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Abstract: A form for U(t), the expected number of times a Gaussian sequence falls below a level t. is given in terms of the 
mean M(x)  and the variance V2(x) functions. It is shown that under general conditions U(t) - M ~ l~(t), t --* re. Moreover, 
if M and V are regularly varying at infinity functions, then U( t ) -  M ~ ~(t) is also regularly varying at infinity. A renewal 
theorem for stationary Gaussian sequences is given, where it is shown that the asymptotic behavior of U ( t ) - t / ~  is 
determined by the asymptotic behavior of vZ(t) / t .  

K~vwords: renewal theorem, Gaussian sequence, stationary sequence. 

Introduction 

Let { ( , }  be  a G a u s s i a n  sequence.  Let  Y ( A ) =  

Yi,~_tl(~, ~ A) be the n u m b e r  of  visits to a Borel 
set A by the process {~ ,} ;  here I ( A )  s tands  for 
the i nd i ca to r  of set A. 

The  expected n u m b e r  of visits to A is the 
renewal  measure  of sequence  { ~. }, which  we de- 
no te  by U(A) .  

U ( A ) = E Y ( A ) =  ~ P ( ~ , , ~ A ) .  1 
n ~ l  

Let M,,, V,, 2 deno te  the m e a n  a n d  the va r i ance  of 

(n- T h e n  M and  V are posi t ive  fu n c t i o n s  f rom the 
set of  in tegers  in to  the reals. 

The  pu rpose  of  this no te  is to d e t e r m i n e  the 
behav io r  of  U on  in terva ls  ( - r e ,  t] in  te rms of 
the func t ions  M, V. The  me thod  p re sen t ed  here is 
s imple  and  it al lows one  to d e t e r m i n e  the a s y m p -  

totic behav io r  of U f rom the a sympto t i c  p roper -  
ties of_the so lu t ion  of  a f unc t i ona l  e q u a t i o n  for M 
and  V ( equa t ion  (1) below).  

The  case when  { ~n } are c u m u l a t i v e  sums  ~ a 

1 Usually the renewal measure is defined as U(A)+ 1, ~here 
U(A) is as above (cf. Feller, 1971). 

s t a t i ona ry  G a u s s i a n  sequence  { X,} is of  special  
interest .  I n  a recent  paper ,  Lal ley  (1985), showed 
that  for an  ergodic  s t a t iona ry  sequence  that  satis-  
fies the fad ing  m e m o r y  p rope r ty  a result  s imi lar  to 
tha t  of the classical  renewal  theory  for i n d e p e n -  
d e n t  r a n d o m  var iables  holds:  U(t  + h ) -  U ( t ) -  

h / i x ,  t --* ~ ,  where  U ( t )  = U(( - ~ ,  t]), ix = E X  1 
> 0. As a corol lary  to the m a i n  result  we o b t a i n  a 
renewal  theorem for {~,, }. It is shown  that  if ix > 0 
a n d  V is regular ly  va ry ing  at in f in i ty  with expo- 

n e n t  a > ½ then  U ( t ) - t / i x  varies regular ly  at 
in f in i ty  wi th  e x p o n e n t  2 c ~ - 1 .  If c~=½ and  
l i m , ~ V 2 ( t ) / t  = oc then  

U ( t )  - t / ix  ~ V 2 ( t ) / Z i x  2 t, t ---, oc. 

If l i m , ~ V 2 ( t ) / t  = o-' < vc then  

U ( t )  - t / ix  = o2/2 ix  2 - r, + o(1)  

where  0 < r, < 1. It is also con jec tu red  that  in the 
la t te r  case l i m , o ~ r ,  = ½. For  the c o m p a r i s o n  with 
the above  resul ts  we state a renewal  theorem for 
s u m s  of i n d e p e n d e n t  a n d  ident ica l ly  d i s t r ibu ted  
sequences  {X,}.  If IX = E ( X 1 )  > 0 and  o z = 
V a r ( X  I) < oc then  

U ( t ) - t / I X = o 2 / Z I X  : -  ~ + o ( 1 ) ,  t o t e  

(Fel ler ,  1971, p. 387). If, however,  0 2 =  vc then  
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U ( t ) -  t/Ix can vary regularly at infinity (Feller, 
1971, p. 373). 

I also conjecture that the results obtained for 
stationary Gaussian sequences will also hold for 
other stationary sequences when the assumption 
of normality is dropped. 

Notations and assumptions 

Let M ( x )  and V2(x)  be positive continuous 
functions defined for all x >/1 such that M ( x )  = 
M,,, V2(x) = Vn 2 when x takes an integer value n. 
We shall assume that M, V are positive and 
increasing functions. Let t >/ 0 and U(t )  = 
U ( ( - 0 0 ,  t]). It is easy to see that for U(t)  to be 
finite it is necessary that M ( x ) / V ( x )  ~ 00, x 
00. Therefore, it will be assumed that V ( x ) =  
o ( M ( x ) ) ,  x ~ oc. M ( x ) / V ( x )  tends to + oe, we 
shall assume that it is increasing. Hence there 
exists the inverse of M ( x ) / V ( x )  which we denote 
by R ( x ) .  R ( x )  is positive, cont inuous and is 
increasing to + 00. Denote  by W ( x )  the inverse 
function of M ( x ) .  

Define for x >/1, h t ( x  ) = ( t -  M ( x ) / V ( x ) ,  we 
shall assume that, for any t >1 O, h , ( x )  is decreas- 
ing in x. Then there exists the inverse function 
g, (x) ,  g , ( x ) >  O, g , ( x )  is decreasing and it maps 
( - oe, h,(1)] onto [1, + oe). We extend the defini- 
tion of g , ( x )  to the whole line and define it to be 
zero for x > h,(1). With a slight abuse of notations 
we shall call the new function also g, (x) .  For 
x >/0, [x], { x } will denote respectively the integer 
and the fractional part of x. 

Results 

Proposition 1. U ( t ) = E ( [ g , ( Z ) ] ) ,  where Z -  
N(0, 1) is the standard normal random variable and 
g, ( x )  is the solution of 

M ( g , ( x ) ) = t - x V ( g , ( x ) ) ,  x ~ ( - ~ ,  h, (1) ] .  

(1) 

Corollary 1. U(t)  = E ( g , ( z ) )  - r,, where 0 < r, < 1. 

Proposition 2. Assume that R ( x ) satisfies 

lim R ( x  + 1 ) / R ( x )  = 1: 
x ~ o O  

(A1) 

there exists a constant C such that, for all x, y >1 1, 

R ( x  + y )  <~ C R ( x ) R ( y ) .  (A2) 

Then 

U ( t )  - W ( t ) ,  t--,  ~ .  

Remark 1. The assumption that V ( x )  is increasing 
is not used in Proposit ion 2. Renewal theory for 
sequences of the form 

&,= (xl + x2+ . . .  

where X 1, X 2 . . . .  are i.i.d. Gaussian with positive 
expectation, is of considerable interest in sequen- 
tial analysis (cf. Woodroofe,  1976; also Lai and 
Siegmund, 1977). 

For  the sequences {& } mentioned above Pro- 
position 2 gives U(t )  - t2//12, t --' 0~, where /.t = 
E( X 1). It is not hard to deduce from Proposit ion 1 
and its Corollary that U(t )  = t 2 / / . t  2 + 0 2 / / 1 2  + r t + 

o(1), t--,  oo, where o 2 = V a r ( X 1 )  and 0 < 6 < 1 .  
Woodroofe  gives this expansion down to the terms 
o(1). 

The main result is given in Proposition 3 and 
its Corollaries. 

Proposition 3. Let M, V be increasing, regularly 
varying at infinity functions with exponents fl and a 
respectively, fl > a > O. Suppose also M',  M" ,  V' 
exist and are monotone for large values of x. Then 

£ ( g , ( z ) ) -  w(t) 
- ( l + 2 a - f l ) W ( t ) V 2 ( W ( t ) ) / Z B 2 t  2, t--*oe. 

Corollary 2. Let M and V be as in Proposition 3. 
Suppose also that 

W ( t ) V 2 ( W ( t ) ) / t  2--* oo a s t ~ .  

Then 

ty(t)- w(t) 
- ( 1  + 2 a - • ) W ( t ) V 2 ( W ( t ) ) / 2 • 2 t  2, t -~oo.  

Renewal theory for sums of a stationary, Gaus-  
sian sequence is of special interest. In this case the 
above results imply 

Corollary. 3 (A renewal theorem for stationary 
Gaussian sequences). Let &, + X 1 + X 2 + •. • + X,  
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+ nl*, where X 1, X 2 . . . .  is a stationary Gaussian 
sequence with E(X1) = 0 and l* > O. Suppose V,, 2 = 
Var(~,)  is regularly varying at infinity with expo- 
nent 2a. ( i )  I f  a >  1 o r a  = ½ and l i m , ~ V Z ( t ) / t  
= + oo then 

U ( t ) - t / l * - a V 2 ( t ) / ~ 2 t ,  t--, ~ .  

I f  a =  ~ and l i m , ~ V 2 ( t ) / t = o  2, O<~o 2 

then 
(ii) 

0 2 

2/, 2 
- - - 1 <  lim i n f ( U ( t ) - t / l * )  

~r 2 

4 lim s u p ( U ( t )  - t / t*) <~ - -  

Remark 2. The case (ii) describes the behavior of 
the renewal measure of the sums of stationary 
mixing Gaussian variables with positive mean l*. 
In order to establish existence of  lim, ~ ~ ( U ( t ) -  
t / t*) we have to show the existence of lim, ~ ~r,, 
which I am not able to do at this stage. I, however, 
conjecture that l i m , _ ~ r ,  exists and is equal to ½. 
If  this is the case then the renewal theorem for 
stat ionary mixing Gaussian sequences takes the 
same form as the classical renewal theorem for 
i.i.d, r andom variables except for the fact that 
instead of  being Var(X1), 02 stands for the 

l im.  ~ ~ ( V a r ( E ' / =  1 Xi))/n. 

Proofs 

In proofs the following properties of  regularly 
varying functions are used. Let f ( x )  be an in- 
creasing, regularly varying at infinity with expo- 
nent )~ function. 

(P1) The inverse function of f ( x )  is regularly 
varying at infinity with exponent 1 / h .  

(P2) If f ' ( x )  exists and is monotone  for large x, 
then x f ' ( x ) -  Xf(x) ,  x ~ oo. 

(P3) If f l ( x )  - f z ( x )  --+ oo, x --+ 0¢, then 
f (L (x ) ) - f ( f : (x ) ) ,  x oo. 

The proofs of (P1) and (P2) may be found in 
the book of Seneta. (P3) is an immediate conse- 
quence of monotonici ty  of f and regular variation. 

Proof of Proposition 1 

v(t)= £ J'(<-<,)= £ p(z<.h,(n)) 
n = l  n = l  

o o  

= E E ( I ( h t ( n )  >~ Z ) )  
n = l 

h , ( g , ( x ) )  = x for x ~< h,(1), therefore (1) holds. 

Proof of Corollary 1. r, = E ( { g , ( Z ) } ) .  

Proof of Proposition 2. We first show that, for any 
fixed x ~ ( - o¢, ~ ) ,  

g , ( x ) -  w(t) ,  t--, oo. (2) 

To this end, write g , ( x ) = R ( t / V ( g , ( x ) ) - x ) ,  
which follows from (1). Since g , ( x )  is decreasing, 
V ( x )  is nondecreasing and R ( x )  is increasing, we 
obtain the following inequality for any x < h,(1): 

R ( r - x  + ) < g , ( x ) < R ( r + x - ) ,  (3) 

with ¢ =  t /V (g , (O) )  and x +, x -  being standard 
notations, x + = max(x,  0), x -  = m a x ( - x ,  0). 
Notice that 

W ( t )  = g , ( 0 ) =  R ( r ) ,  

and that r = t /V (g , (O) )  = M ( W ( t ) / V ( W ( t ) ) .  
Hence ¢ --, oc as t --+ Q¢. (2) now follows from (3) 
by using (A1). Since h , ( 1 ) ~  oo, as t ~ oo, (2) 
holds for any x. 

Using (A2) and monotonici ty  of R ( x )  it is not 
hard to establish that there exists a constant  C 1 
such that, for 'all  x E ( - ~ ,  ~ ) ,  

[ g , ( x )  - W(t)]<~ C , R ( [ x l ) .  W ( t ) ,  (4) 

Since R ( x )  is continuous,  it follows from (A1) 
that R ( x )  must be of the form e °(x), where p ( x )  
= o(x) ,  x ~ oo (Seneta, 1976, p. 30). Therefore, 
E ( R ( ] Z ! ) ) <  oo. E ( g , ( Z ) ) -  W( t ) ,  t ~ o o ,  now 
follows by the dominated convergence from (2) 
and (4). The result follows from Corollary 1, since 
W ( t ) ~ z ¢  as t ~  o¢. 

Proof of Proposition 3. We show first that, for any 
X, 

g , ( x )  - w ( t )  - - x W ' ( t ) .  v ( w ( t ) ) ,  

(5) 
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Taking Taylor  expansion of W at t we obtain,  
f rom (1), 

g , (x )  - W( t )  = - x W ' ( O , ) .  V ( g , ( x ) ) ,  (6) 

Ot ~ ( t ,  M ( g t ( x ) ) .  

Taking the Taylor  expansion of V at g,(O), 

~ , (x ) -  w( t )= -xw ' (o , )v (w( t ) )  

-xw'(o,)v ' (~,)(~,(~)-  w(~)), 

~, ~ (g,(O).  g , ( x ) ) .  (7) 

F rom (7) we obtain  

( g t ( ~ ) -  w( t ) )  - x  
( w ' ( t ) v ( w ( t ) )  I + xW'(O,)V'(~,) 

w'(o,) 
w'( t )  " 

(8) 

Using (P1) and (P2) one can see that W, R, W', 
V' are regularly varying at 00 functions. It can 
also be seen that R is regularly varying at m and 
it satisfies (A1) and (A2). From (2) we obtain  
0 t - t  and ~ , -  W(t)  as t - - )¢c .  Hence W'(O~)- 
W'(t), V ' ( f , ) -  V'(W(t))  and W'(O,). V ' ( f , ) ~ O  
as t ~ 00. (5) now follows from (8). 

Taking one more term in the Taylor  expansion 
of W we obtain 

g , ( x ) -  W ( t ) =  - x W ' ( t ) V ( W ( t ) )  

- x W ' ( t ) V ' ( ~ , ) ( ~ , ( ~ ) -  w(~) )  

+ x 2 / 2 w " (  ~?, )V2( g,( x ) ) 

- ~ w ' ( t ) v ( w ( t ) ) +  ~'(~) 

+ U ( x ) ,  (9) 

where ~1, ~ (t, M(g,(x)) )  = (t, t - xV(gt(x))) .  
Using (5), (P2), (P3), and ~ ' , - W ( t ) ,  *1,,-t as 
t ~ m we obtain that 

r,'(x) - ~ x ~ w ( f ) v 2 ( w ( t ) ) / ~ 2 t  2, t--, ~, 
(lO) 

and 

T,2(x)  - - ( f l -  1 ) x 2 W ( t ) V 2 ( W ( t ) ) / 2 f l 2 t  2, 

t ---, ~ .  (11) 

We wish to replace x by Z in (9), take expecta-  
tions and pass to the limit as t - ,  ~c. Therefore,  we 
shall construct  integrable bounds  for I T / ( Z ) I ,  

i = 1, 2. We show that there exist constants  C 2 > 0, 
"), > 0 such that, for all x < hi( l ) ,  

i T / ( x )  [. t 2 / W ( t ) V 2 ( W ( t ) )  < C2R~(lx l ) ,  

i =  1, 2. (12) 

Since the value of constants  is not impor tant  and 
there are many  different constants  to be used in 
the following inequalities, we shall drop the sub- 
scripts. In what follows C will denote some posi-  
tive finite constant,  which may be different if used 
in different inequalities. 

It can be seen f rom (2) and (A2) that the 
following inequalities hold. 

1 < gt(x)flg,(O) < C R ( I x ! ) ,  x < O, (13) 

and 

(CR(x)) l<g,(x)/g,(O)<l, 0<x<h,(a). 
(14) 

M ( x ) x  -(t~+~) is decreasing for large x. It follows 
that, for all 0 < x < h,(1), 

M(g,(x)) / t  > CR-'Z+"(x). (15) 

(14) and M(g,(O)) = t were used to establish (15). 
V(x )x  -I~+1) is decreasing for large x. It follows 
that, for all x < 0, 

W(g, (x ) ) /W(g , (O)  < CR°+'( lx l ) .  (16) 

(13) was used to establish (16). 
Consider  T, 1. By (P2), V'(~,)<~ CV(~,)/~ t, 

W'(O,) <~ CW(O,)/O t for some C > 0. This together 
with (6) gives 

rT,'(x)) 2 c2x~v(~,)w(o,)t 
~< (17) 

w ( t ) v 2 ( w ( t ) )  ~,o, v 2 ( w ( t ) )  

If x > 0 then M(g, (x ) )  < 0 t < t, g,(x)  < ~, < g,(O) 
= W(t)  and, by monotonic i ty  of V and W, (17) 
does not exceed 

C 2 x 2 ( ( M ( g , ( x l / t ) ( g , ( x ) / g t ( O ) )  ' 

Using (14) and (15) we obtain that an upper  
bound for the expression in (17) when x > 0 is 
given by Cx2R#+2(x). 

If x < 0  then t < 0 1 < M ( g , ( x ) ) ,  g,(O)<~,< 
g,(x)  and, by monotonic i ty  of V and W, (17) does 
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not exceed 

cx2(gt(x)/g,(o))( 
Using (13) and (16) we obtain that an upper 
bound for the expression in (17) when x < 0 is 
given by C x 2 R Z ~ + 3 ( ] x ! ) .  

Take y = m a x ( 2 a + 3 , 2 f l + 2 ) .  Thus we have 
established (12) for T, 1. 

Consider T,:. Using an upper bound for W" 
from (P2), we can see that 

i TT(X))~  ~ Cx -~ W ( n , ) V 2 ( g , ( x ) )  ~2 

W(, )V~(W( , ) )  n~W(,)V~(W(,) )  

(18) 
If x > 0, M(g,(x)) < ~1, < t, g,(x) < g,(0). Hence 
the expression in (18) does not exceed 

C( t / m (  gt( x ))2) < Cx2R2B + 2(x ), 

the last inequality by using (15). If x < 0, t < r/, < 

M(g,(x)), g , (x)> g,(0). Hence the expression in 
(18) is less than 

g,( )/g,(o) )( v( g,( ) ) /v (   t(o) ) f 
< 

the last inequality by (13) and (16). Thus we have 
established (12) for T, 2. 

Hence from (10), (11) and (12) we obtain 

E ( ( T t I ( Z )  -~- T t2 (Z ) ) I (Z  < h i ( l ) ) )  

- ( 1  +2a-B)w(t)v2(w(t ) ) /2B2t  2, (19) 

t ---> 00. 

Let x be Z in (9) and take expectations to obtain 

E ( g , ( Z ) ) -  W(t)  

= w ' ( , ) v ( w ( , ) E ( Z l ( Z  > h , ( 1 ) ) ) )  

+E(T,~(Z)+ T,2(Z)I(Z<h,(1)). (20) 

Since E ( Z I ( Z > h , ( 1 ) ) ) = ( 1 /  2~) e h,~l~ the 
term W'(t)V(W(t)) e-~' l l~=o(1) as t ~ o c .  The 
Proposition now follows from (20) and (19). 

P r o o f  of  Corollary 2 follows from Proposition 3 
and Corollary 1. 

P r o o f  of  Corollary. 3. (i) follows from Corollary 2 
and properties of regular variation of V. 

(ii) Proposition 3 yields 

0 2 

2t~2 ' 

The result follows from Corollary 1. 
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