
Information Processing Letters 22 (1986) 179-183 
North-Holland 

17 April 1986 

TWO TAGLESS VARIATIONS ON THE DEUTSCH-SCHORR-WAITE ALGORITHM 

Mark C. HAMBURG 

University of Michigan, Ann Arbor, MI 48109, U.S.A. 

Communicated by David Gries 
Received 30 November 1984 
Revised 5 June 1985 

Keywords: Data management, list processing, data structures, marking, tags 

1. Introduction 

We describe two variations on the Deutsch- 
Schorr-Waite (henceforth, simply D - S - W )  al- 
gorithm for marking finite, rooted, binary, di- 
rected graphs (henceforth simply referred to as 
graphs) which dispense with the tag bit while 
retaining the same overall structure. The first vari- 
ation handles all graphs, just as D - S - W ,  but 
trades average O(log n) (worst case O(n)) work- 
space and O(n) time for O(1) workspace and 
average O(n log n) (worst case O(n2)) time. The 
second variation achieves both O(1) workspace 
and O(n) time but at the expense of not being 
able to correctly handle cyclic graphs. The varia- 
tions demonstrate the gains that can be made 
through careful analysis of loop invariants and, by 
keeping the overall structure Of a well-known al- 
gorithm, represent a gain in clarity over previous 
tag-free marking algorithms [4]. We also present 
some arguments to support the conjecture that 
O(1) workspace and worst case O(n) time are not 
simultaneously achievable. 

2. Comparison with previous work 

Marking algorithms are extensively covered in 
several sources, for example, [1] and [2]. All these 
algorithms, however, require at least O(n) (worst 
case) workspace or require the graph to be stored 

in a particular format in memory (e.g., all links 
must point downward in memory). The best known 
work on tagless marking was done by Lindstrom 
[1,2]. His first algorithm, while elegantly simple, 
suffers from its inability to handle cycles predict- 
ably and, because it does not recognize shared 
subtrees, has worst case 0(2 n) time. His second 
algorithm solves these problems and achieves the 
some workspace and time complexities as the first 
variation on D - S - W ,  which we present here, but 
suffers from a convoluted operation/presentat ion 
that makes comprehension difficult. 

D - S - W  and its link-reversal technique have 
already given rise to several variations [2]. In its 
original form, the algorithm requires one tag bit 
per node, i.e., O(n) space. The tag bits can be 
replaced with a bit stack as deep as the deepest 
node in the graph, which reduces the workspace to 
average O(log n) but the worst case is still O(n). 
Knuth proposes to get around the need for a tag 
bit by using the atom bit as a tag bit during 
marking, but an atom bit is not guaranteed to be 
part of the structure since atoms may be identified 
by the region they occupy in memory rather than 
by a bit in each cell. 

Our first variation on D - S - W  avoids both the 
clarity and the workspace problems and marks 
both cyclic and acyclic graphs but gives up O(n) 
time. Our second variation on D - S - W  regains 
O(n) time but gives up the ability to mark cyclic 
graphs. 

0020-0190/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 179 



Volume 22, Number 4 INFORMATION PROCESSING LETTERS 17 April 1986 

3. Analysis of the Deutsch-Schorr-Waite  
algorithm 

In order  to prepare for the discussion of our 
variations on D - S - W ,  in this section we present  
our  version of D - S - W  and prove it to be correct 
and linear. 

We begin by describing our data  structure. It 
consists of a collection of  atoms and nodes and 
the special pointer  value vroot. Let x be a pointer. 
If 
x ^ is a node, then x ^ . l  and x ^ . r  are pointers to 
other  nodes or atoms, and  x ^ . m l  and x ^ . m 2  are 
boolean mark  fields (or a mark  field and a tag 
field). Initially, x ^ . l  = L X and x ^ . r  = R~.  If x ^ is 
an atom, then only the boolean mark  field x ^.m 
exists. Fur thermore,  predicate  atom ( x  ^) has the 
value "x  ̂  is an atom".  Pointer  value nil is as- 
sumed to point to an a tom in order  to avoid 
certain tests, but these tests can be added if this 
is not  the case. Pointer value vroot points to a 
node  with vroot^. l  point ing to the graph and 
vroot^ .r  = vroot. Finally, all the mark  fields are 
assumed to be reset at the beginning of the al- 
gorithm. 

Our version of D - S - W  maintains two pointers 
upper and lower, which delimit a pa th  in the 
original graph leading f rom upper  ̂  to lower  ̂  . Dur- 
ing operation,  there is a path  in the current  graph 
f rom upper  ̂  via left pointers to vroot  ̂ . We also 
use a switch dir with values up and down indicat- 
ing the direction we are moving in the graph. 
Initially, upper = vroot, lower points to the root of 
the graph, and dir = down.  Whenever  we encoun-  
ter a new node (i.e., an unmarked  node),  we set its 
ml-field,  add  it at the head of the path  traced out 
f rom upper  ̂ , and go mark  its left subgraph. U p o n  
returning f rom the left subgraph, as identif ied by 
the ml-f ie ld  being set but  the m2-field still reset, 
we set the m2-field to indicate on return to this 
node that both subgraphs have been marked,  save 
the pointer  to the left subgraph in the r-field, and 
go mark the right subgraph. U p o n  returning f rom 
the right subgraph, we restore the pointers and 
ascend the path f rom upper  ̂  in search of a node  
for which the right subgraph has not  yet been 
marked.  If we ascend all the way to vroot  ̂ , then 
we are done. Whenever  we encounter  an atom, we 

mark  it and begin ascending. Whenever  we en- 
counter  an old (previously marked)  node during 
descent,  we simply begin ascending. 

The state of affairs created by the operat ion of 
D - S - W  is captured in the following five-piece 
invariant: 

(i) There is a path P of nodes in the current  
graph leading f rom upper  ̂  to uroot ̂  via left 
pointers. 

(ii) Every node x ^ not  on P has x ^.l = L x and 
x ^ . r  = R x 

(iii) Every unmarked  node reachable in the 
original graph is reachable in the current  graph via 
a path  of unmarked  nodes starting with either R x- 
where x ^ is a node on path P or with lower ̂  if 
dir = down. 

(iv) If upper^ .m2 is set, then lower = R uppe r 

and upper^.r  = Lupper; otherwise, l o w e r =  Luppe r 
and  upper ̂  . r = R upper" 

(v) For all nodes x ^ on path P except vroot ̂ , 

i f  x ^ . l ^ . m 2  is set, then x = R x - t  and x ^ . l ^ . r  = 

L~,-.~; otherwise, x = L;.~ and x ^ . l ^ . r =  Rx-.~. 

D - S - W  is then given as follows: 

upper,  lower, dir .'= vroot, vroot^.l ,  down; 

do (upper < > oroot or dir < > down)  

if descent-to-new-node 
lower, lower^.l ,  upper, l o w e r ^ . m l  := 
lower^.l ,  upper, lower, true 

[2 ascent-from-left-subgraph 
lower, upper^.r ,  upper^ .m2,  dir-'= 

upper^.r ,  lower, true, 

[] ascent-from-right-subgraph 
lower, upper, upper^.l ,  upper^ .r  .'= 
upper, upper^.l ,  upper^.r ,  lower 

[] descent-to-atom 
lower ̂ . m,  dir := true, up 

[] descent-to-old-node ~ dir := up 

fi 
od 

where the tests in the guarded-command  condi- 
tional statements are as follows (eand is a short- 
circuiting and): 

descent- to-new-node - - 
dir = down and not atom (lower  ̂ ) eand not 
l ower^ .m l  

180 



Volume 22, Number 4 INFORMATION PROCESSING LE'VI'ERS 17 April 1986 

ascent-from-left-subgraph - - 
dir = up and not upper  ̂ . m2 

ascent-from-right-subgraph - - 
dir = u p  and upper ^. m2 

descent- to-atom - - 
dir = down  and atom (lower  ̂ ) 

descent-to-old-node - - 
dir = down  and not atom ( lower  ̂ ) eand 
lower  ̂  . m l  

To see that this loop is executed a linear num- 
ber of times, we observe that success for the tests 
of the first two guarded-command conditional 
s tatements will result in a mark field being changed 
from fa l se  to true, and hence each of these tests 
only succeeds n times. Success for the third test 
will result in one node being removed from path 
P. Since nodes are only added through the first 
guarded-command  conditional statement, only n 
nodes will be added to path; this test, therefore, 
succeeds n times. The last two conditions only 
succeed when dir = down and change dir to up; 
therefore, dir must be reset to down between each 
success for either of these tests, i.e., the second test 
must  have succeeded at some intervening time. 
Hence, together, these tests succeed n + 1 times. 
Thus, the total number  of times any of the tests 
can succeed is 4n + 1. The disjunction of the tests, 
however, is a tautology and, so, every time the 
loop is executed, one of them must  succeed. The 
loop, hence, is executed at most 4n + 1 times, and 
the algori thm has O(n) time. 

U p o n  terminat ion of the loop, upper = vroot 
and dir = down,  so path P will consist only of 
vroot  ̂ , and  by invariants (ii) and (iii), the data 
structure will be correctly marked (i.e., all nodes 
reachable in the original graph will be marked and 
all pointers  will be returned to their original val- 
ues). 

4. Variations on the D e u t s e h - S c h o r r - W a i t e  
algorithm 

Our first variation is the result of the observa- 
tion that a sixth statement may be added to the 
above invariant: 

(vi) For  all nodes y^ ,  y ^ . m l  is set iff either 
y^.  m 2  is set or y^ is on path P. 

Using this new invariant, we see that we can 
remove all references to the ml-fields from the 
code for D - S - W .  At termination, the m2-fields in 
all of the nodes reachable in the original graph 
will be set, so we can treat this field as the mark 
field rather than as the tag field as it is tradition- 
ally considered. (Hence, the choice of the names 
m l  and m2 rather than m a r k  and tag,.) In the first 
guarded-command conditional statement, we sim- 
ply eliminate this field from the block set op- 
eration. In the first and fifth tests, we replace the 
test of l ower^ .ml  with the disjunction ( l o w e r ^ . m 2  
or onpath ( lower) )  where onpath ( lower )  is a pre- 
dicate which scans path  P searching for node 
lower  ̂  , returning true if it finds the node before 
reaching vroot ̂ , and returning false  otherwise. To 
avoid making the execution speed any worse than 
necessary, a short-circuiting or should be used. A 
further improvement  in execution speed can be 
gained by keeping track of the shallowest node on 
path  P for which the m2-field has not been set 
and stopping the search if this node is reached 
without finding node lower  ̂  . Even with these im- 
provements,  onpath ( lower )  takes time propor-  
tional to the depth of node lower  ̂  in the original 
graph which averages O(log n) and worst case is 
n. Hence, this variation, while eliminating one of 
the mark fields (i.e., eliminating the tag), raises the 
time complexity from O(n)  to average O(n log n) 
and worst case O(n 2 ). 

Our next variation comes as a result of the 
observation that, by parts (iv) and (v) of the 
invariant, onpath ( l owe r )  will only succeed if a 
cycle exists in the original graph. Hence, our  sec- 
ond variation simply eliminates the onpath tests 
from the preceding variation. This restores the 
algorithm to operating in O(n)  time but at the 
cost of the additional precondit ion that the graph 
be known to be acyclic. Actually, this is not  all 
that difficult to be sure of in a normal LISP-sys- 
tem. If onpath ( l ower )  never succeeded during the 
marking phase of the previous garbage collection 
or the graph was known to be acyclic at that time 
and, since then, none of the primitive operations 
capable of forming cyc les - -and  this set of oper- 
ations is usually quite small (e.g., rplaca, rplacd, 
rplacb, and neonc) - -have  been used, then the 
graph must be acyclic~ 

181 



Volume 22, Number  4 I N F O R M A T I O N  P R O C E S S I N G  L E T F E R S  17 April 1986 

Thus, analysis of loop invariants for D - S - W  
has enabled us to eliminate the tag bits from the 
algorithm. If we know the graph is acyclic, then 
this can be done without additional cost, but if 
cycles are possible in the graph, then linear time 
must be abandoned for worst-case quadratic time 
to eliminate the tag bits. This, unfortunately,  
makes the first variation only of academic interest. 

5. A conjecture 

One consolation is that it may be impossible to 
mark all cyclic structures using a bounded  work- 
space while maintaining linear time complexity. 
We present the outline of an argument  (not a 
proof) as to why this conjecture might  be true. 
The argument  is based on the following summary 
of the operation of any marking algorithm: 

The algorithm in some way maintains a number  of sets 
of nodes. These sets are in a specific order, and each 
step in the algorithm involves modifying a node a n d / o r  
moving it to a higher order set. U p o n  reaching the 
highest set, the pointers in the node are the same as they 
were initially, and the mark field in the node is set. 
During any given step, when a node is processed, one of 
its links may be followed to find a possibly new node. 
(The only node in the sets initially is vroot^.) If the node 
is not already in one of the sets, it is added to one of the 
sets. This process continues until all of the nodes are in 
the final set. 

In order for the algorithm to operate in linear 
time, each of the steps above (getting a node from 
one of the sets other than the final set, moving it 
to a new set, testing possibly new nodes for mem- 
bership in the sets, and adding definitely new 
nodes to the sets) must operate in average time 
independent  of the number  of nodes and of the 
graph structure. Hence, constant t ime may only be 
exceeded for a decreasing fraction of the oper- 
ations on nodes as n becomes large. For  example, 
Morris's tree-traversal algorithm contains two 
nested loops each of which may take up to n 
cycles to complete, but maintains O(n)  time be- 
cause the inner-loop can execute at most  2n times 
[5]. Hence, the number  of times the inner loop can 
take say O(log n) time to execute is O ( n / l o g  n). 
Thus, as n gets large, the fraction of the execu- 
tions of the outer loop for which the inner loop 

takes greater than constant time gets small. The 
argument is based on indications that these tasks 
cannot  all be achieved with constant average time 
if the workspace is restricted to the pointer and 
mark fields and a fixed number  of additional 
pointers and other constant width variables. 

To see that this is likely to be the case, we make 
the following initial observations. First, because 
only one link may be processed at a time on a 
node, there must be at least three sets being 
manipulated by the algorithm (i.e., no links 
processed, one link processed, and both links 
processed). D - S - W  and our variations all use 
four sets. To test membership in a fixed time, the 
algorithm must be able to check a boolean field in 
each node which is set when the node is added to 
one of the sets. (This can be shown to be the case 
by noting that, otherwise, the algorithm would 
have to scan through all of its pointers and all of 
its sets looking for the node since, in a cyclic 
graph, a pointer can lead anywhere, and hence, no 
nodes could be excluded from the search.) This 
field can only be the mark field. With the mark 
field in use, the algorithm must encode al other 
necessary information (e.g., which of the three or 
more sets the node is a member of) in the link 
fields of the data structure. Studies of the informa- 
tion needed in these fields merely to define the 
structure, however, indicate that the space is prob- 
ably not available in a form which can be accessed 
in fixed time. The possibility of merely maintain- 
ing a fixed average time for each of the operations 
which does not vary when n is changed is also 
unlikely to be possible, since, as indicated above, 
as n increases, the nodes requiring nonconstant  
time for any of the operations must be a decreas- 
ing fraction of all the nodes, but the structures 
which require nonconstant  time can appear with 
increasing frequency in the graph. Because these 
last two points have not been formally proven yet, 
this limitation on marking algorithms is now only 
a conjecture. 

6. Conclusion 

We have demonstrated that a tagless variation 
on the Deutsch-Schor r -Wai te  algorithm exists 

182 



Volume 22, Number 4 INFORMATION PROCESSING LETTERS 17 April 1986 

which has O(1) space, but  O(n log n) (worst case 
O(n2)) time. We have also demonstrated that a 
second variation which only works on acyclic 
graphs can achieve linear time as well as constant 
workspace. We have also indicated why linear 
time and constant  workspace may not be simulta- 
neously attainable by any algorithm on all graphs. 
If true, this would imply that, while there is space 
for addit ional  information in the pointer fields of 
the nodes, this information is not available for 
rapid exploitation without placing additional con- 
straints on the storage format. The questions that 
remain to be answered are whether the conjecture 
is correct, and whether or not an algorithm can be 
constructed having either better average or better 
worst-case time complexity than our variations on 
D - S - W .  If it turns out that linearity is impossi- 
ble, a next best step might be an algorithm that 
could be applied to all graphs and that was linear 
for a significant subset of them (e.g., all acyclic 
graphs). This is a research problem, too. 

Acknowledgment 

I am grateful to Gary Knot t  who introduced 
me to this problem and has been encouraging me 
to write this paper for the past three years. David 
Gries, in his initial critique of my writing, was also 
of immeasurable assistance in helping me to see 
what  was needed for the presentation of these 
results. Finally, I would like to thank Westing- 
house and the Science Service for the financial 
support  for college they have given me based on 
the results presented here. 

References 

[1] J. Cohen, Garbage collection of linked data structures, 
Computing Surveys 13 (3) (1981) 341-367. 

[2] D.E. Knuth, The Art of Computer Programming, Vol. 1: 
Fundamental Algorithms (Addison-Wesley, Reading, MA, 
2nd ed., 1973). 

[3] G. Lindstrom, Scanning list structures without stacks or tag 
bits, Inform. Process. Lett. 2 (2) (1973) 47-51. 

[4] G. Lindstrom, Copying list structures using bounded 
workspace, Comm. ACM 17 (4) (1974) 198-202. 

[5] J.M. Morris, Traversing binary trees simply and cheaply, 
Inform. Process. Lett. 9 (5) (1979) 197-200. 

183 


