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Abstract: A form for U(r), the expected number of times a Gaussian sequence falls below a level 7. is given in terms of the
mean M(x)and the variance ¥ ?(x) functions. It is shown that under general conditions U(r) ~ M'~ Y1), t — . Moreover,
if M and V are regularly varying at infinity functions, then U(r)— M‘~ (1) is also regularly varying at infinity. A renewal
theorem for stationary Gaussian sequences is given, where it is shown that the asymptotic behavior of U(r)—1t/p is

determined by the asymptotic behavior of V3(r)/1.
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Introduction

Let {£,} be a Gaussian sequence. Let Y(A4) =
Yx_ 1(§,€ A) be the number of visits to a Borel
set A by the process {§,}; here I(A) stands for
the indicator of set A.

The expected number of visits to A4 1is the
renewal measure of sequence {§,}, which we de-

note by U( A).

U(A)=EY(A)= i P(¢,€4).!

n=1

Let M,, V;? denote the mean and the variance of
¢,. Then M and V are positive functions from the
set of integers into the reals.

The purpose of this note is to determine the
behavior of U on intervals (— 0. ¢] in terms of
the functions M, V. The method presented here is
simple and it allows one to determine the asymp-
totic behavior of U from the asymptotic proper-
ties of_the solution of a functional equation for M
and V (equation (1) below).

The case when {£,} are cumulative sums of a

! Usually the renewal measure is defined as U(A4)+ 1. where
U(A) is as above (cf. Feller, 1971).

stationary Gaussian sequence { X;} is of special
interest. In a recent paper, Lalley (1985), showed
that for an ergodic stationary sequence that satis-
fies the fading memory property a result similar to
that of the classical renewal theory for indepen-
dent random variables holds: U(t+ h)— U(1) ~
h/u, t— oo, where U(t) = U((— o0, t]), p=EX]
> (). As a corollary to the main result we obtain a
renewal theorem for {£,}. It is shown that if u > 0
and V is regularly varying at infinity with expo-
nent a> 3 then U(t)—t/p varies regularly at
infinity with exponent 2a—1. If a=74 and
lim, . V?*(t)/t= oo then

U(t) —t/u~ V1) 2u% 1.

If lim,  V?(t)/t=0%< o then

U(t) —t/p=0/2p* — r,+ 0(1)

where 0 <7, < 1. It is also conjectured that in the
latter case lim, , _r, = ;. For the comparison with
the above results we state a renewal theorem for
sums of independent and identically distributed
sequences {X ). If p=E(X,)>0 and o’=
Var( X,) < oo then

U(t) —t/p=0°/2p" = | + o(1),
(Feller, 1971, p. 387). If, however, 02 = o then

t— 0.

t— 0
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U(t)—t/p can vary regularly at infinity (Feller,
1971, p. 373).

I also conjecture that the results obtained for
stationary Gaussian sequences will also hold for
other stationary sequences when the assumption
of normality is dropped.

Notations and assumptions

Let M(x) and V?(x) be positive continuous
functions defined for all x > 1 such that M(x) =
M, V3(x) =V} when x takes an integer value ».
We shall assume that M, V are positive and
increasing functions. Let >0 and U(r) =
U((— o0, t]). It is easy to see that for U(¢) to be
finite it is necessary that M(x)/V(x)— oo, x —
oo. Therefore, it will be assumed that V(x)=
o(M(x)), x > co. M(x)/V(x) tends to + oo, we
shall assume that it is increasing. Hence there
exists the inverse of M(x)/V(x) which we denote
by R(x). R(x) is positive, continuous and is
increasing to +oo. Denote by W(x) the inverse
function of M(x).

Define for x > 1, A, (x)=(t — M(x)/V(x), we
shall assume that, for any > 0, h,(x) is decreas-
ing in x. Then there exists the inverse function
g,(x). g(x)>0, g(x) is decreasing and it maps
(— o0, h,(1)] onto [1, + o0). We extend the defini-
tion of g,(x) to the whole line and define it to be
zero for x > h,(1). With a slight abuse of notations
we shall call the new function also g,(x). For
x 20, [x], {x} will denote respectively the integer
and the fractional part of x.

Results

Proposition 1. U(r) = E((g,(Z)]), where Z ~
N(0, 1) is the standard normal random variable and
g,(x) is the solution of

M(g (x))=1—xV(g(x)), xe(-o0. h(1)].
(1)

Corollary 1. U(1) = E(g,(z)) —r,, where 0 <r, < 1.

Proposition 2. Assume that R(x) satisfies

lim R(x+1)/R(x)=1,; (A1)
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there exists a constant C such that, for all x, y 2 1,

R(x+y)<CR(x)R(y). (A2)
Then
U(t)~ W(t), t— .

Remark 1. The assumption that V(x) is increasing
1s not used in Proposition 2. Renewal theory for
sequences of the form

£,= (X, + X3+ - +X,)/Vn,

where X,, X,. ... are i.i.d. Gaussian with positive
expectation, is of considerable interest in sequen-
tial analysis (cf. Woodroofe, 1976; also Lai and
Siegmund, 1977).

For the sequences {§,} mentioned above Pro-
position 2 gives U(t) ~ t%/u?, t = oo, where p=
E(X;). It is not hard to deduce from Proposition 1
and its Corollary that U(t) = t*/u> + 6> /u* + r, +
o(1), t > o, where 6%=Var(X,) and 0 <r,<1.
Woodroofe gives this expansion down to the terms
o(1).

The main result is given in Proposition 3 and
its Corollaries.

Proposition 3. Let M, V be increasing, regularly
varying at infinity functions with exponents B and a
respectively. B> a > 0. Suppose also M', M", V'
exist and are monotone for large values of x. Then

E(g(Z)) - W(1)
~(1+42a—BYW()VE(W(1))/2B%%, 1— 0.

Corollary 2. Let M and V be as in Proposition 3.
Suppose also that

W()WWVHW(t))/t? > 0 ast— .

Then

Uty — W(r)
~(1+2a—B)W(YVHW(1))/2B*?, t—> .

Renewal theory for sums of a stationary, Gaus-
sian sequence is of special interest. In this case the
above results imply

Corollary 3 (A renewal theorem for stationary
Gaussian sequences). Ler §, + X, + X, + -+ + X,
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+ np, where X,, X,, ... is a stationary Gaussian
sequence with E(X,) =0 and p> 0. Suppose V,} =
Var(§,) is regularly varying at infinity with expo-
nent 2a. (i) If a> 1 ora=1and lim,_, V>(t)/t
= -+ o0 then

U(t) —t/u~aV?(t)/p’t,

(i) If a="! and lim,  V3(t)/t=06% 0<o’
< o0, then

t— 0.

02

- —1< lim inf(U(r) —t/p)
2 1=

2
< lim sup(U(t) —t/p) < —0—2.
120 u

Remark 2. The case (ii) describes the behavior of
the renewal measure of the sums of stationary
mixing Gaussian variables with positive mean p.
In order to establish existence of lim, , (U(t)—
t/p) we have to show the existence of lim, _, 7,
which I am not able to do at this stage. I, however,
conjecture that lim, _ _r, exists and is equal to }.
If this is the case then the renewal theorem for
stationary mixing Gaussian sequences takes the
same form as the classical renewal theorem for
i.i.d. random variables except for the fact that
instead of being Var(X;). ¢ stands for the
lim, _, ,(Var(Z]_, X,))/n.

Proofs

In proofs the following properties of regularly
varying functions are used. Let f(x) be an in-
creasing, regularly varying at infinity with expo-
nent A function.

(P1) The inverse function of f(x) is regularly
varying at infinity with exponent 1/A.

(P2) If f'(x) exists and is monotone for large x,
then xf'(x)~Af(x), x = 0.

(P3) 11 £,(x) ~ fo(x) = oo,
FUR) ~ F(fo(x)). x = .

The proofs of (P1) and (P2) may be found in
the book of Seneta. (P3) is an immediate conse-
quence of monotonicity of f and regular variation.

x — oo, then

Proof of Proposition 1

U(t) = i P(¢,<1)= i P(Z<h,(n))

n=1

STATISTICS & PROBABILITY LETTERS

June 1986

h,(g,(x))=x for x < h,(1), therefore (1) holds.
Proof of Corollary 1. r, = £({ g,(Z)}).

Proof of Proposition 2. We first show that, for any
fixed x € (— o0, ),

g(x)~W(1). 11—, (2)

To this end, write g,(x)=R(t/V(g,(x))—x),
which follows from (1). Since g,(x) is decreasing,
V(x) is nondecreasing and R(x) is increasing, we
obtain the following inequality for any x < A, (1):

R(r—x")<g(x) <R(r+x7), 3)

with 7=1/V(g,(0)) and x*, x~ being standard
notations, x' = max(x, 0), x~ = max(—x, 0).
Notice that

W(t)=g(0)=R(7),

and that 7=1/V(g(0) = M(W()/V(W(1)).
Hence 7 — o0 as 1 — 0. (2) now follows from (3)
by using (Al). Since A,(1) = o0, as 1t — o0, (2)
holds for any x.

Using (A2) and monotonicity of R(x) it is not
hard to establish that there exists a constant C,
such that, for ‘all x € (— o0, o),

|8 (x) = W(r)[< CR([x])- W(1), (4)

Since R(x) is continuous, it follows from (Al)
that R(x) must be of the form e”*), where p(x)
=0(x), x = oo (Seneta, 1976, p. 30). Therefore,
E(R(Z) <. E(g(Z))~ W(t), t— o0, now
follows by the dominated convergence from (2)
and (4). The result follows from Corollary 1, since
W(t) — co as t = o0.

Proof of Proposition 3. We show first that, for any
X,

g (x) = W)~ —xW/(1) - V(W(1), 1 0.

(5)
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Taking Taylor expansion of W at ¢ we obtain,
from (1),

g {(x) = Wlt) = —xw'(6,) V(g (x)). (6)
gre (1, M(g,(x)).

Taking the Taylor expansion of V at g,(0),
gx) = W(r) = —xw'(6)V(W(r))

-xW'(H,)V’({,)(g,(x) - W(’))*

€ (g.(0). g(x)). (7)
From (7) we obtain
(gl(x)_ W(t)) - - X W,(at)
(W()yv(w(e)) 1+xw(6)V(§) Wi(r)
(8)

Using (P1) and (P2) one can see that W, R, W,
V' are regularly varying at oo functions. It can
also be seen that R is regularly varying at oo and
it satisfies (Al) and (A2). From (2) we obtain
6 ~1t and {,~ W(t) as t — co. Hence W'(8,) ~
W), V'(§,) ~ V'(W(1)) and W'(8,)- V'(5,) —0
as t — 00. (5) now follows from (8).

Taking one more term in the Taylor expansion
of W we obtain

g(x) = W(t) = —xw(t)V(Ww(t))
—xW()V'(§)(&(x) -
+x2/2W" (0, )V (g, (x))

= —xW () V(w(1)) + T'(x)
+T7(x). (9)

where 7, € (1. M(g,(x))) = (1. 1 ~ xV(g,(x))).
Using (5), (P2), (P3), and §,~ W(t), n,~1t as
t — o0 we obtain that

w(1))

T'(x)~ax*W(t)VH(W(t))/B*t*, - oo,
(10)
and
T2 (x)~ = (B=D)X*W()VI(W(1)) /2B,
1= 0. (11)

We wish to replace x by Z in (9), take expecta-
tions and pass to the limit as 1 — oo. Therefore, we
shall construct integrable bounds for |7,/(Z)],
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i=1, 2. We show that there exist constants C, > 0,
y > 0 such that, for all x <A (1),

1

L)/ W()VEHW() < GRY(|x]),
i=1,2. (12)

Since the value of constants is not important and
there are many different constants to be used in
the following inequalities, we shall drop the sub-
scripts. In what follows C will denote some posi-
tive finite constant, which may be different if used
in different inequalities.

It can be seen from (2) and (A2) that the
following inequalities hold.

1<g,(x)/g(0) < CR(Ix]), x<0, (13)

and

(CR(x)) '<g,(x)/g,(0) <1, 0<x<h,(1).
(14)

M(x)x #*V is decreasing for large x. It follows
that, for all 0 <x < h (1),

M(g(x))/t> CR™FD(x). (15)

(14) and M(g,(0)) =t were used to establish (15).
V(x)x~'**D is decreasing for large x. It follows
that, for all x <0,

V(g (x))/V(g (0) < CR**'(|x]). (16)

(13) was used to establish (16).
Consider T,'. By (P2), V'({,) < CV(¢) /8,
W'(8,) < CW(#8,)/8, for some C > 0. This together

with (6) gives

LAl e S A(AVACAL
W(OHVA(W()) L 8Vi(W(r))

If x>0 then M(g,(x)) <8 <1, g(x)<{ <g/0)
= W(r) and, by monotonicity of V and W, (17)
does not exceed

(M, (x)/0)(8(x)/5,(0))

Using (14) and (15) we obtain that an upper
bound for the expression in (17) when x>0 is
given by Cx?RA*2(x).

If x<0 then r<§ < M(g,(x)) g 0)<¢{ <
g,(x) and, by monotonicity of V and W, (17) does

(17)
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not exceed

Cx*(g,(x)/8,(0)(V (g (x)/V3(g(0))).

Using (13) and (16) we obtain that an upper
bound for the expression in (17) when x <0 is
given by Cx*R** (| x}|).

Take y=max(2a + 3, 28+ 2). Thus we have
established (12) for T;'.

Consider 7°. Using an upper bound for W”
from (P2), we can see that

W)V (g (x))0?
oW () vi(w(n))
(18)

If x>0, M(g(x))<mn, <t g(x)<g(0). Hence
the expression in (18) does not exceed

| T2 (x)|r?
WV Ww(r))

Cli/M(z,(x))) < Cx°R?P72(x),

the last inequality by using (15). If x <0, r<n, <
M(g,(x)), g,(x)>g,(0). Hence the expression in
(18) is less than

Cx*(8,(x)/8,(0)(V(5,(x))/V(g,(0)))
< Cx*R**(]x]),

the last inequality by (13) and (16). Thus we have
established (12) for T,2.
Hence from (10), (11) and (12) we obtain

E((T(2) + T Z))1(Z < h,(1)))
~(1+2a=B)W()V3(W(1))/2B%,  (19)
I — 0.
Let x be Z in (9) and take expectations to obtain
E(g(2)) - wW(1)
= w()WV(W()E(ZI(Z > h,(1))))
+E(TNZ)+ THZ)(Z<h,(1).  (20)
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Since E(ZI(Z>h,(1))) =(1/V2m) e "V, the
term W/()V(W(r)) e "V =0(1) as t > . The
Proposition now follows from (20) and (19).

Proof of Corollary 2 follows from Proposition 3
and Corollary 1.

Proof of Corollary 3. (i) follows from Corollary 2
and properties of regular variation of V.
(1) Proposition 3 yields

2

g
E(g(Z))—t/p~—. (- oo.

2p

The result follows from Corollary 1.
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