives, using (2.7) and 
the analytic solution of the renormalization group equations [8], 

cos 2 0 = - 
3r213 + (CQ + C U + CL)~ 2 + A 2 ] 

( l + 6 r 2 ) [ 2 ( r h  2 + I + C L ~  2)+3~/z 2 ] - 3 r z [ 3 + ( C Q + C  U + C e ) f  2 + A  2] ' 

(2.10) 

where all hatted masses are scaled with m 3 / 2 ;  ~ = mv//m3/2, mv being a common 
gaugino Majorana mass at M x and the other parameters take the values, in the 
minimal model [8]: CQ = 5.290, C U = 4.893, C L = 0.496, C e = 0.149, C D = 4.843. 

Using the relation 

2m23 
sin20 = m2 + m2 (2.11) 

and the breaking condition (2.10) we get the value of m2(Mw) consistent with 
electroweak breaking 

^~ { 3r2 [3+(CQ+CuWCL)~2+A2]} .  (2.12) rng = sin20 rh2+ 1 +  CL~ 2 l + 6 r  2 

For a particular choice of the parameters m3/2, ~, A ,  rn 4 and r 2 we get cos20 
from (2.10) (and, therefore, m t from (2.9)) and m 2 from (2.12). Thus m 2 is 

* The minimal supersymmetric model, with three generations of quarks and leptons and two Higgs 
doublets, with the low-energy input a~ 1( Mw ) =  9.9, R-I (  M w ) =  127.54, has the GUT predictions: 

M x = 5.23 × 1015 GeV, sin20w ( M w ) = 0.236, 

a(~,lT = 25.1,  al- 1 ( Mw ) = 58.5,  a2  1 ( Mw ) = 30.2. 
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determined by the breaking condition while m 4 and A are just free parameters. This 
proves our statement that the electroweak breaking scale and the higgsino mass get 
decoupled. 

For a small top-quark mass, r2--~0 and c o s 2 0 ~ 0 ,  sin20--* 1, so that the 
breaking condition requires m32 = O(rn32/2) (while rn 4 and ~ can take any value, 
even zero). In that case we reach an almost flat direction which translates into a very 
light neutral Higgs. However, along this direction the radiative corrections are not 
negligible [8] and the true minimum has to be found by minimizing the total 
effective potential. A good approximation in many cases will be to neglect the 
tree-level contribution and minimize the one-loop corrections (pure dimensional 
transmutation mechanism); this will give a radiative mass larger than the tree-level 
mass. The positivity of this radiative mass is guaranteed by the stability condi- 

tion [8] 

rh2(Mx)  < 1 + rh2 (Mx ) ,  (2.13) 

which protects the diagonal direction H 1 = H 2 in (2.5), not protected by D-terms. 
Another condition, to prevent the appearance of an SU(3)x  U(l)e m breaking 

minimum at a scale M w ~< ~t 4 M x, has to be imposed. A necessary condition has 
been proved to be [8, 24] 

A 2 < 3 ( ~  + rh 2 + r~29), (2.14) 

which translates at M x into 

A2(Mx)  < 3(3 + r h ] ( M x )  ) (2.15) 

and at M w, using the breaking condition, into 

3 + (CQ+ C v + CL)~ 2 + (1 + 6r2)rh~ (2.16) 
A 2 < 3 1 + 24r 2 

In conclusion, for any set of parameters m3/2,  m ~ ,  rn  4 and r 2 satisfying 
conditions (2.14)-(2.16), cos20 (which depends on mr) and m] are fixed by the 
radiative breaking condition (2.10) and (2.12) and a general analysis could be easily 
done. Instead, we will restrict ourselves to the case r~ 4 --0, ~=  0. This will be 
of interest for constructing a model where large PT monojet events observed by 
UA1 could be explained by a mechanism with light ~ and heavy q (i.e. m3/2 

O(100) GeV, rn~--O(10) GeV, rn~ _< few GeV), but without cosmological troubles 
(i.e. m 4 _< O(100) eV), as was explained in sect. 1. This approach will be discussed in 

some detail in the next section. 
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3. Application to heavy squark and light gluino scenarios 

We will apply now the general formalism of sect. 2 to the simplest scenario with 
heavy squarks, O(100) GeV, and light gluinos, 0(5) GeV. In turn, this means 
photinos of O(1) GeV in a minimal model; such light photinos have serious 
cosmological troubles if they are the LSP. In the usual models there is no way out of 
this situation, as was discussed in sect. 1, since the higgsino mass is the electroweak 
breaking parameter. However, we have the freedom now to fix m 4 _< O(100) eV so 
that photinos can decay before nucleosynthesis and no cosmological bound applies. 

By choosing m 4 so small, we apparently have a naturalness problem due to 
the appearance of two very different mass scales: m 3 = m3/2 = 100 GeV and rn 4 - 
10 -7 GeV. Suppose we initially fix m 4 = 0 and let the higgsino get a mass through 
loop corrections. The natural scale for m 4 is of order g2mw, which is much larger 
than what we have assumed. For example, if the theory is embedded into a grand 
unified theory, then starting from m 4 = 0 we get an effective rn 4 ~ 0 from loop 
diagrams (refs. [4, 7, 26]) involving the doublet-triplet splitting mechanism (ref. [27]). 
It is possible in extended models (with more structure at the grand unified scale) to 
have a very light neutralino with mass of order 100 eV, as is found for the axino in 
ref. [25]. Unfortunately, the axino is very weakly coupled to all other matter and can 
be ignored when considering the phenomenology of supersymmetry at colliders. 
Whether  it is possible in realistic models to obtain such a light higgsino, with 
couplings to matter of electroweak strength, naturally, is an open question. We will 
assume that rn 4 - 10 -7 GeV is reasonable. 

Neglecting r~ 4 and ~2 in (2.10)-(2.12), the breaking condition now reads as 

&~= 1 -  ~_r2(A 2 + 3 ) =  1 + (1 + ½33/2)cos20. (3.1) 

By integration of the renormalization group equation for m 2, (1.2), we get 

Fn~ C4Fn]( M x ) e  -3"'-/2 

where C 4 = 1.365. Using now the breaking condition (3.1) we get 

1 [1 - ~r2(A 2 
&~(Mx)  = ~44 - + 2)] < 1, 

so that the stability condition (2.13) is automatically satisfied. 
The color bound at M x gives the usual constraint 

I A ( M x )  I < 3, 

(3.2) 

(3.3) 

(3.4) 
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while the color bound at Mw, (2.16), translates into 

9 
a2< (3.5) 

1 + 24r 2 

which, for r 2 = 10 -2, gives the bound IAI ~< 2.7. 
Next we will write the supersymmetric spectrum, as in ref. [8], but including now 

the contributions from the D-terms which, although small, are larger than those 
coming from gaugino mass terms. We will neglect m 4 throughout. 

(i) Sleptons (3 generations) and squarks (lst and 2nd generation) 

m 2"-eL-m~/2(1 + C L ~  2 )  --  M2( 1 - sin20w)COS 20, (3.6a) 

mZt, -- rn~/2(1 + CE~ 2) -- M~sin2Owcos20, (3.6b) 

m'2~L = rn32/2 ( 1 + CL ~2) + ~M~cos 20 (3.6c) 

and 

1 ") " 2 m2oL = m ~ / 2 ( l + C o ~ 2 ) - M 2 7 ( - ~ + ~ s m O w )  . , (3.7a) 

m2, = m~/2(1 + Cu~ 2) + M27(3sin20w)COS20, (3.7b) 

m 2.dL ---- m32/2(1 + CQ~2)_ Mz(221 _ ~sin20w)COS 2 0 , _  (3.7c) 

(3.7d) m~, = m~/2(1 + CD(2) -- M~(~sin2Ow)cOs 20, 

where the parameter ~ can be expressed in terms of the gluino mass mg 

~2m~/2 = 0.16m 2 

by using eq. (4.1). 
(ii) Squarks of the third generation 

m-~. = mG(1 + C D e ) -  M~(-~sin2ew)COS28, 

m . 2  2 1 bL = m~/2(1 + CQ~ 2) - e - -  Mz(  5 - {sin28w)COS28, 

m2- = ~ - [ m g + m { ' +  2 m ~ ' + ' / ( m g  v 2 2 ~ 2 2 
] 

,,., _ m , )  + 4 A  mtm3/2[ , 
.1 

where 

L "~ • 2 m2Q = m~/2(1 + CQ~ 2) - e -  M2(-~_ + _~sm Ow)COS2O, 

m 2 =  m32/2(1 + Cu~ 2) - 2 e -  M~(3sin2Ow)cos2O 

(3.8) 

(3.9a) 

(3.9b) 

(3.9c) 

(3.10a) 

(3.lOb) 
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and 

r 2 

e I+6r~[3+A2+(CQ+Cu+CL)~z]m2/2 (3.11) 

comes from the integration of the top Yukawa coupling. 
(iii) Higgses. There are three neutral higgses with masses 

m 2 tt~ 

m2,_.3 

= m~ + m~, (3.12) 

= l [ m 2 + M  2+-~(m2 +M2)R-4m2M2cos220]. (3.13) 

In the limit cos20 --, 0 we get 

m 2 = m 2  + M 2 (3.14) 
tI 2 

and m~6 = 0, which means that the potential is flat along this direction. In that case 
radiative corrections have to be taken into account in (2.5) and the minimization of 
AVra ~ gives a non-vanishing radiative mass [8] 

= 2) - -  + ~ 1 m 3 / 2 ,  (3.15) m r a d  ~ 4~r 1 + (A 2 + m t  
Mw 

where the contribution from gauginos has been neglected. In fact, the ratio A = 
2 2 m rad/m,~ is a naive measure of the validity of the dimensional transmutation 

approximation [8] or the tree-level approximation [7, 20]. In all cases studied in this 
paper we have found that A >> 1 which means that the dimensional transmutation 
mechanism is a good approximation and that the corresponding neutral Higgs is 
heavier than what we would have obtained from the tree-level approximation [20]. 

There is also a charged Higgs with mass 

m2± = m 2, + M~s. (3.16) 

(iv) Charginos. The charged winos combine with charged higgsinos and form a 
couple of Dirac particles with masses 

a2 m~ + M~cos220 m~_+ = M~v ___ M 2 ot--~ (3.17) 

where we have used the approximation (ot2/ot3)mg << M w. 
(v) Neutralinos. There are four neutral fermions, I,~ "3, B, /~o and /~o which mix 

in a four-by-four mass matrix [28]. In the limit cos20---, 0 there is a pure higgsino 
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state [see (B.3)] 

7, = ( 3 . 1 8 )  

with a mass equal to m 4. Furthermore, if (al/a3)mg,(a2/a3)m ~ << Mw (which is 
the case in the class of models we are considering here) there is an approximately 

pure photino state ~ = l~3sin 0 w + B cos 0 w with a mass 

8 • 2 012 
my = 5sin Ow--m~, (3.19) 

13/3 

and a Dirac spinor Z with a mass M z. Actually the Dirac spinor Z is a combination 

of two Majorana spinors Z _+ with masses 

m ~ , =  M z___ A, (3.20) 

where in the minimal model considered here, 

A = 10.038m~- 0.893m~,1. (3.21) 

How many free parameters does the supersymmetric spectrum depend on? In 
principle, there are five free parameters: m3/2, m~, A, m 4 and m 2. If we want to 
adhere to a particular supersymmetric interpretation of UA1 monojets, i.e. a 
particular value of m~ and rn~, we fix m3/2 and rn~. The condition for SU(2) x U(1) 
breaking determines m32. We are left with two free parameters, A and ran, which 
have to respect the color bound (2.15), (2.16). In the particular scenario of heavy 
squarks and light gluinos, the cosmological constraint on relic higgsinos suggests 
fixing m 4 < O(100) eV in order to avoid the cosmological bounds [29]. Thus the 
whole spectrum depends only on one free parameter A which has to satisfy the 
bound IA I ~< 2.7 to prevent the appearance of color a n d / o r  electric charge breaking 
minima. In table 1 we give the numerical predictions for the supersymmetric 
spectrum for m3/2 = 110 GeV and rng= 5 GeV, and several values of A. Two 
comments are interesting: (a) The only squarks which are split in mass are the 
t-squarks due to the non-diagonal ( ~ i  R) contributions, proportional to A m  tin3~ 2. 

However, the UA1 report of the top quark at m t = 40 GeV from t --, b f~  indicates 
that the mode t - ~ i ~  is suppressed kinematically (otherwise it would be the 
dominant  decay mode), i.e. m i t>mt .  This imposes a further constraint on 
the value of the A parameter which is found to be bounded by ]At < 2.4. (b) The 
dimensional transmutation mechanism is a good approximation for the radiative 
breaking. In fact, the parameter A introduced below eq. (3.15) takes the values, as A 
varies from 0 to 2.4 in table 1, A(0) = 21.3, A(1) = 13.8, A(2) = 6.5 and A(2.4) = 4.5. 
This makes the radiative masses in the table larger than those obtained [20] from the 
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TABLE 1 
Supersymmetric spectrum corresponding to the case: m3/2 = 110 OeV, 

m~ = 5 GeV, mt (m w) = 39 GeV, mi~ < 100 eV 
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A ( M  w ) 0 1 2 2.4 
t q / v  2 1.03 1.05 1.08 1.10 
cos20 - 0.0335 - 0.0d47 - 0.0782 - 0.0979 
0 45.96 ° 46.28 ° 47.24 ° 47.81 ° 

3 generations tTL 110.3 110.4 110.8 111.0 
tTR 110.3 110.4 110.7 110.9 
~L 109.4 109.2 108.5 108.1 

2 generations UL 109.6 109.4 109.0 108.7 
UR 109.8 109.7 109.5 109.4 
(tL 110.5 110.7 111.2 111.5 
I~ R 110.1 110.1 110.2 110.3 

3rd generation bt, 109.2 108.8 108.1 107.0 
~9 R 110.1 110.1 110.2 110.3 
i h 114.5 130.2 143.4 147.9 
i I 113.2 92.7 61.8 42.4 

neutral higgses H l 152.1 150.9 147.4 145.3 
H 2 177.2 176.2 173.2 171.5 
Hr~ d 12 13 15.5 16.2 

charged higgs H ± 173.2 172.2 169.1 167.4 
charginos 12I ÷ 84.6 85.0 86.3 87.0 

I7I - 81.4 81.0 79.6 78.8 
• ~ 1.0 1.0 1.0 1.0 

neutralinos Z (Dirac) 91 91 91 91 

All masses are in GeV. 

t r e e - l e v e l  p o t e n t i a l ,  (3 .13) .  A s  a c o n s e q u e n c e  t h i s  H i g g s  c a n n o t  b e  p r e s e n t  in  t h e  

d e c a y  p r o d u c t s  o f  t h e  T(b-b) b u t  o n l y  in  t o p o n i u m  s t a t e s .  

4. On the relationship between photino and gluino majorana masses 

I n  s e c t .  2 w e  h a v e  a s s u m e d  a c o m m o n  g a u g i n o  M a j o r a n a  m a s s  a t  M x ,  M 1 = M 2 

= M 3 = m ~, w h i c h  sca le ,  f o l l o w i n g  t h e  r e n o r m a l i z a t i o n  g r o u p  e q u a t i o n s ,  a s  

a i ( Q )  
M , ( Q )  - -  M i . ( 4 . 1 )  

OtGUT 

H o w e v e r ,  i n  N = 1 s u p e r g r a v i t y  g a u g i n o  M a j o r a n a  m a s s e s  a p p e a r  o n l y  f r o m  t h e  

t e r m  

1 G / 2  A - 1 B 
-se G ( G  + , ) A f , # :  B X'X~ h . c  ( 4 . 2 )  
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so thai if f<,~ = 6~B all gaugino masses vanish. In this way, since we did not want 
massless gauginos, we have so far implicitly assumed the usual simple ansatz 

f~B = A ( z )  6=13 . (4.3) 

The gauge boson and gaugino kinetic energy terms in the lagrangian define f~n; 

L -  Re f~ (F~,F ~`" + X"~X ~) + ' " .  

Eq. (4.3) leads to the equality of all gaugino masses (~, %7V, ~, )~ and ~') at M x 
because it is SU(5)-invariant. However there is no reason (but simplicity) for the 
choice (4.3); in general f ,p has to transform as the symmetric product of two 
adjoint representations and ~f~a) has to be SU(3) × SU(2) × U(1)-invariant: these 
conditions are consistent with the ansatz [30] 

(4.4) 

where ~Y is in the 24 representation of SU(5). 
One should observe here that (4.4) is not the most general ansatz, but the 

philosophy of this paper is not to have the most general theory in the hidden sector 
but only to get the most general low-energy theory, so for our purposes eq. (4.4) is 

enough. 
Now, since supersymmetry is spontaneously broken in the hidden sector (see 

appendix A), ~ =  3, and the contribution of G ~ to (4.2) can be neglected. 
Actually, G ~= O ( M x / M ) G z o ( I O - 3 ) G  z. In this way the gaugino Majorana mass 

from (4.2) can be written as 

3 m mo = 7 " (4.5) 

If we do not want to change the G U T  predictions (M x, sin20w, m b l m , )  coming 
from a l ( M x )  = az (Mx)  = a3(Mx)  we have to impose the constraint 

(f~tl) ce 6,,~, a, fl = 1 . . . . .  21 . . . . .  24. (4.6) 

(In more general cases, as those studied in ref. [31], condition (4.6) is not imposed.) 

This condition is satisfied if 

B(zo)  = 0. (4.7) 

(It is not known how stable such a condition is, or whether it is natural. It would be 
even better not to impose such a condition, but for now we keep it.) 
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Now when SU(5) is spontaneously broken to SU(3) × SU(2) × U(1), 

3v'24X0(20 = O(Mx)  ) and 

( f ~ .  :) = a6,~ + lff5bd,,~2 , , 

(2D = 

(4 .8 )  

where a = A'(zo) and b = f -~B'(zo)~,  o. 
In this way, while A(z)  in (4.4) is any function such that A'(zo) has the desired 

order of magnitude, B(z)  has to be chosen more carefully. Actually it has to satisfy 

conditions (4.7) and B'(zo)2 o = O(a).  A possible choice could be B ( z ) =  ( z -  
zo)exp(nz)A'(z  ) with n = O(a few) = 7 /~  o. 

The substitution of (4.8) into (4.5) leads to the following gaugino masses at M x 

M 3 = (a + 2 b ) m ,  

where 

M 2 = ( a -  3b )m ,  

M 1 = (a - b ) m ,  (4.9) 

d 
m -  4A(zo) m3/2. (4.10) 

In the limit cos20 ~ 0 and M 1, M 2 << M w, as in (3.19), the neutralino mass 
matrix gives the photino mass 

O~ 2 
m 9 = sin2Ow~(8a - 1 4 b ) m ,  (4.11) 

O/GU T 

while the gluino mass is 

0l 3 
rn¢ - (a + 2 b ) m .  (4.12) 

~ G U T  

To obtain (4.11, and 4.12) use has been made of (4.9). 
Since gaugino masses depend on two free parameters  (a,  b), depending on the 

hidden sector, we can use them to fix a particular relation between m~ and rag. We 
introduce a parameter  ~ such that 

rn,7 = ?t-~sin2Ow me , (4.13) 

where X = 1 corresponds to eq. (3.19). Using (4.13) in (4.11), (4.12) leads to 

14 + 16A 
a - b .  (4 .14)  

8(1 - h )  
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Once we fix ~ (see sect. 5), all gaugino masses  are arbi t rary,  since they depend  on 
the b-parameter ,  but scale as 

343 M2 M1 

15 20~, - 5 12~ + 3 
(4.15) 

so that  all of  them are fixed once we fix the gluino mass. As par t icular  cases of 
(4.15) we find: 

(i) For  ~ = 1, i.e. b = 0 (see eq. (4.14)), 

M 1 = M 2 = M 3 ,  (4.16) 

which corresponds  to the ansatz  (4.3). 
(ii) For  ~ = 1 l -~_,a=2b 

m g =  #sin20w ( a2m-] (4.17) 

as observed in ref. [31], and 

M3: M2: M x = 5 : - 5  : - 1 .  (4.18) 

This  case corresponds to zero lepto-quark  gaugino Majorana  masses  [30] 

M~.9=(a-lb)rn=O (4.19) 

as required in some part icular  models.  
(iii) For  X << 1, the phot ino mass  is very small, and the limiting scaling behavior  

of  M i is 

M 3 : M 2 : M 1 = 15 : - 5 : 3. (4.20) 

(iv) Since ~ = (1 - 7b/4a)/(1 + 2b/a), there are significant changes in mg/m~ 
even for b/a << 1. For  example,  b/a = - 0 . 2 5  gives X = 2.875 and b/a = +0.25  
gives ~, = 0.375. 

In general  the radiat ive breaking of SU(2) × U(1) should be reanalyzed in each 
par t icular  case; in part icular  the coefficients C i ( i =  Q , U , D , L , E , 4 )  in sect. 3 will 
change.  However  the numerical  appl icat ion to the light gluinos scenario remains  
unchanged  since the renormal iza t ion  due to gaugino masses was negligible. 

5. Phenomenological implications 

The  theoretical  and exper imenta l  constraints  imposed  so far have left the pa rame-  
ter A essentially free, with 0 ~< [ A ] ~  2.4, and the phot ino and higgsino masses  
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(A) " < . t q  /c) 

q//,, . h q / , , ~  . h 

q .,, 3. c[ " . , . . . . . . . .w.~ .  

(a) 
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W~_# - h ~ W ~  ~- 

~ ~ h  H +..,f,..,.,,.,..~ ~ . jl .,,+. ÷ 

(t~) 

Fig. 1. Diagrams which contribute (in the unitary gauge) to the decay ~ ---, yh. In (a) one must sum over 
all possible flavours in the loop. In (b) H ÷ is the charged Higgs, (3.16), and ~- the chargino eigenstate, 

(3.17). 

undetermined.  There are two solutions consistent with the cosmological  constraints  

[29]. Either m h _< 100 eV, or mh >_ m b so higgsino annihilates efficiently into bb. In 
either case, we may arrange our  parameters  such that m h < m~ < rng, since accord-  

ing to sect. 4 m ~,/m i is a free parameter .  For  simplicity we take the higgsino to be 
massless in the discussion below. Let us consider a number  of phenomenologica l  
implications.  

(i) Since h is lighter than 9, the decay ~ ~ y h  occurs at one loop, as in fig. 1 and 
is the d o m i n a n t  decay* of 9. (The decay $ --+ hqE 1 is suppressed by the weak hqE t 

coupl ing  which is propor t ional  to mq.) In addition, diagrams such as fig. l b  must  be 

considered,  but  their contr ibut ion is suppressed in the model considered here, for 

reasons explained in appendix B. (This decay has also been computed  in ref. [33].) 
We  note  that  data  f rom e÷e - colliders [34] does not  exclude pho t ino  decay via 

e + e - ~  ~ - - +  3'3' + missing energy as present e+e - experiments are sensitive only 
for  m e _< 100 GeV while our  spectrum has ~ with mass about  120 GeV. We obtain 

* For earlier consideration of ~ ---, y + neutral light fermion, see ref. [32]. 
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for the photino width, in the limit of mr, m i 2>> m}: 

9 Fe4o2co 20[ }2 
F =  16v~-r 3 ll + 12-  rngsin2Ot(Ja-'12) M¢,  (5.1) 

m t 

where e, is the electric charge of the top quark, cot 0 = va/v2, li, ,1~ are defined by 

1[ r 1 = - -  1 +  l o g r  i , ( 5 . 2 )  
I~ 1 - r i 1 - r i 

1{ l + r ,  r~ )______~logr~}, 
J i = - ~  2 ( 1 - r i )  2 + ( l + r  i 

(5.3) 

with r i = ( m i / m t )  2 and i1,i 2 are the mass eigenstates defined in eq. (3.9c), 0 t being 
the rotation from (iL,iR) to (il,i2). In our model 0 t = 45 °. 

In the particular case where there is no iL,tR mixing, i.e. when A = 0, J1 =-/2 
since miL = miR , 11 = 12 = I and eq. (5.1) simplifies to 

9G Fe 4t a2cot 28 
F = 4g~-cr 3 1 I [2M 3 . (5 .4 )  

For the cases considered in table 1 a photino of energy 40 GeV would travel 

"/Cl d [ m ~ ( G e V ) ]  4 = meters, 

where the parameter d is a function of A. In particular d = 0.04, 0.03, 0.02 and 0.01 
meters for A = 0, 1, 2 and 2.4, respectively. For m? _< 0.25 GeV all photinos would 
escape a collider detector while for m~ > 0.5 GeV all photinos would decay within 
the detector. Since the decay ? -0 ~,h gives a flat energy spectrum from 0 to E9 for 
the ia, some expected monojet events would have an energetic ia and remain monojet 
events, while others would have E(h) << E('7) and not pass the UA1 missing energy 
cuts. Events with isolated hard photons would occur, some with large accompanying 
missing momentum. If the g is light as in the model presented here, then the analysis 
of ref. [13] implies that the photino decays must be prompt. In other circumstances 
one could imagine that an interesting possibility could arise if missing energy events 
due to supersymmetry are eventually found. Depending on the photino lifetime, it 
could happen that a large number of ,~ 's would escape the detector before decaying, 
giving rise to isolated photons which suddenly appear some meters from the collider 
detector. They could be searched for by surrounding part of the large angle region 
of the detector at some distance with a photon detector. The photons would point 
back to the interaction approximately, and occur in timing coincidence with the 
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missing energy event. If such a situation occurred, essentially every photino could be 

detected, instead of having to wait decade(s) as with neutrinos to find explicitly the 
carrier of missing momentum. 

If we take the model seriously, then observation of the photons would not only 
confirm the entire viewpoint considered here, it would also allow determination of 
m~ - mh, and probably also fix mg and m~. 

It should also be noted that if m~ >/mg there is little effect on the analysis of 
collider experiments since ~,---, qYzlh. The ~ lifetime increases, and beam dump 
analyses no longer apply, so that a light ~ (below 4-5  GeV) is not excluded, and 
heavy decaying ~ would behave as before. 

(ii) In our model, and in fact in a large class of supersymmetric theories, a new 
opportuni ty to discover a Higgs boson presents itself. Rather generally, there will be 
a neutralino mass eigenstate, which we can call Z_, that has mass mz_ ~< m z (see eq. 
(3.20)). Then the decay Z ~ hZ_ occurs at tree level with a strength of order the 
usual Z ---, ff modes (such as Z ~ /~+/ t - )  suppressed only by phase space. Once that 
decay has occurred, the Z_ can decay via 7._ ~ laH °, or Z_---, q ~  or 7._ ~ Taf(. 
These may be comparable in size, and the laH ° mode may dominate, essentially 
independently of mHo if mn0 < 60-70 GeV. Thus it can happen that 

e+e - ~ Z ° __. ~aTaH ° 

occurs at the level of 10 -3 of all Z ° decays. This gives a very clear signature. In our 
model 12 GeV ~< m H ~ 15 GeV, so H ~ bb. This could be another way to detect a 
Higgs boson [35]. Some of the relevant rates are given in appendix C. 

(iii) Several interesting Z ° decays occur or are absent: (a) Z ~ ~,  has a branching 
ratio [36] of order 10 -5 which varies significantly as A varies from 0 to 2.4, so this 
mode can be detected eventually and can determine A [36]. (b) The effect on F z is 
small, as no squark or slepton modes are energetically allowed, Z ~ hh is suppressed 
by a factor (02 - vl)2/v 2, and so the largest new mode is l a Z .  

(iv) A i pair can be directly produced and detected at a hadron collider. The cross 
section is about one quarter that for a quark of the same mass, but the signature 
could be better because of the $ or la in the decay. Measuring mi, from the event 
structure or the production cross section, determines A. 

(v) There should be no direct production of any sleptons or squarks at SLC, LEP, 
H E R A  or TRISTAN in our model. 

(vi) The gluino has a branching ratio 

g--,g~, 

which can be as large as 3% in our model [37]. The branching ratio determines m i 
and A if it is measured, which could be possible when several hundred monojet 
events are available. 
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(vii) In the photon counting experiments 

e+e ~ ~, + missing energy, 

there will be no signal from the usual diagrams since rn~ -- 120 GeV, but some small 
contribution can occur from the higgsino final state if v 1 :g v:. 

(viii) As far as we are aware, no interesting flavor changing neutral current effects 
are induced. 

(ix) If Ta is the lightest supersymmetric particle and m h _< 100 eV, h is a good 
candidate for hot dark matter, and for contributing to stellar energy loss. Since the 
higgsinos are more weakly coupled to matter than ordinary neutrinos, they fall out 
of thermal equilibrium earlier. Actually their decoupling temperature is found to be: 
T D = 17.3 MeV, 14.3 MeV, 9.8 MeV and 8.5 MeV for the different cases considered 
in table 1, A = 0, 1, 2 and 2.4. Nevertheless higgsinos are still too strongly coupled 
to matter to become candidates to warm dark matter. (If m h = rob, then h may be a 
good candidate for cold dark matter.) 

(x) In a paper by Enqvist, Masiero and Nanopoulos [38], proton decay through 
dimension-five operators is confronted with some popular supergravity explanations 
of UA1 monojets. In particular in the minimal model, M x --1016 GeV, if M~-- 
102 GeV and M~-- 5 GeV, they find that present experimental bounds on proton 
decay translate into the bound m 4 -< 3.7 GeV. While this bound is clearly incompat- 
ible with SU(2)×  U(1) in usual models, as explained in sect. 1 of this paper, it 
is indeed compatible (within the errors inherent to this kind of bounds) with 
our general mechanism and, in particular, with the two proposed models: m 4 = 

0(100) eV or rn 4 - -m b. 

6. Conclusion 

We propose a general class of low-energy supergravity models where some of the 
usual simplifying assumptions in the hidden sector are omitted. Since soft-breaking 
parameters are considered as boundary conditions in the low-energy theory (inde- 
pendently of the particular super-Higgs mechanism where they come from) we are 
led to consider the hidden sector leading to a general low-energy effective theory. 
The result is a theory where the electroweak breaking is decoupled from the 
supersymmetric higgsino mass parameters and the photino-to-gluino mass ratio is 
not rigidly fixed. This theory has two more free parameters than the minimal one: 
the masses of the higgsino and the photino. This additional freedom may be 
welcome for phenomenological purposes in many models, and in any case it cannot 
be avoided without arbitrary assumptions. 

We have studied SU(2) × U(1) breaking and found it is easier to implement than 
in minimal models. We construct and study in detail an interesting, and perhaps 
phenomenologically relevant, model with heavy squarks and light gluinos. The 
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lightest supersymmetric particle in the model is the higgsino, so the photino decays 
into photon + higgsino. The spectrum is explicitly computed in the case of rn,~ = 
110 GeV and m~ = 5 GeV; the results are typical for the case of a light gluino and 
heavy squark. Such a scenario cannot be ruled out by the UA1 missing energy 
events. 

We discuss ways to determine all of the parameters of the model and its 
experimental implications. One interesting consequence is the possibility of detect- 
ing the photinos carrying missing momentum in monojet events by surrounding the 
main detector with a photon detector. The photons would occur in time coincidence 
with the missing energy event. Since the distance travelled by the photino depends 
on its mass, observation of photons would not only confirm the presence of 
photinos but also allow determination of their mass. 

Another interesting consequence is a new way to produce a Higgs boson in 
e+e---* Z ° ~ l a Z _  ~laTaH °, with a rate that depends on the Z_ mass but which 
could be as large as almost one percent of all Z ° decays, even for rnn0 up to - ~ of 
m z. The signature is H ° + missing energy, which is quite good for detection. 

Finally the higgsino, which is the lightest supersymmetric particle, is a valuable 
candidate either for hot dark matter, if m~ _< 100 eV, or for cold dark matter, if 
m~ -- 5 GeV. 

Appendix A 

E F F E C T I V E  LOW-ENERGY THEORY FROM M I N I M A L  N = 1 SUPERGRAVITY 

In this appendix we will compute the most general low-energy (flat) limit of 
N = 1 supergravity with canonical kinetic terms both in the scalar and in the 
fermionic sector of the theory. The result corresponding to the scalar potential is 
just an adaptation of a more general super-Higgs mechanism found two years ago 
by Soni and Weldon [23]; we include it here for completeness and to fix some 
notations. 

The scalar potential of a supersymmetric Yang-Mills theory coupled to minimal 
N = 1 supergravity is given by [1] 

V =  eC(G'4G,4 - 3) + ½D"D '~, (A.1) 

where G is the Kgthler potential, taken to be 

G = ~tA4~ "4 + log f +  l o g f  t , (A.2) 

where f=f(q~A) is an analytic function of scalar fields, q5 '~, the superpotential; 
G A -  OG/Odp "4, G A -  OG/OrbtA; and D e -  g,eptA(T")~eO B, (T")  A being the matrix 

representation of the gauge generators. We will work, unless explicitly stated, in 
units of M = Mpl/8~-~ = 2.4 × 1018 GeV. 
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We will divide the scalar fields in two sectors: a hidden sector Z ~- Mr '  which 
will acquire vacuum expectation values of O(M), and an observable sector y~ where 
all scalar fields will take vacuum expectation values << O(M). The most general 
M-dependence of the superpotential consistent with this separation can be found to 
be [23] 

/(~-i, y , )  = M2/2 (~.i) + M/I(~/) q_ fo(~'% Y"). (A.3) 

To not break the gauge symmetry at the scale M, the fields ~-i have to be gauge 
singlets. Although sometimes it may be useful to have several singlets in the hidden 
sector, and a function fl(~ "i) ¢ 0 in (A.3), we will consider here, without loss of 
generality in the low-energy theory, the simplest case of only one singlet ~" in the 
hidden sector and fl(~) -= 0. Thus using in (A.1) the superpotential 

f(~', Y") = M2f2(~ ") + fo(~', Y"), (A.4) 

we get for the scalar potential the following expansion 

where 

V= M2V2(~) + Voo(~, Y~') + ~D"D" + O(-~ (A.5) 

V2= E2(f)[IDfzl 2 -  31f2121, (A.6) 

2 
O f o  

+EZ(ff) ~ + Ifzl2yo*y a (A.7) 

with E2(~ ") = exp(~'t~') and Dr, = 8f,/O~ + ~tf,,. 
In the limit M--* oo the dominant term in (A.5) will be M2V2(~ ") so that to find 

the VEV ~'o it is enough to minimize (A.6), V~G'o) = 0, and impose the condition for 
a vanishing cosmological constant, i.e., Df2(~o)= v/'J-f2(~'o). Now the low-energy 
effective theory for the observable sector is found by expanding Voo(~', y~) around 

~o, 

(f - 

V°°(~" Y") = V°°(~'°' Y~) + Y" n! V~m(~'°' y~) 
n 

5 ) " 1  
= Voo(f0, y") + ,~ -~ ~ .  V~')(~'0, y") ~ V0o(~ "°, y~), (A.8) 
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where ,~ -= z - (z> is the physical field in the hidden sector. 

If we introduce now a general superpotential f0(L Y") as 

E(~o)fo(~, y") = g(y") + w(~)h(y") ,  (A.9) 

where w(~'o) = 0, we can write the scalar potential (A.8) as 

I Og 2 v~ 2 ,,t,,a 
VLE(Y a) =" OyOl +,,,3/zyoy 

+m3/2 v/3-~ 'o-3)g+Y ~ +v/-3w'(~o) h + h . c .  + 2~  -- , 

where m3/2 = e a :  = E(~0)f2(~'o) + O ( 1 / M )  is the gravitino mass. If  we decompose 
the superpotential g into the trilinear, g(3), and quadratic, g~2), terms (we assume 

there are no singlets in the observable sector) we can cast (A.10) as 

0...gg 2 ~a 2 ,,t,,a 

VLE = OVa + Ht3/2J, o), 

1/3~/~ (A.11) +m3/z{ Ag(3)(y ~) + Bg(2'(y ~) + Ch(y ~) + h.c.} + 2~  ~ , 

with A = v~-~'o, B = A - 1, C = q~-w'(~'0). 
We emphasize the difference between this result and the usual case where we 

assume w G ' ) -  1, i.e., C = 0. There is no reason for such a choice and the most 
general low energy effective potential coming from N = 1 supergravity with canoni- 
cal kinetic terms is given by (A.11). All the dependence on the super-Higgs 
mechanism in the hidden sector is contained in the three parameters  A, B and C 
whose values are considered as boundary conditions of the renormalizable low-energy 
theory. 

Finally, the flat limit of the fermion mass matrix 

MA~ = eC/2(G8 + GaB)  (A.12) 

is easily achieved. Since the super-Higgs mechanism only happens in the z-sector (to 
leading order in M),  the mass term M:: gives rise to a mass term for the goldstino 
field which disappears in the unitary super-gauge where the goldstino degrees of 
f reedom are eaten by the gravitino. The communication between the hidden and the 
observable sectors has to disappear for the consistency of the flat limit; in fact, one 
can show that M.~ = O ( 1 / M ) .  In the observable sector the mass matrix M~b(~, y") 
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has to be expanded around the VEV S'0, as in (A.8), and the result 

M~b(~, y") = g,b + O --M , (A.13) 

is identical to a globally supersymmetric theory with superpotential g(y~). 
To conclude the low-energy theory is defined by (A.11) and (A.13). The super- 

trace mass formula in the effective theory 

S t rM 2 = 2 ( n -  1)m]/2 (A.14) 

is the same as in the exact theory, before taking the flat limit. This can be 
understood since the contribution from the z-field, 4m~/z, exactly cancels the one 
from the gravitino, -4m2/> and the soft breakings in (A.11) linear in m3/2 do not 
contribute to the supertrace formula. The conservation of the supertrace mass 
formula, after the limit M--+ oo, is a consistency check since it only contains light 
( << O(M))  degrees of freedom and, thus, no dependence on M. 

Appendix B 

In this appendix, we provide some of the details required for the phenomenologi- 
cal analysis of our model. The necessary Feynman rules are obtained from ref. [39] 
(see also ref. [10] for further details). As always, the notation varies among different 
authors, so we provide a translational table in table 2 relating the notation used here 
to that of ref. [39]. 

The mixing of neutral gauginos and higgsinos ("neutralinos") is specified by a 
4 × 4 matrix which we denote by Y. In general, one must use numerical techniques 
to diagonalize this matrix. Here, we shall make two approximations which will allow 
us to diagonalize this matrix analytically. First, we take the supersymmetric Higgs 
mass parameter m 4 = 0. This corresponds to the case where the lightest neutralino is 
a pure higgsino state which is also massless. Second, we take the wino and bino 
Majorana mass terms (corresponding to the pure weak SU(2) and U(1) neutral 

TABLE 2 
Translation of different notation 

This paper Ref. [39] This paper Ref. [39] 

rn~ fa 2 

H2 Hi 
/~3 ( l-/ra d ) H 2 

M 1 M' 
M2 M 
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states) to be equal, M 2 = M a. Technically, this is not correct except perhaps at the 

grand unification scale, as can be seen from eq. (4.1). However, if Ma, M 2 << m z, 
then this approximation is a good one and one finds a pure photino state. 

The diagonalizing matrix is denoted by N which satisfies 

N * Y N -  1 = ND ' (B.1) 

where N D is the diagonal neutralino mass matrix. We employ the convention such 
that the elements of N o are non-negative; as a result, certain elements of N are 
purely imaginary. In the approximation described above we find: 

N =  

cos 0 w sin 0w 0 0 ] 

-sin0wc°Sq~° c°S0wC°Sq~° c°s0sinq~° - s i n 0 s i n ' ~ ° ] ,  (B.2) 

- i s i n0ws inq ,  0 icos0wsinq~ 0 - i cos0cosq50  isin0cos4~o 

0 0 sin 0 cos 0 

where tan 0 = v2/v  a. The four Majorana neutralino eigenstates are: 

= ~°cos 0w + I~°sin0w, 

=/-1°sin 0 +/1°cos 0, 

Z+ = ( - ~ ° s i n 0 w  + l~°cos 0w)COS % + (/~°cos 0 - H°sin 0)s in~o,  

i Z _ =  - ( - B ° s i n O w  + l, V3°cos 0w)sin q~0 + (/-)°cos O - H°sin 0)cos 4%. 

The Majorana states Z _+ have mass 

1 ~M211/2+ 5M5, M Z ,  = ( m2z + ~,.-~,1 - 

(a.3) 

(B.4) 

and the mixing angle q~0 is given by: 

2 m  Z 
tan 2% - (B.5) 

In the model described in this paper, we have o 1 = o 2 and M~ << m z. This implies 
that to first approximation we may take q~0 = a = 45 °. 

If M? = 0 (implying that ~0 = 45°), the Z+ and Z_ combine into a neutral Dirac 
fermion with a mass given by m z. Furthermore, when we impose v I = O 2 ( 0  = 4 5 ° ) ,  

then the two chargino states are found to become degenerate in mass with a mass 
given by m w- In some sense this can be regarded as the supersymmetric limit of the 
model, although this characterization requires some care since supersymmetry 
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breaking scalar mass terms (in part icular ,  those corresponding to the Higgs bosons)  
still remain. It is useful to summar ize  the propert ies  of  the neutral  Higgs bosons:  
H l, H 2 and H 3. First, the pseudosca lar  H ° is defined by 

H ° = v~-( Im H t s i n  0 + Im H2cos 0 ) ,  (B.6) 

where ( H  1, H 2) and ( H  1, H2 ~) are the Higgs doublet  fields with hypercharge  - 1  

and + 1, respectively. Note  that  it is H ° which is the supersymmetr ic  pa r tne r  of  the 
massless higgsino field h, as can be seen f rom eq. (B.3). However,  H ° is cer tainly 

not  massless at tree level, unless m 1 = m 2 = 0 as shown in eq. (3.12). This is why the 
" s u p e r s y m m e t r i c  limit" described above  is somewhat  misleading. The scalar fields 
H ° and H ° are defined by  

H ° = v~-[(Re H11 - / 3 , ) c o s  a + (Re  H22 - v 2)sin a ] ,  (B.7) 

H ° = V ~ [ - ( R e  H11 - v 1)sin a + (Re H22 -/32 )cos 0~], (B.8) 

which defines the mixing angle cc A few useful formulas  are given below: 

t a n 2 a =  t a n 2 8 ( m ~  + m ~ , )  
m2 -- /912 , (B.9) 

Hi 

m 2 tm 2 - m 2 )  H2 \ H2 
sin2(O -- a )  = (m2H2- m2 ][  m2 + m2 -- m 2 ) '  

H3 ] ~ H2 H 3 
(B.10) 

m 2 [ m  2 - - m  2) 
s i n 2 ( 0 + a )  = HA H, 

m 2 ( m 2 z  ~ H2 _ m 2 3  ) , (B.11) 

m 2 -t- m23 = m 2 + m 2 H2 HI (B.12) 

where  0 ~< mn3 ~ m z and ran2 >~ m z. In  the above formulas,  the Higgs masses  are 
tree-level masses only. It  is convent ional  to choose phases  such that  v 1 and v 2 are 
posi t ive and so 0 ~ 0 ~< 90 °. In this case, it follows f rom the convent ions  above (i.e. 
f rom eqs. (B.7), (B.8) and the requi rement  that  ran3 < m m  ) that - 9 0 ° ~ <  a ~ 0. In 
te rms  of  the supe r symmet ry  breaking  Higgs mass  parameters ,  the neutra l  Higgs 
masses  are given by  eqs. (3.12), (3.13). No te  that  in the limit of 01 = v 2, 0 = 45 ° and 

using eq. (B.9) and  the phase  convent ions  discussed above,  it follows that  a = - 4 5 %  
F r o m  eq. (B.10) and (B:11), it follows that  ran3 = 0 as noted below eq. (3.14)*. No te  

* It is curious that it is H a which is massless (at tree level), whereas H l is massive; although it is H 1 
which is the supersymmetric partner of the massless higgsino, la. 



M. Quirbs et al. / Non-minimal supergravity model 

TABLE 3 
Feynman rules for qq~O vertices 

359 

~0 ~ ~ ~0 = T, 

- ig 2 m °cot 0 
~LU~ ° --vf~ieeu(1 + y~) 2Vf~mw (1 - 75) 

- ig2mucot 0 
URUX ° vf~ie%( 1 -- Ys) 2~f~mw (1 + "/5) 

- ig 2 mdtan 6 
d t d ~  ° -~Sz2 - ie%(1 + Y5) 2 ~ - m w  (1 - 75) 

- ig2mdtan 0 
dRdx ° v~ieed(  1 - "/5) 2 ~ - m w  (1 + 75) 

For definiteness, we take the momentum of ~ into the vertex and the momentum of q out of the 
vertex. The left-handed projection operator is ~ (1 - gs). The quark charge (in units of e) is denoted by 
eq. where q = u,d. 

that although H a gains a non-zero mass due to radiative corrections, factors such as 
sin(8 + a) which appear in Feynman rules are to be computed using tree-level 
masses in eq. (BAD. 

We are now in the position to state the Feynman rules relevant to the analysis 
here; they are given in table 3. 

As an application of these rules, we compute the decay rate for ~ ~ hy. The 
possible diagrams are shown in figs. la,  b. Consider first the diagrams involving the 
q - cl loop shown in fig. la. The amplitude has contributions from fig. l a (A)- (D)  
which we write as: 

M =- E M i j ,  ( B . 1 3 )  
i ~ L , R  

j = A , B , C , D  

where i = L, R refers to either qL or C] R inside the loop. Note that the second two 
diagrams are obtained from the first two by reversing the circulation of the 
momentum flow inside the loop. One can show that M c (and Mo) are obtained 
from M A (and MB) by changing 75 to -~'5 and multiplying the resulting amplitude 
by - 1. The factor of - 1 is due to Fermi statistics and arises because reversing the 
momentum flow is equivalent to the exchange of the two outgoing fermion lines. 
Thus, we obtain: 

M L A  = M R C  , L ~ R,  

MLB = M R D  , L ~ R.  (B.14) 

Note  that a crucial ingredient which led to this result is the relative minus sign 
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which occurs in the rule for qq~ between qL and CIR but does not occur in the rule 
for ~lqia (see table 3). This is to be contrasted with that occurring in the calculation 
of the ~ 3 '  vertex. In this case, two minus signs would result when comparing qL 
and qR in the loop; as a result, we would find MLA = --MRc , MLB = --MRD , and 
L ~ R. Then, in the limit of degenerate q L and q R (the P and C conserving limit), 
the total amplitude M (eq. (B.13)) would vanish. This is just the supersymmetric 
analog of Furry's theorem and has been previously noted in the calculation of 

~ g? [38]. In the case of ~ -~ ia~,, we know that the amplitude must not vanish in 
the limit of qL and CtR as we have demonstrated via eqs. (B.13) and (B.14) since the 
supersymmetric analog, the H°~,3, vertex, conserves P and C and certainly does not 
vanish at one loop. 

In the discussion above, we have treated q L and (~R as the mass eigenstates. 
Although this is usually a good approximation, it is likely to be inaccurate in the 
case of the t-quark. Schematically, if the Feynman rules for qLqia and c]Rqia are 
given by A L and A R respectively, then the Feynman rules involving the mass 
eigenstates ql and t]2 are given by: 

A (~lqtl) = ALCOS 0q + ARsin 0q, 

A (q2Cl ~) = --ALsin 0q + ARCOS 0q, (B.15) 

where Oq is the mixing angle between the interaction and mass eigenstates. Using eq. 
(B.15) and the rules of table 3, we have computed the diagrams shown in fig. 1. 
Using the recipe discussed above in eq. (B.14), we end up with: 

2 2 2 M = 3eqe g2rn~:ot 0 
16rr 2mwM2 iFt(k,)Y,°"~e~(kl)k2~u(P) 

fo dx X ~ (log X 1 + log X2) 

where 

M~ sin 20q l d x  (B.16) 
mq a - X x  ' 

- x )  

X i =  1 - m 2  x + 342(  1 _ x )  " (B.17) 

Note that a factor of 3 has been inserted due to the color of the internal loop. The 
factor of cot 8 appears if the quark in the loop is an up-type quark. If the quark is a 
down-type, we replace cot 0 with tan 0. The integrals can be expressed in terms of 
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dilogarithms, but it is more useful to consider various limiting cases. First, we note 
that in the supergravity model considered in this paper, we have 0q = 0 unless q is 
the t-quark. But in the case of the t-quark, we may drop the second term in eq. 
(B.16) since M? << mt. The result can be further simplified if the approximation 
M9 << m t, Mi, is applied to the first term. Clearly, the t-quark loop dominates, so 
we neglect all other quark flavors and find: 

M= 
- 3e2te2g2m2tcot 0 

161r2mw 
iu( k,)'/so~ e~( kl)k2~u( p ) 

21(. m;) 
X E 2 - M 2  1 m 2 ~ / 2 1 o g  . 

i=1  " " t  t i t tt 

The decay rates obtained from these matrix elements have been discussed in sect. 5. 
In order to check these results, it is instructive to check the supersymmetric limit, 

which relates the la3,? and H~q, vertices. In this comparison, it is appropriate to take 
M,  = 0 and M R = m H 4: 0. So, we need to consider the supersymmetric decay 
process ia --* h~. It is easy to see that for this case, one obtains eq. (B.16) with the 
replacement M, by M R. Finally, we put Mq = M~, and 8q = 0 as is appropriate for 
the supersymmetric limit. Using 

' - = f 0  1---~ l°g 1 -  ---TT-2x(1-x) = - 2  s i n - '  mH / ]  2 
m q  2 m q J J  ' 

(B.19) 

we see that in the supersymmetric limit, the effective la ~ ~,,~ decay vertex takes the 
form 

g2oe  co, Om f ,Im.)]2 
MCh+'I~,) = 2~rmwm 2 sin 2 m-----q ~ ' / ,o" '~F~. ,  (B.20) 

where iV, = 3 is the number of colors. Note that in translating from eq. (B.20) to the 
appropriate Feynman rule, we replace F ~---, 2ie*~kL 

Next, consider the decay H ° ~ ¥3'. Recall that H ° is the pseudoscalar. A straight- 
forward computation yields: 

g2ae2qN, C°t Srn2q [sin-l( mH ) ]2HOF~p~ 
M ( H t  ° --* "/2/) = ~rrnwm ~ [ \ 2mq 

(B.21) 

where /~,~ = !~2 ~ a a F  aB which indeed confirms our previous computation, and also 
confirms the observation that the supersymmetric partner of la is the pseudoscalar 
H °. The amplitude for the scalar Higgs decay into two photons differs in three ways 
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from that of eq. (B.21). First, H°FF is relaced by Hi°FF as required by CP-invari- 
ance of the interaction. Second, the integral I in eq. (B.19) is replaced by: 

x - 1  
I = 1 + - - [ s i n - I v % - ]  2 (B.22) 

x 

2 2 with x - m H / 4 m  q. Finally, the factor of cot O is replaced by a different combina- 
tion of factors involving both 8 and a, appropriate to the H°qCt vertex. We have 
displayed these differences to accentuate the fact that la is the superpartner of the 
pseudoscalar H ° and not the scalar Higgs H ° or H °. 

So far, we have neglected the diagrams of fig. lb.  We shall argue here that they 
will not be important in the context of the model we have pursued. First, consider 
the decay H ° ~  y~/. Because H ° is a pseudoscalar, there are no contributing 
diagrams involving internal W or charged Higgs boson loops. This follows from the 
CP-invariance of the relevant interactions. (Of course, for the scalar Higgs decay 
into )'3', these additional diagrams do contribute and are important.) Thus, we 
conclude that in the supersymmetric limit, the contribution of the diagrams of fig. 
lb  to the h)'~ vertex must vanish. But, the model discussed in this paper is very 
close to the supersymmetric limit in that 8 = 45 °, a = - 4 5  °, M,? << m z, M~.  --- 
M2_ = m z and M~; --- Mh~ --- M w. The fact that the scalar quarks are split in mass 
from their quark partners is not relevant in the evaluation of the diagrams of fig. lb.  
We conclude that in the model considered in this paper, the diagrams of fig. la  must 
dominate the ~) decay rate. Explicit calculations of the diagrams shown in fig. lb  
will be presented elsewhere. 

Appendix C 

We have been examining a model which contains a very light higgsino la which we 
have taken to be massless for convenience. In addition, we have seen that there are 
two neutralino states 7. ± with masses given by eq. (B.4). Since MZ < m z, the decay 
Z ° ~  Z _ + h  is kinematically allowed. The decay rate is easily computed. We 
normalize our rates to 

We find: 

g22mz 
F(Z ° --* v~) - 96~rcos28w . (C.1) 

r ( z  ° 5 + 
r(zo-  

= 2cos2,0sin220(1 - M~z/m~)Z(1 + M~/2m2z). (C.2) 

In the model discussed in this paper, sin20---1 and 2cos2~0-- 1. So, the major 
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_ 1 (for suppression here is due to phase space, since by eq. (B.4), 37/z = M z 2M~ 

M~ << mz). In more general models with a light higgsino but with a photino mass 
which is not particularly small, we see that BR(Z ° ---, Z h )  could be substantial. 

In order to observe this particular decay of the Z °, we must discuss the decay 
signature of the Z_. If the gluino is light as advocated in this paper, then the 
dominant decay of the 7 .  will be: 

Z_ ---, qqg. (C.3) 

This decay occurs via an intermediate Cl and is analogous to ~, ~ qCt, ~. The computa- 
tion is very similar and we summarize our results here. Neglecting all the final state 
masses, 

asg~M~_ sin2~b0 )2 e2sin40w] , 
F(Z_---,qCtg)= 48~rZcos20wM~ [(T3q-eqsin20 w + (C.4) 

where we have taken qL and qR to be degenerate in mass. In deriving the above 
formula, we sum over the first two generations and the b-quark. Taking sin2q~0 
and M2_ -- m z, 

Z r(2_ -~ qCtg) 

q r(z 0 ---* Ip~) = 0"84as ( M--~- ) 4 . ~ r -  (C.5) 

For example, if M,i = M2_, we obtain about 3 × 10 -2 for the above ratio implying a 
total Z_ width of about 5 MeV. 

The qCt~ , final state is not the ideal one to identify the Z_. So, let us consider an 
alternative possibility. The vertices given in table 4 suggest that we consider: 

Z_ ~ h H  °. (C.6) 

Since H ° is light in our model and h is taken to be massless, there will be no phase 
space suppression. We find: 

F ( Z _ ~  hH °) = g2sin2~'°c°s2(0- a) ( Mz~ - M2H3)2 

64~r cos20w Mz ~ - 
(C.7) 

Neglecting the mass of H3, taking M2_ = Mz, and normalizing to F ( Z ° ~  v~) 
150 MeV for convenience, we find 

o) 
F(Z °--* v~) --" azsin2q'°c°s2(O- a). (C.8) 
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TABLE 4 
Feynman rules involving 2 _+ 

2=2+ 2=2_ 

g2cos q~o sin 28"/" 
Z ° 2 h  

H'l' 21-1 

H~2h 

H~'2~ 

ZqOL 

2q~. 

ig z sin q~o sin 20 

2cos0w Y"'/5 2 cos 0 w 
- g2cos q~oCOS 20 - ig~ sin q~oCOS 28 

2 cos 0 w Y5 2 cos 0 w 

- ig2cos ~osin( 0 - a )  g~ sin q,o sin( 0 - a)  

2cos0w 2cosOw )'5 

ig2cos q~ocos(O - a )  - g2 sin q~oCOS( 0 - a )  

2cos 0w 2cos0w 3'5 

-ig2c°sd~°(T3q - eqSin2Ow) g2 sin dO° ( T3q - eqSin20w)(1 

V~ cos 0 w (1 + ./s ) ~ -  cos 0 w 

- ig2 c°s ~boeq sin28w - g2 sin ~boe q sin20w 

V~ cos 0 w (1 - ' / 5 )  f~- cos 0 w (1 - ' / 5 )  

+./5) 

For definiteness, we take the momentum of 2 + into the vertex and the momentum of h (or q) out of 
the vertex. Note that the factor of i in the definition of 2 (eq. (B.3)) is responsible for some of the 

=2 , r3o=1 r3d= , important differences between the rules for 2+ and 2 .  We take e ,  3, ed = -- ~, 5, i" 

Comparing this to F(Z_ ~ qclg), it appears that the 2 ~ hH ° decay mode should 
dominate! However, using eq. (B.9), we find: 

M 2 [M 2 n3~, Z-- M~3) 
C°S2(8-a) = (M~2_M~3)(M~2 + M~3-M~ ) ' (C.9) 

where, it must be emphasized, tree-level masses must be used in this equation. Since 
the tree-level value for MH3 is rather small (and, in fact, vanishes in the limit of 

v 1 = v2), we see that cos2(0 - a) can be quite small. As noted below eq. (B.11), the 
model considered in this paper is rather close to the values O= - a  = 45 ° which 
would imply cos(0 - a) = 0. However, the above conclusions need not hold in more 
general models with a light higgsino [35]. 
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