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1. INTRODUCTION 

The Fitz-Hugh-Nagumo equations have been of some interest to both 
mathematicians and theoretical biologists for several years. The reason for 
this stems from the fact that they can be considered as a simpler model for 
the celebrated Hodgkin-Huxley equations, in that they exhibit many of the 
features of this latter system. Indeed, mathematicians have studied them 
because their structure is different from the usually encountered equations 
in physics, and they therefore admit solutions with less familiar properties: 
homoclinic travelling waves, threshold effects, etc. 

The equations can be written as 

0, = ur, +f(u) - I4 
u,=6u-yu (x,t)EaxR+~RxR+ (1.1) 

where 6 and y are positive constants, and f(u) has the qualitative shape of 
a cubic polynomial having two positive roots, and satisfies f(0) = 0, 
f’(0) < 0. Furthermore, the area of the “hill” exceeds that of the “valley.” 
For simplicity, one usually takes 

f(u)= -(u-c)(u- 1) v, O<c<$. (1.2) 

In this paper, we shall concern ourselves with bounded spatial regions 
Q = {(xl CL}; this requires that we take u to satisfy boundary conditions 
at f L, and we shall assume that u satisfies either homogeneous Dirichlet 
or Neumann boundary conditions. 

The system (1.1) admits a special class of solutions called stationary 
solutions. These are solutions which are independent of t, and thus they 
satisfy the equations u,, +f(u) - u = 0, 6u - yu = 0. Our main point in this 
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paper is to discuss the stability and bifurcation of these solutions. In this 
context, we shall take as bifurcation parameters any of the quantities 6, y, 
or L, and we shall see here that interesting cases arise when Q is small, 
and L is large. 

Our point of view will be to consider the system (1.1) as an ordinary dif- 
ferential equation, u’ = A(U), in an infinite dimensional function space; see 
[3,4,5]. The equations thus define a semi-flow on this space, and the “rest 
points” of A correspond to the stationary solutions of (1.1). We shall find 
all of the rest points, and show that they are “non-degenerate.” Using cer- 
tain topological techniques (see [2, 4, 5, lo]), we will be able to compute 
the (generalized) Morse indices (i.e., the dimensions of the unstable 
manifolds) of each rest point. For a range of parameter values, we will 
show that the system (1.1) is “gradient-like,” and this fact will enable us to 
describe the complete solution space. As the parameters change, we will 
study the bifurcation of stationary solutions; in particular, we will prove 
the existence of time-periodic solutions. 

As was shown in [S], there is a fixed rectangle R= R(6, y) in u-u 
space, containing (0, 0), having the property that all solutions of (1.1) tend 
to R in L”( 1x1 CL), as t -+ a3; in other words, R is a global attracting 
region. It follows that R contains all stationary solutions, and thus the 
“potentials” which appear in the linearized equations (about these 
stationary solutions) are all bounded functions. It is this fact which will 
enable us to get some control on the spectra of the linearized operators and 
to thereby make applicable the aforementioned topological techniques. 

We assume that the reader has some familiarity with the generalized 
Morse theory as developed in [2]; see also [lo]. In particular, we use the 
notations h(l) to denote the index of the isolated invariant set Z, and Ck to 
denote the pointed k-sphere. 

2. BACKGROUND AND FORMULATION OF THE PROBLEM 

A. The Equations 

We consider Eqs. (1.1) on the domain 1x1 CL, together with one of the 
following boundary conditions: 

u(f L, t)=O, t>o, (2.1,) 

u,( f L, t) = 0, t > 0. (2.1,) 

These will be referred to as (homogeneous) Dirichlet, and Neumann con- 
ditions, respectively. In addition, we assume that D and u are prescribed 
initially, i.e., 

(4% Oh 44 0)) = (fi(xh fi(x)), 1-v G L (2.2) 
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where V and ii are bounded smooth functions. As is shown in [ 1 or lo], the 
problem (1.1 ), (2.1), (2.2) has a unique bounded solution defined for all 
t > 0. 

We turn now to the stationary equations; they are 

lY +f(u) - 24 = 0, &-yu=o, 1x1 -CL, (2.3) 

together with one of the corresponding boundary conditions 

u(+- L)=O. 

u’( + L) = 0. 

Notice that (2.3) can be written in the form 

(2.4,) 

(2.4,) 

u” +f(u) - &l/y = 0, u = &l/y; (2.3’) 

this reduces the problem of finding all of the steady state solutions to that 
of finding all solutions of a single second-order ordinary differential 
equation satisfying the boundary conditions (2.4). 

As we have noted in the Introduction, there is a rectangle R in U-U 
space, containing (0, 0), to which all solutions of (1.1) (2.1), (2.2) tend to, 
uniformly in x, as t -+ +co. Thus all of the steady state solutions, must lie 
in R. This gives the following result. 

PROPOSITION 2.1. All solutions of ( 1.1) (2.1) tend, as t + + CC to a boun- 
ded rectangle R in (u - u)-space. Thus there is an M > 0 such that all solution 
of (2.3), (2.4) satisfy Ilull oo + lb4 cc f hf. 

B. Steady State Solutions of the Dirichlet Problem 

We consider first the Dirichlet problem (2.3), (2.4),. It is easy to see that 
if S/v is sufficiently large, then u - 0 zz u is the only solution. We shall thus 
take S/y so small that: (i) the function S(u) - 60/y has three (distinct) real 
roots 0 < a < 6; and (ii) 

s ,’ (f(u) - 60/y) du > 0. (2.5) 

In this case, the phase plane for the equation 

u” +f(u) - b/y = 0 (2.6) 

takes the form as depicted in Fig. 1. Obviously u = u0 = 0 is always a 
solution of the Dirichlet problem. 

505/63/3-8 
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FIGURE 1 

From the results of [12], we know that there is a number L* such that 
(2.6), (2.4,), has only u E 0 as a solution if L <L*; has exactly one non- 
constant solution if L = L*; and has precisely two non-constant solutions if 
L > L*. This information is contained in the global bifurcation diagram 
depicted in Fig. 2. If we take L > L *, then we denote by vi and v2 the two 
non-constant solutions, where v;( - L) > v;( - L). It was shown in [3, 81, 
that the solutions v,, = 0 and v2 are “attractors” for the associated parabolic 
equation 

0, = vxc +./Iv) - WY, 1x1 <L, t>o (2.7) 

with boundary data (2.1). By this we mean that if the initial values v(x, 0) 
are sufficiently close (in Cd) to either v0 or v?, then the corresponding 
solution of (2.7), (2.1) with this data, converges (in C’) to the 
corresponding steady state solution. Similarly, u, is unstable, and has a l- 
dimensional unstable manifold. It is also proved in [ 111 that all of these 
solutions are “non-degenerate” in the sense that zero is not in the spectrum 
of the linearized equations. 

Translating these facts into analytical terms means that if we consider 
the linearized equations 

4” + giCx) B = @3 4 AI L) = 0, (2.8) 

where q,(x) =f’(u;(x)) - 6/y, i = 0, 1, 2, then the following theorem holds. 

p= V’(-L) 

1 fqz ,L 

FIGURE 2 
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THEOREM 2.2. (a) If i= 0 or i= 2, the problem (2.8) admits no non-zero 
solution if I b 0. 

(b) If i = 1, the eigenvalue problem (2.8) has precisely one positive 
eigenvalue. All other non-zero solutions 4 correspond to I < 0. 

C. Steady State Solutions of the Neumann Problem 

We shall briefly consider the problem (2.3), (2.4,). Again we choose 6/y 
so small that the function f(u) - &I/+? has three (distinct) real roots 
0 <a < b; in this case we do not need condition (2.5). 

It is obvious that the three constant functions 0, a, and b are always 
solutions of (2.6), (2.4,). In [12] it was shown that there is a critical value 
of L, call it L* again, such that if L < L *, these are the only solutions. 
Furthermore, there is a sequence of real numbers L, = L* < L2 < ... < 
L, < . . ) L” -+ co, such that at each L,, two solutions vi, v; bifurcate out of 
a. These solutions were shown to be unstable solutions of the problem (2.7) 
with boundary data 2.1 N). In fact, for i = 1,2, u6 is non-degenerate, and has 
a (k - 1 )-dimensional unstable manifold (see [4]). Furthermore, the 
solutions u = 0 and v E b are the only stable solutions of (2.9). Finally, the 
solution II = a has a l-dimensional unstable manifold if 0 c L < L,, and a 
k-dimensional unstable manifold if L, , < L < L,, k > 1. Of course, 0 is in 
the spectrum of the linearization about u E a whenever L = L,, k > 1. 

3. THE DIRICHLET PROBLEM-PROPERTIES OF SOLUTIONS 

We consider the Dirichlet problem (1.1 ), (2.1,,). The steady state 
solutions satisfy 

u” +f( u) - 80 = 0, Ix~<L,v(+L)=O, (3.1) 

where 8 = S/y. As before, we choose 8 so small, say 0 d 0 < 0, so that the 
function 

l-o(o) =f(v) - &I (3.2) 

has three real roots 0 <a, < bs, and also that 

5 ob”fo(v) dv > 0. (3.3) 

For each such 9, we have the “time maps” T, defined by (see [ 121) 

T,(p) = l;O”’ 
dv 

J2&(%(P)) - 24?(v)’ 
F@ =fe. 
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These functions denote the “time” an orbit in the phase plane for (3.1) 
takes to go from a point p on the u’ axis to the point Q(P) on the u axis 
(see Fig. 1). For 0 < 8 < 8, the functions T, have exactly one minimum, pH. 
We define Lo by 

TdPe) = Lfl. 

Concerning this quantity, we have the following lemma. 

LEMMA 3.1. dL,#tl> 0. 

Proof: If F =f, we can write 

L* = T,(p,) = i,oao(p”i 
dv 

,/2F(a,) - 0ai - 2F(u) + Bv2 
= wk P@, e), 

so that 

aLo a@aa, a@ap, a@ 
-=--+--+a. de au, ae ap, ae (3.4) 

NOW by definition of pe, M/ap, = (aTe/ap)(pe) = 0, and if we set 

&hJ = joa” 
dv 

2F(a,) - @ai - OF + 8v2’ 

then i?T,/ap = &(a,) da,/dp, so that 

o = aTo ~ = Sk(ae) da,ldp. 
ap 

But since dae/dp # 0, we see that Sg(aB) = 0 and thus hD/~a, = &(a@) = 0. 
Hence (3.4) becomes 

aLope = $f = -i j:“(‘“’ (u2 - a~)(Fe(ae(pe)) - F,(u))~~‘~ dv > 0. 

This completes the proof. 
Let 0 be defined as above so that if 

ode-d, (3.5) 

the functionfdelined by (3.2), has three real roots 0 < a, < b,, and satisfies 
(3.3). Let L > Lg; then L > L, for all 0 satisfying (3.5). Thus for such 8, 
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(3.1) admits precisely two non-constant solutions. From now on, in Sections 
3 and 4, we take L > Lo, and fix this value of L. 

For 0 satisfying (3.5), and L > L,, let vi, v2 denote the two non-constant 
solutions of (3.1); (we now drop the dependence on 13 in these solutions). 
The solution vi is unstable, and its’ generalized Morse index is h(v,) = Cl, 
the pointed one-sphere; in fact vi has a l-dimensional unstable manifold. 
Similarly, h(v2) =Z”, and v2 is an attractor. To each of these solutions, 
there are associated the corresponding (vector) solutions of (2.3) (2.4,); 
namely, 

V,(x) = (1, WY) v,(x), V*(x) = (4 WY) fJz(x), I4 d L. (3.6) 

We denote the solution (0,O) by V,; then if we linearize (1.1 ), (2.1,,) about 
IJ’, (j = 0, 1, or 2), we obtain the following (eigenvalue) equations on the 
interval (xl CL: 

h= w”+f’(v,) w-z, w(* L)=O 

lz=hw-yz. 
(3.7j) 

In order to study the stability of our solutions, we must consider the 
spectra of the operators 

w”+f’(v,) w-z 
6w-yz 

3 j=o, 1,2, (3.8,) 

defined on the space Cz+r (JxJ<L)xC”(JxJ<L) into C”(jxJ<L)x 
C’( 1x1 < L), where the subscript 0 denotes the fact that w( + L) = 0. Let 
B,: Ci+‘I(IxI <L) -+ C’(lxl <L) be the operator defined by 

B,: w +w”+f’(vi) w-6w/y, j=o, 1, 2. t3s9)j 

Note that -y is not an eigenvalue of A,; this is clear from (3.7,). Thus 
using (3.7,) if i is an eigenvalue of A,, we have 

~w=w~+f’(v,)w-sw/(a+y) 

= WV + f ‘(v,) w - SW/Y + [hw/y - 6w/(A + A)] 

= w” +f;(vj) w + nsw/y(n + y), 

and w( &- L) = 0. Thus we obtain 

Ikw = w” + f k(v,) w, k= 1 -6/y(l+y). (3.10), 

From this it follows that if II is an eigenvalue of Aj, then lk must be real. 
Furthermore, we have the following lemma. 
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LEMMA 3.2. 0 is not an eigenvalue of Aj, i = 0, 1, 2. 

The proof of this follows from (3.10,) and the corresponding statement 
for the scalar operators d2/dx2 +fh( vj), with homogeneous Dirichlet boun- 
dary conditions; see [ 111. 

We shall base our analysis of the eigenvalues of the operators Aj on the 
equation (3.10,). Thus, if 2 = cr+ ib is an eigenvalue of Aj, then (3.10,) 
holds. An easy computation gives both of the following equations 

Re(;lk)=cr l-- 
[ 

6 (a+y) -sg2 1 1 
Y P’ + (a + YJ2 Y P’+(a+lJ)’ 

(3.11) 

Im(lk) = /I[(cr + y)’ + B” - d]/[(a + y)’ + j?‘]. 

Since ,Ik is real, one of the following must hold; namely, 

/3=0 or j?’ + (a + y)” = 6. 

(3.12) 

(3.13) 

LEMMA 3.3. (i) A0 has no eigenvalues in Re z > 0. 
(ii) Ifth p a t e ar me ers 6 and y satisfy the inequality 

y* B 6 (3.14) 

then A, and A2 have no eigenvalues on Re z = 0, and A, has no eigenvalues in 
Rez>O. 

Proof: We consider first A,,. Using (3.10,,), we have 

w” +f’(O) w - 6w/y = Akw, w(+L)=o, 

where k is given in (3.100). It follows that the quantity 

Lk -f’(O) + S/y 3 ;1 

is negative, since it is an eigenvalue of the operator 
0’: C;+X(lxl <L)-+C”(Jx( <L). Thus 

Ik=p<O. 

NOW if we use the expression for k given in (3.10,), we get 
A[ 1 - s/y(L + y )] = p, and solving for I gives 

22 = (P-Y + WI * J(P - Y + w* + 4PY 

= (X +f’(O) - y) IfI J(X +f’(O) - y)2 + 4py. 

Thus Re /, < 0, and this proves (i). 
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Now suppose that (3.14) holds. If 1= o! + ij? is an eigenvalue of A, or AX, 
and a = 0, then from (3.13) we see that /? = 0, and this contradicts Lemma 
3.2. Finally, let A be an eigenvalue of AZ, where a > 0. Then since 

(a + y)Z + 8’ > y2 + /I’ >, y2 > 6 

we see from (3.13) that fl= 0. Hence % is real, A= a > 0. Thus 

k = (ay + y2 - d)/y(a + y) > 0, 

so that ik > 0. It follows from (3.102) and the fact that u2 is a stable non- 
degenerate solution of the scalar equation (2.9), that w E 0. Thus, from 
(3.7,) we find z = 0 and 1> is not an eigenvalue of A,. 1 

We shall now show that the operators A;, i = 0, 1,2, have no continuous 
spectrum. Since we are considering these operators on a finite domain, 
1x1 < L, if the second equation in (1.1) had a non-zero diffusion term EU,,~, 
this conclusion would follow from standard theorems. To obtain the result 
in our case, we take advantage of the special structure of our equations. 

THEOREM 3.4. The operators Ai, i = 0, 1, 2, have pure point spectrum. 

Proof: Let i = E + $. We shall show the following two things; namely, 
that except for a discrete set of 2, 

(i) (A, - AZ) -’ is everywhere dehned, and 
(ii) (A i - ,?I)-’ is a closed operator. 

From (i) it follows that the domain of (Ai - AZ))’ is closed, and since (ii) 
implies that (Ai - II))’ has closed graph, the closed graph theorem shows 
that (A; - AZ)- ’ is bounded. Thus J. is not in the continuous spectrum of 
Ai. (Actually (ii) follows from (i). To see this, suppose that V,, + I/ in C 
and (Aj-,UP’V,+ W in Ci+,. Since (A, - II) is continuous and 
everywhere defined on Ci + a, V,, + ( Ai - AZ) W in C”. Therefore 
(Ai- U) W= V so from (i) W= (Ai- ;IZ)-’ V, and this gives (ii).) 

To prove the theorem, it suflices to show (i). Thus suppose 
(4, \I/) E C” x C”; we must show that the equations 

w” +j-‘(v;) w - z - %w = 4, w(+ L)=O 

sw-nz-h=$ 
(3.15) 

are solvable for (w, z) E Ci+% x C”. Note that we may assume 1+ y # 0. 
Using the second equation in (3.15) we find 

.z = (SW - II/ )l(Y + n), (3.16) 
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and substituting this in the first equation gives w” +f’(uj) W- 
6w/(y + A) - 1w = C$ - I//(? + A). This last equation can be rewritten as 

w” +fk(uj) w + qw = q+ - $/(y + 6), w( + L) = 0, (3.17) 

where 

tj = s/y - 6/( y f %) - 3,. (3.18) 

Now if -q is not in the spectrum of the operator Bi (see (3.9)), then (3.17) 
can be solved for w, and (3.16) gives the corresponding z. Thus (3.17) is 
solvable for all n which do not lie in the discrete set sp( -Bi). If we solve 
(3.18) for I, we find 

2R= (S/y - y - rf) f &B/y - y - q)* - 4ytj E 21(q). (3.19) 

It follows that if 2 is not in the set I(sp(Bi)), then ‘14 sp( -Bi) and (3.17) is 
solvable. This completes the proof since sp( -B;) is a countable, discrete 
set. 1 

As a consequence of the last two results, we have the following theorem; 
see [3, lo]. 

THEOREM 3.5. V,, is an isolated invariant set for the system (Ll), (2.1,), 
and h( V,) = Co. If (3.14) holds, the same statement is valid for Vz. In par- 
ticular, both of these steady state solutions are stable, i.e., they are attractors 
for the equation (1.1 ), (2.1 b). 

In order to compute the index of V,, indeed to even show that it is an 
isolated invariant set, we shall show that if (3.14) holds, Eqs. (1.1) (2.1,) 
are gradient-like. This fact will also enable us to describe the entire solution 
space, for these parameter values. 

Let a= 6/r, and rewrite ( 1.1) as 

0, = (u,, +f (VI - $4 + @v - u), ?I( f L, t) = 0, 

u, = y(& - u). 

The function we consider is 

eY(u, u) = I” ( - Q/2 + F(v) - $v2 + uu - u2/2$) dx 
-L 

= s 1, [( -+/2 + F(v) - su*/2) + (uv - &*/2 - u*/28)] dx, (3.20) 
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where F =fi Now we compute 

au/at=SL {(u,,+f(u)-~u)2+(u,,+f(U)-~u)(~u-u) 
-L 

+ u(u,, +f(u) - Tu) + u(8u - u) + yu(8u - u) 

- %(u,.y +f(u) - h) - i%@u - u) - yu(& - ~)/a} dx 

= i ‘, {(u,,+f(u)-~u)2+(~u-u)(~+uy-~u-yyu/~)} dx 

= 
i ‘, ((u,, +f(u) - %I)’ + (y2 - 6)(h - u)~/J} dx. 

We thus have proved the following lemma. 

LEMMA 3.6. Zf(3.14) holds, then the system (1.1) (2.1,) is gradient-like’ 
with respect to the function 9 defined in (3.20). 

As we have noted in Proposition 2.1, all solutions of ( 1. 1 ), (2.1,,) tend to 
the rectangle R in (u - u)-space; i.e., R is a global attractor for solutions of 
(l.l), (2.1 b). Under these circumstances, we have the following theorem. 

THEOREM 3.7. Assume that (3.14) holds: 

A. There are solutions Ui(x, t)= (ui(x, t), ui(x, t)), i= 1, 2, of (l.l), 
(2.1 D) satisfying 

lim U,(x, t) = V,(x), lim U,(x, t)= VO(x) 
I+ -cc ,+cc 

lim U2(x, t) = V,(x), lim U,(x, t) = V2(x) 
I-r -cc ,-CC 

uniformly in 1x1 <L. 
B. h( V,) = ,Z”, and V, has a l-dimensional unstable manifold. 

ProoJ: The proof of A. is similar to a theorem we have given in [3]; see 
also [lo]. Moreover, as in these references, we can show that h( V,) has the 
cohomology of a one-sphere. To complete the proof of B, it suffices to 
show that the spectrum of the operator A, has a finite number of eigen- 
values with positive real part in Re z>,O. Then since V, is non-degenerate 
(see Lemma 3.2), it follows that h( V,) = 1” for some p; whence p = 1, and 
V, has a l-dimensional unstable manifold. 

’ Thus aY/dt 2 0 and dY/dt = 0 precisely on the rest points. 
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Let A = cx + i/?, ~12 0, be an eigenvalue of A,. As we have seen above 
(Eqs. (3.10 ff), the quantity UC is real, where k is defined in (3.10). Thus 
Im(lk)=O so (3.12) and (3.14) imply that p=O. We can write (3.10) as 

B,w=w”+j-;(u,) w=%v, w(kL)=O, 

where I= CX[ 1 - 6/y(a + y ) J. Since B, has precisely one positive eigenvalue, 
aI/& >O, a2x/aa2 > 0, and x= 0 when CI =O, we see that Al has precisely 
one eigenvalue in Re z > 0; it is in fact real. This completes the proof. 1 

The results obtained in this section enable us to completely describe the 
entire solution set of (l.l), (2.1 o) in the case where (3.14) holds. In fact, we 
know that all solutions must tend to one of the rest points Vi, i = 0, 1, 2, as 
t + +co, and that there are two solutions, Ui(x, t), U2(x, t), which “con- 
nect” the rest points V,, V0 and V,, V,, respectively (cf. Theorem 3.7). 
There are no other solutions. Thus, the complete solution set can be 
“depicted” as in Fig. 3. 

We can depict the relevant region in parameter space; see Fig. 4. Note 
that the region in question; i.e., the region where (3.14) is valid, is the 
shaded region in Fig. 3. It is interesting to observe that in the region 
marked T in Fig. 4, V, is the only steady state solution of (1.1 ), (2.1 b) 
(because 0 > 8). Since the region T lies in y* 2 6, the equations are still 
gradient-like. It follows that all solutions must tend to VO; this holds for all 
L. Thus V, is a global attractor. This fact is noteworthy since it cannot be 
obtained by “invariant rectangle” techniques. It relies on a deeper fact; 
namely the existence of the gradient like function 9 in the parameter 
region T. 

We close this section by demonstrating an alternate way of computing 
the indices of V0 and V2, in the case where (3.14) holds. This method is 

FIGURE 4 
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FIGURE 5 

very much the spirit of the method which we described in [3], for the 
scalar equation. It relies again on the existence of the gradient-like function 
L. Thus, since the Vi are isolated rest points, they are isolated invariant 
sets, [2], and so they have well-defined indices, which are stable under 
continuation. Consider, for example, V,. We successively continue Eqs. 
( 1.1) by deforming f, as depicted in Fig. 5. That is, we continue Eqs. ( 1.1 ), 
(2.1 b) to the linear equations as depicted in Fig. 5(iv); these have the form 

II, = v .Y Y -LXV-pU, v(+ L, t)=O 

u,=6v-yu, 
(3.21) 

where the constants c( and /? are positive and a/P > S/y. Under this defor- 
mation I/, continues to the zero solution of (3.21), and h( V,) = h(0). Since 
0 is a global attractor for (3.21) (see [9], for example), we have 
h( VZ) = Co. Similarly, we can show that h( VO) = Co. 

4. BIFURCATION OF SOLUTIONS OF THE DIRICHLET PROBLEM 

In this section we shall allow the parameters y and 6 to violate (3.14). 
We will see that the attractor V, becomes unstable, and that the spectrum 
of A, picks up exactly two eigenvalues in Re z > 0. In this case h( V2) = C*, 
a “Hopf bifurcation” occurs, and a periodic solution appears near V,. That 
is, we shall obtain a solution U = (u, u) of (1.1 ), (2.1 b) which satisfies 

U(x, t + T) = U(x, t), IX1 <L, t>O, 

for some T= T(y, 6). 
We begin by studying the eigenvalues of the operator AZ, when (3.14) 

fails. As in Section 3, if 2 is an eigenvalue for A,, then (3.10), holds, and 

nk=ji, (4.1) 

where ji is an element in the spectrum of B,. If p= ~(6/y) is the largest 
eigenvalue of B2, then j < p < 0, since u2 is a stable solution of (2.7), (2.1 b). 
Using the expression for k given in (3.10*), we can solve (4.1) for 1 to get 

2n=(fi+wY-Y)* (p+6/y-y)2+4fiy. (4.2) 
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Note that as before, if y2a6 (4.2) shows that L has negative real parts. 
Thus, as (3.14) is violated, we see that 1 crosses the imaginary axis when 
the function 

G(y, 6) z p + S/y - y = 0. 

Consider next the equation G(y, 6) = 0. Since G6 = ($ + 1)/y, and 
G, = -S($ + l)/y2 - 1, we see that VG # 0, so that the equation G(y, 6) = 0 
defines a one-manifold. Note that if 0 < y < fl then since ~(8) = 0, 
G(y, y@ = ~(8) + 8- y = 8-y > 0. Thus G > 0 on the line 6 = 76. 

Also, if G = 0, then 6 > y2 so that the curve G = 0 lies above the parabola 
6 = y’, and since G(& 82) = p(g) = 0, we see that the branch of G = 0 of 
interest to us lies in the “moon-shaped” region S depicted in Fig. 4. 

Now let y be such that 0 < y < 8; since G(y, y2) < 0, we can find a point 
P = (j, g), 0 < jr < 8 for which the curve G = 0 meets the line y = 7 transver- 
sally at P and G(f, 6 + E) > 0 while G(jj, $ - E) < 0 for some E > 0. This gives 
the following theorem. 

THEOREM 4.1. There is a point P= (y”, b), 0 < y”< 8, 0 < b< 87 (i.e., a 
point in region S in Fig. 4) such that G(y, 8) = 0, and G6(y, 8) > 0. At P, a 
time periodic solution of (l.l), (2.1,) bifurcates out of Vz, as 6 increases 
across 8, on the line y = y”. Near P, for 6 > a, the spectrum of the operator A2 
has exactly two eigenvalues with positive real parts, and h( V,) = Z2. 

In other words, as 6 increases across 8 along the line y = y”, a “Hopf 
bifurcation” occurs at P. 

Prooj Using (4.2), we see that as 6 increases through 8 along y = 7, the 
spectrum of A2 picks up exactly two eigenvalues with positive real parts; 
thus h( V2) = L’* for these parameter values. Since G,(p, 5) >O, a Hopf 
bifurcation occurs (see e.g. [6, pp. 250-257; or 7, pp. 233 ff] and a periodic 
solution bifurcates out of V,. 1 

In a future publication, we shall allow the parameter 6 to further 
increase along the line y = 7, and we shall study the corresponding solution 
set. It is thus of interest to close this section with the following result. 

PROPOSITION 4.2. The operator A, always has at least one positive real 
eigenvalue. 

Proof: In view of Theorem 3.7, it suffices to assume that 6 > y*. If P is 
the positive eigenvalue of B,, and 1 is defined by 

2Y = (P + WY - y) + J(p + s/y - y)= + 4py, 
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then 3, > 0 and 

2 1-y-J=p. ( 
Thus, if w is the eigenfunction of B, corresponding to p, and z = Jw/(L + y), 
then we see that (z, w) is an eigenfunction of Ai corresponding to the 
eigenvalue A. 1 

5. THE NEUMANN PROBLEM-BIFURCATION OF SOLUTIONS 

We briefly consider Eqs. (1.1) with homogeneous Neumann boundary 
conditions (2.1,). In particular, we are interested in the existence and bifur- 
cation of the steady state solutions; that is, solutions to the problem (2.3), 
(2.4,). As we have seen earlier, the existence problem reduces to that of 
Eqs. (2.3’), (2.4,). In order that this problem has solutions, we choose S/u 
so small that the polynomial (3.2) has three real roots, 0 < a < b. 

As was shown in [12], the global bifurcation diagram for the non-con- 
stant stationary solutions can be depicted as in Fig. 6. The stationary 
solutions are obtain by studying the “time map” associated with the 
stationary solutions of the Neumann problem (see [ 123). These solutions 
are all non-degenerate in the sense that 0 is not in the spectrum of their 
linearizations; hence they do not undergo “secondary bifurcation.” The 
solutions depicted in Fig. 6 all bifurcate out of the constant solution u 3 a. 
Furthermore, the two other constant solutions u = 0 and u = b, are stable 
non-degenerate solutions, and do not undergo bifurcation. Referring to 
Fig. 6, the points L, correspond to those L values in which the linearized 
equations about u = a pick up a positive eigenvalue. Moreover, if 
L~L~L+, (L, = O), h(a) = En+ l, and along the branch out of L,, each 
of the two (symmetric) solutions uk, and uz have index C”; these corres- 
pond to solutions in (x - U) space which have (n - 1) internal extrema. 

From these remarks, we see that we can also obtain all of the stationary 
solutions for the system (1.1 ), (2.1 N); they are of the form 

FIGURE 6 
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where u solves (2.3’), (2.4,). In the region y2 > 6, it is easily checked that 
the function L, defined in (3.2) is a global Lyapunov function for our 
system. This yields the following theorem. 

THEOREM 5.1. Zf (3.14) holds, and L, < L < L,, ,, then 

h[(1,6/y)a]=C”+‘, h[(l, 6/y) u;] =h[(l, S/y) u;] =P. 

Moreover, there are solutions Uy(x, t), i = 1, 2 of ( 1.1 ), (2.1 N), which “con- 
nect” these critical points; i.e., 

lim Ur(x, t) = (1, 6/y) a, i= 1, 2, 
r--r -cc 

lim U;(x, t) = (1, 6/y) v;, 1-m 

and 

lim U;(X, t) = (1, 6/y) vt, 
1-03 

uniformly on 1x1 d L. 

ProoJ The proof is virtually identical to the scalar case (see [lo]), 
provided that we can show h[( 1,6/y) a] = En+‘. As in the proof of 
Theorem 3.4, it is easy to show that the linearized operator around 
(1,6/y) a has pure point spectrum; thus we shall show that this operator 
has exactly (n + 1) eigenvalues in Re z z 0. 

To this end, consider the eigenvalue problem 

w” +f’( a) w - z = Aw, w’(&L)=O 

hw-yz=lz, 

where ,?= c1+ i/5 Since A= -y cannot be an eigenvalue, we obtain the 
equation 

w” + (f’(a) - 6/y) w = Akw, 

where k is defined in (3.10,). Since Im(lk) = 0 and (3.14) holds, /I = 0 so ak 
is an eigenvalue of the operator 

B = d2/dx2 + (f’(a) - 6/y), 

with homogeneous Neumann boundary conditions on x= ,L. From the 
results of [4], B has exactly (n + 1) positive eigenvalues p,,..., Pi+ ,, and 0 
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is not an eigenvalue of B. If now p is any eigenvalue of B, then ak = p 
implies a = CI + or a-, where 

2a, =(~+slr-~)4J(~+6/y--y)‘+4/(y. 

If p-co, then a+_ co, while if p=lcL,, then a+ >O, and GI- ~0. m 
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