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Abstract: In this paper, we establish that maintaining a balanced workload on each machine over time 
stochastically minimizes the work-in-process inventory in certain types of flexible manufacturing systems 
(FM%) with finite or infinite common input buffer storage and an ample buffer et each machine. The 
results obtained here complement those obtained by Stecke and Morin (1985), in which it is established 
that balancing workloads maximizes expected production, again for the same, particular types of FMSs. 
Stecke and Morin (1985) treats a static FMS loading problem, while this paper addresses a dynamic 
problem which considers three strategies to control the release of parts into the system. 
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1. Introduction 

A flexible manufacturing system (FMS) is an 
automated alternative to the conventional means 
of batch manufacturing, to date applied mainly in 
the metalcutting industry. An FMS consists of a 
number of computer numerically controlled mac- 
hine tools, which are linked together by an auto- 
mated material handling system. Individual parts 
of different types can be machined simultaneously 
in unit batch sizes. 

Efficient use of such FMSs requires careful 
pre-production planning (see, e.g., Buzacott and 
Shanthikumar (1980) and Stecke (1981)). One of 
such planning problems concerns the appropriate 
loading of the tool magazines of all machines in an 
FMS. By FMS machine loading, we mean the 
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allocation of all operations and their associated 
cutting tools among the FMS machine tools, in 
order to define which machines will be able to 
perform each operation of the part types that have 
been chosen to be machined next. This decision, in 
part, determines each machine tool’s workload. 

Earlier analyses of this and similar planning 
issues in the context of job shops and flow lines 
have indicated the superiority of either unbalanc- 
ing or balancing each machine’s workload (de- 
pending on some particular aspects of the produc- 
tion system, such as buffer size, processing time 
distribution,. . .) with respect to the maximization 
of production rate or with respect to the minimiza- 
tion of the work-in-process inventory. (See Stecke 
and Morin (1982) for references to such works.) 

The question of balancing workloads in the 
context of FMS was first raised by Buzacott and 
Shanthilcumar (1980). Based on an asymptotic 
analysis, they established that balancing the 
workload on all machines maximizes the expected 
production rates whenever the number of parts in 
the system is very large, i.e., approaching infinity. 
Subsequently, Stecke (1981) and Stecke and Morin 
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(1982), based on empirical results, supported the 
optimality of balanced workloads with respect to 
the expected production of FMSs with single mac- 
hine workcenters (i.e., with no pooling of similar 
machines) and with a finite number of parts. 

However, it was also observed in Stecke (1981) 
that balancing the workload per machine need not 
maximize the expected production of FMSs having 
a different number of machines in different mac- 
hine groups (i.e., with pooling of machines into 
machine groups). Shanthikumar (1982) for the first 
time provided an analytical proof for the optimal- 
ity of the balanced load with respect to the pro- 
duction rate of an FMS with no pooling. An 
empirical proof can be found in Stecke (1981). An 
alternative analytical proof can be found in Stecke 
and Morin (1985). Several extensions and simpler 
proofs of similar results can be found in Yao 
(1984a, b), Yao and Kim (1984) and Stecke (1986). 
All of these FMS loading problems involve static 
allocations of workload among machines (and 
eventually, of operations and cutting tools). These 
problems are solved and the solutions imple- 
mented before the FMS begins to operate. The 
detailed, actual FMS loading problem of allocat- 
ing operations and tools to machines to maximize 
production has been addressed in Stecke (1983, 
1986a). Again, the problem is static. 

The scenario in this paper is different, but 
complementary to the previous studies, Stecke and 
Morin (1985), in particular. An open queueing 
network is used to model the random arrival of 
individual parts to the FMS. Given that there are 
N parts in the system, a closed queueing network 
then provides the expected production, if the 
workload on each machine is also provided. Three 
strategies are considered here to release the parts, 
which have arrived into a production control area, 
into the FMS. Under these three release policies, if 
the workload per machine remains balanced over 
time, not only is the expected production maxi- 
mized, but we also show that the in-process inven- 
tory is stochastically minimized. 

The random arrivals are of individual parts, 
and not batches, of a limited number of similar 
part types. Each operation can be performed on 
only one machine. The cutting tools for each oper- 
ation have already been loaded into the ap- 
propriate tool magazine. There is no pooling of 
machines and there is a finite or infinite common 
buffer area (called here a production control area) 

for incoming parts, which are subsequently re- 
leased into the FMS. This paper is treating this 
dynamic problem. The results presented in this 
paper indicate that the work-in-process inventory 
in certain classes of FMSs is minimized by main- 
taining a balanced load on each machine over time 
as the parts are input into the FMS. Methods to 
determine the minimum inventory requirements 
are provided in Stecke (1985a). 

The open and closed queueing network models 
are described in Section 2, as well as the three 
policies that we consider to release parts into the 
FMS. The optimality of balancing the workload 
on each machine to maximize expected production 
using the closed queueing network is presented in 
Section 3. Section 4 contains results concerning 
the stochastic minimization of the number of parts 
in the FMS. A summary and future research needs 
are provided in Section 5. 

2. The queueing network models 

A Jackson type queueing network is used to 
model a flexible manufacturing system. The exter- 
nal arrival of parts forms a Poisson stochastic 
process with rate A. An external arrival is received 
into a production control area from which the 
parts are dispatched into the flexible manufactur- 
ing system. (See Figure 1.) Parts from the produc- 
tion control area are released to the system accord- 
ing to some dispatch policy. In this paper, we 
consider the following three policies that describe 
different means to control the input of parts to the 
FMS: 

Policy I. Dispatch parts to the FMS as soon as 
they are received into the production control area. 

Policy II. Any parts that are received into the 
production control area when there are already 2 
parts in the FMS are rejected (i.e., lost). Other- 
wise, parts are released to the FMS as soon as they 
are received by the production control area. 

Policy III. Dispatch a part to the FMS if and only 
if the total number of parts in the FMS is less than 
some value Z. This may represent a predetermined 
input control policy or reflect the fact that the 
number of pallets available in the shop is limited 
to Z (e.g., see Buzacott (1982) and Buzacott and 
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Figure 1. A schematic diagram of a queueing network model of a flexible manufacturing system. 

Shanthikumar (1980)). Parts are neither lost nor 
rejected. 

The FMS contains M machines (each is single, 
there is no pooling). The first operation of a part 
that is released to the FMS is performed by mac- 
hine i with probability yi. A part that has com- 
pleted its processing at machine i will proceed 
next to machine j with probability pii. This part is 
an internal arrival to machine j. On the other 
hand, upon leaving machine i, a part may depart 
the network of queues (i.e., the FMS) with prob- 
ability 1 - Iyslpij. The transportation time is as- 
sumed to be either negligible compared to the 
processing or delay times or averaged in with the 
processing time. The service, or processing, time at 
machine i is exponentially distributed with mean 
ti, i=l,2 ,..., M. Let qi be the expected number 
of visits made to machine i by an arbitrary part. 
Then, using the Markovian property of the part 
transitions from machine to machine, it can be 
shown that: 

M 

q,=Yi+ C qjpji, i= 1, 2 ,..., M. 
j-l 

The mean load imposed on machine i by a 
single part is then equal to qir, and we denote this 
by xi. If X, is the effective part arrival rate (i.e., 
the average number of parts arriving per unit time) 
to the FMS (different for the different part input 
policies), then the workload rate utilization of 
machine i is &xi. The total mean workload L 
imposed on the system by a single part is equal to 
CEix,. L is the average time required to process a 

part through the system. The mean total load 
remains the constant L, which is independent of 
how the machines are loaded. 

Then, under a balanced workload, the mean 
load imposed by a single part on a machine tool is 
L/M( = x*). The balanced workload distribution 
is then 

x*=(x*,x* ,..., x*). 

3. Production rate 

In this section, the number of parts in the 
system is kept constant at level N, i.e., the queue- 
ing network is closed. Then the expected produc- 
tion rate, PR,(x), of the FMS with the mean load 
distribution x = (xi, x2,. . . , xw) is (see, e.g., Sol- 
berg (1977) and Buzacott and Shanthikumar 
WW), 

PR,b)=G(x, N-l)/G(x, A’), Nal, (2) 

where 

G(x, N) =,& N>,l, (3) 
N 

G(x,O)=l, 

n= (n,, n,,...,n,), “i 2 0, i=l,2 M, ,-**, 

and 

sN=(n: ini=N], Nal. 

Here, ni is the number of parts at machine i, 
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including the part in process if ni 2 1. 
The following theorem concerning maximum 

expected production, using different proofs, has 
been established in various ways for slightly differ- 
ent systems in Stecke (1981), Shanthikumar (1982), 
Stecke and Morin (1982), and Yao (1984b). 

Theorem 1. The expected production rate, P&(x), 
is maximized by balancing the workload on all 
machines. That is, 

pRj+*) = ,:$Y& {pMx)) 7 

for x* = (L/M, L/M,. . . , L/M). 

Corollary 1. The expected production rate of a 
single-server closed queueing network, PR, (x), is 
bounded by 

P%(x)< N M M+N-1 y’ 

We note here that for information concerning 
the robustness of queueing networks as aggregate 
models of the steady state performance of FMSs, 
see Suri (1983), for example. 

4. Number of parts in the system 

Let P,(x) be the steady state probability that 
there are n parts (n = 0, 1,. . .) in the system at an 
arbitrary time epoch under a mean work load 
distribution x = (xi, x2,. . . , x~). It can be shown 
(see, e.g., Shanthikurnar and Sargent (1981)) that 
under Policy I: 

p”(x)= pK(x) n 1 XP- (x), n=l,2 

pow= 1+ c ,Ql pRi0 
[ n;,( n ( A ))f’ O) 

and under Policy II: 

p,(x)= plq(x) n 1 XP- (x), n=l,2 ,..., Z, 

P,(x>=O, n=Z+l, Z+2,..., (6) 

For Policy III, Buzacott and Shanthikumar (1980) 
has observed that the following approximation is 
within a 90% confidence interval of the simulation 
results for the mean number of parts in the system. 
(See Table 2 there.) 

pnb)= pK(x) n 1 XP- (x), n-l,2 ,..., Z, 

P,(x) = x Lb), 
W(x) 

n=Z+l, Z+2,..., 

(7) 

Let M(n)/M(n)/l be a birth-death queueing 
system with state-dependent arrival rates X = 
(A,,)r and state-dependent service rates p = (IL,,);. 
Also, let F,(X, p) be the steady state probability 
that the number of parts in the system is less than 
or equal to n. Then 

(8) 

PAA, rY= ,$I *9 r=l,2 ,***, 
I 

(9 

The results (5), (6), and (7) are special cases of (8) 
with: 

(a) X,=A(n=O,l,... )andp,=PR,(x)(n= 
1, 2,. . .) for Policy I; 

(b) h,=h (n=O, l,..., Z-l), h,=O (n= 
Z, Z+l,... ), and p”=PR,(x) (n=l, 2 ,...) for 
Policy II; and 

(c) h,=X (n=O,l,... ), p,,=PR,(x) (n= 
1, 2,. . . ,Z), and p,,=PR=(x) (n=Z+l, Z+ 
2,. . . ) for Policy III. 

Now, taking the partial derivatives of (8) with 
respect to X, and pr, one can see that 

&l;,@, P> Q 0, r=O, 1 ,*--, 
r 

+F,(L CL) a 0, 
00) 

r=l,2 ,--*, 
r 

for n=0,1,2 ,.... The next lemma then im- 
mediately follows from the equations of (10). 
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kernma 1. Let (M(n)/M(n)/l)i be a birth-death 
queueing model with arrival rates Xi = (A,,,):‘,-, and 
service r&es c(~ = (pi,,):-,, for i = 1 and 2. If 
A, >, A, and pI < pz, then 

F”(&, p,)<F,&, PA n=o, I,... 

Combining Theorem 1 and Lemma 1, one ob- 
tains the following. 

Theorem 2. The number of parts in the classes of 
FMS under consideration, following any of the above 
three input control policies, is stochastically mini- 
mized by balancing the workload on all machines. 

Note that the statement of Theorem 2 is heuris- 
tic for Policy III, since in this case, it is the 
approximation, which was given by equation (7), 
that is used to obtain the result. 

5. Conclusions 

In this paper, we have established the superior- 
ity of balancing workloads in flexible manufactur- 
ing systems utilizing no pooling, both to stochasti- 
tally minimize the number of parts in the system 
as well as to maximize the expected production. 
Three policies to control the input of parts into the 
system are considered. There is a Poisson arrival 
process to a finite or infinite common input buffer 
area, exponentially distributed. service times, 
Markovian part transfers from machine to mac- 
hine, and an ample buffer at each machine. 

The optimality of balanced workloads is estab- 
lished with the constraints of single machine work 
centers and CEIxi is a constant. When these 
conditions are relaxed, the balanced load need not 
be optimal. On the other hand, for similar systems, 
but with pools of identically tooled machines that 
are unbalanced, expected production is maximized 
by an unbalanced load, again with the constraint 
that CE,xi is a constant. (See Stecke (1981) and 
Stecke and Solberg (1985).) 

Yao (1984a,b) and Yao and Kim (1984) have 
obtained similar balancing results for cases where 
the above two constraints are relaxed. For exam- 
ple, they prove that balancing maximizes expected 
production when there is pooling but with the 
same number of machines in each group. This is 
also observed in Stecke (1981) and Stecke and 
Solberg (1985). 

Empirical studies using both simulation and 
approximations are currently underway to extend 
these results to more general cases. 

Additional work is required to implement a 
balancing workload objective over time. The FMS 
balancing problem is different than that of the 
flow shop or job shop in several ways. A flow shop 
is balanced once, during its design. At the other 
extreme, it is very difficult to balance a job shop. 
Usually the work is given, to result in one particu- 
lar bottleneck machine type, which changes over 
time. 

An FMS can produce in unit batch sizes. There 
are planning decisions to be made that impact 
balancing (or unbalancing). These include: select- 
ing the part types to be produced next; determin- 
ing the ratios at which these part types are to be 
produced; allocating pallets and fixtures among 
the part types; determining the minimum number 
of pallets required in the system; loading tools and 
assigning operations to machines; determining the 
appropriate input sequence into the FMS; and 
finally, the actual scheduling of parts through the 
system. More information concerning what these 
problems are for an FMS can be found in Stecke 
(1983, 1986a). 

Some models that can be used to address these 
problems are overviewed in Suri (1984). An effi- 
cient algorithm to determine the most balanced 
allocations for the types of FMSs considered in 
this paper is provided in Berrada and Stecke (1985). 
The algorithm also applies to systems of pooled 
machines, when each pool contains the same num- 
ber of machines. Extensions to unbalanced group- 
ings (hence unbalanced loadings) are underway. In 
any case, further research is required to discover 
methods to address all of the above-mentioned 
problems in order to implement either a balancing 
(or an unbalancing) operational objective. 
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