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We analyze computational aspects of partially ordered quantification in first-order logic. 
show that almost any non-linear quantifier, applied to quantifier-free first-order formtt 
suffices to express an N~-complete predicate. The remaining non-linear quantifiers expJ 
exactly co-NLe predicates. 

Introduction 

Certain applications of logic to computer science, for example those discus: 
in [4], have the following features: only finite models are of interest, 
first-order logic is not sufficiently expressive. Accordingly, various extensions 
first-order logic have been proposed and analyzed for finite structures. " 
analysis often reveals connections with computational complexity, and ind 
some of the extensions were proposed just for the purpose of obtaining s 
connections. (See [4], [7] and the works cited there.) It is natural to consider ~ 
those extensions of first-order logic which appear in the logical literature 
whose introduction was motivated by considerations quite distant from comp~ 
science. 

One such extension, perhaps the oldest that can be meaningfully applie~ 
finite models, is the logic with partially ordered quantification introduce¢ 
Henkin [6]. We show in this paper that formulas obtained from first-order a 
by application of these so-called Henkin quantifiers axe able to express . 
complete properties of finite structures, for example 3-colorability of t 
graphs. This expressive power persists even if rather stringent restrictions 
imposed on the Henkin quantifiers. However, Henkin quantifiers of 
extremely restricted sort, which we call narrow Henkin quantifiers, express, 
applied to first-order formulas, exactly the co-N~ properties of finite structu 

We use the customary notations and conventions of first-order logic 
equality, except that we also allow Boolean variables, a~, f l , . . . ,  which 
over {true, false}. These can easily be eliminated by coding, but the coding ,~ 
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make some formulas unnecessarily complex. Formally, we work with a two-sorted 
language whose second sort is to be interpreted as {true, false} in all structures 
and therefore need never be specified when we define a structure. We can view 
predicates as functions whose values are of this second sort. 

We frequently consider algorithms taking finite structures S (for a finite 
vocabulary a) as inputs. In such situations, we always assume that the universe of 
S is (0, 1, . . . , n - l}, for the appropriate natural number n, and that the 
structure is presented in some standard format whose length and n are bounded 
by polynomials of each other. 

1. What are Henkin quantifiers? 

In [6], Henkin introduced several new sorts of quantifiers, including partially 
ordered quantifiers as in the expression 

This expression means that for every x1 there is a y, and for every x2 there is a y2 
depending only on .x2 such that @(x1, x2, y,, y2). More formally, it means that 
there are functions Yl(xl) and Y2(x2) such that 

Henkin asked whether (1) is expressible in first-order logic (if # is) and, if not, 
whether first-order logic enriched by 

11 

(” “) 'dx2 3Y2 

is recursively axiomatizable. Ehrenfeucht answered both questions negatively by 
showing how to express the quantifier “for infinitely many x” in this enriched 
logic; his solution is given in [6]. 

Henkin quantifiers were extensively studied by Walkoe [lo], who considered 
them to be strict partial orders Q = (AP, Cp) where A, is a finite set of ordinary 
first-order quantifiers and Ce describes the dependence relationships between the 
existential and universal quantifiers in A,. The meaning of such a quantifier 
Q is defined, as for (l), by Skolemization. For example, if A, = 
{Vxl, Vx2, Vx3, 3y,, 3y2, 3y3} and cp is given by Vx&3yj when i fj as in the 
figure 
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then Q @(XI, ~2, ~3, ~1, ~2, ~3) means that there are binary functions &, y2, y3 
such that 

Notice that the only relevant information in Ce is what universal quantifiers 

precede what existential quantifiers. Walkoe calls this the essential order of Q, 

while Henkin considers, in effect, only orders where all of ce is essential. The 
linearly ordered quantifier strings of ordinary first-order logic correspond to 
the linear Henkin quantifiers, in which -+ is linear or (since we can ignore the 
inessential part of -$) the existential quantifiers are linearly preordered by the 
inclusion relation on their sets of universal predecessors. 

Following Walkoe, we call a Henkin quantifier standard if A, is the disjoint 
union of chains (with respect to -$) in each of which the last member is 
existential and all the others are universal. Such a quantifier, like that in (l), can 
be written as a sequence of rows each of which consists of universal quantifiers 
followed by a single existential quantifier. It is not difficult to express an arbitrary 
Henkin quantifier by means of a standard one. For example, if Q is the 
six-element quantifier above, then Q $(x1, x2, x3, yl, y2, y3) is equivalent to 

( 1 vx1 .vx; $2 [Xl = x; A x2 = d A x3 =x;+ 44x1, x2, x3, Yl, y2, Y3)l. 

vx; vx; 3y3 

The concatenation of two Henkin quantifiers is equivalent to a single Henkin 
quantifier. For example, 

is equivalent to the quantifier Q with domain {Vxl, Vx2, Vx3, Vx4, 3y,, 3y2, 

3~3, 3~~) and 
3y, preceded by Vxl, 
Sy2 preceded by Vx2, 

3y3 preceded by Vxl, Vx2, and Vx3, and 
3y4 preceded by Vxl, Vx2, and Vx4. 

It follows easily that any formula built according to the formation rules of 
first-order logic but allowing positive occurrences of Henkin quantifiers can be 
rewritten as a single standard Henkin quantifier followed by a quantifier-free 
first-order formula. Walkoe showed [lo, Theorem 4.31 that the expressive power 
of such formulas is exactly the same as the expressive power of existential 
second-order formulas. For example, the sentence 

3R VXYZ [(R(x, y)+ R(x - 2, y - 2)) A R(a, b) A +b, a)] 
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can be rewritten to make the arguments of R simply variables, 

3 R  Vxyzuv[ (R(x ,  y )  A U = X . Z A V = y . Z ~ R(u ,  v) )  

A (X : a A y : b ~  R(x ,  y ) )  

^ ( x = b  A y=a---> ~ R ( x ,  y))], 

and can then be written in Henkin quantifier form as 

( Vx Vy 
Vu Vv -I/3 

Vz 

[ (X = U A y = V"-> tr = /3 ) 

A(tr  A U = X " Z A v = y " z---> /3 ) 

A ( X = a A y = b - - - ~ t r )  A ( x = b  A y = a---*~tr)]. 

Here a~ and fl are Boolean variables. So the associated Skolem functions are 
actually binary predicates, and the conjunct (x = u A y = V ~ tr =/3) forces them 
to be the same predicate R. The remaining conjuncts are essentially copied from 
the previous version of the formula, and the last row of the quantifier should, if 
we insist on standard form, have a dummy existential quantifier added. The same 
rewriting procedure can be applied to any second-order existential formula once 
it has been put into Skolem form so that all its first-order quantifiers are 
universal. 

In Theorem 1 below, we apply this result of Walkoe to give the simplest 
connection between Henkin quantifiers and complexity theory. Before stating the 
theorem, we introduce some useful terminology. 

By an l-ary global predicate for a vocabulary a, we mean a function at assigning 
to each finite a-structure S an l-ary predicate atS:st---> {true, false}. The decision 
problem for at is the problem specified by: 

Instance. A finite a-structure S and ti e S ~. 
Question. Does ats(ti) hold? 
In particular, any formula q~ with l free variables defines an l-ary global 

predicate. When l = 0, the decision problem for this global predicate is the 
problem of deciding, for any given structure, S, whether the sentence q~ is true 

in S. 

Theorem 1. For any global predicate at, the fol lowing are equivalent. 

(1) The decision problem for  at is in Ac~. 

(2) ~r is expressible by an existential second-order formula.  

(3) at is expressible by a formula  Qdp where Q is a Henkin  quantifier and dp is a 

quantifier-free first-order formula.  

ProoL The equivalence ( 1 ) o  (2) is a theorem of Fagin [2], and the equivalence 
(2) o (3) is the theorem of Walkoe cited above. [] 
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2. Henkin quantifiers and N~-complete problems 

Theorem 1 implies in particular that the global predicate defined by a formula 
Q~, with Q a Henkin quantifier and ~ a quantifier-free first-order formula, can 
be Y~-complete.  In this section, we investigate how complicated Q must be in 
order for this phenomenon to occur. Useful measures of the complexity of Q, for 
this purpose, are the number of rows (if Q is standard) and the type m individual 
or Boolean - -  of the existentially quantified variables. For the sake of brevity, we 
call a Henkin quantifier mighty if, by applying it to a quantifier-free first-order 
formula, one can define an :O'S-complete global predicate. Linear Henkin 
quantifiers are, of course, not mightly unless ~ =  ~ =  Ac~, since first-order 
definable predicates are in ~ (logspace computable). We shall show in this 
section that almost any non-linear Henkin quantifier is mighty. 

In the first place, as long as the existentially quantified variables are individual 
ones ranging over the universe of the structure, rather than Boolean ones, all 
non-linear Henkin quantifiers are mighty. 

Theorem 2. The quantifier ( VX1 3y1~ \VX2 3y2] is mighty. 

Proof. In a vocabulary tr with a binary predicate symbol E and three constant 
symbols 0, 1, 2, let ~ be the conjunction of 

Xl = X2-'~ Yl = Y 2 ,  

Y l = 0 v y l = l v y l = 2 ,  and 

EXlX2-'-~ Yl ~ Y2. 

Then, in any a-structure where 0, 1, 2 denote distinct elements, 

Vxl 3y1~ 

Vx2 3y2/~ 

holds if and only if the graph defined by E is 3-colorable. It is well-known [3] that 
3-colorability is an ~C~-complete problem. [] 

Observe that, in the proof of Theorem 2, the existentially quantified variables 
ranged, in effect, over only a three-element set, because of the second conjunct in 
9. If we introduce 'almost Boolean' variables/~, v to range over {0, 1, 2}, then 
the same proof shows: 

Corollary. (Vxl 21p \¥x2 3v)  is mighty. [] 
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It is natural to try to obtain a similar result with Boolean variables a~, fl in place 
of the almost Boolean ones. We shall see later that this cannot be done without 
proving Ar~ = At#. In the next two theorems, however, we almost achieve this 
replacement. 

Theorem 3. 
Vx 3 ~ )  

Vy 3fl 
Vz 37 

is mighty .  

Proof. Think of a Boolean circuit built from binary NAND-gates (where NAND 
means negated conjunction) as being a structure for the vocabulary a that consists 
of a constant symbol c (designating the output node) and a binary relation symbol 
I (where I ( x ,  y )  means that node x produces one of the two inputs to node y). We 
assume, without loss of generality, that the two inputs two each NAND-gate 
come from distinct nodes; at worst we just make two copies of every node: Then 
the AC~-complete satisfiability problem--decide whether such a circuit has 
output true for some inputs is given by the formula 

Vx 
3# vy 4, 

Vz 37 

where 4, is the conjunction of 

x = y---> 0: = fl, y = z---> fl = 7, z = x---> 7 = 0:, 

I(X, Z) A I (y ,  z )  A x ~ y"-> 7 ='a(0: A fl) ,  and x = c---> 0:. 

(The third of the five conjuncts is redundant but was included for symmetry.) [-7 

Vx  30:)  is mighty .  Theorem 4. Vy =l/z 

Proof. Think of Boolean circuits as in the previous proof except that, for each 
NAN-D-gate, we distinguish a left and a right input. Thus, ~ now contains c as 
before and two binary predicates L and R whose disjunction would be the 
previous L The satisfiability problem is described by 

where 4, is the conjunction of 

x = y--> (0: ~-> ( l~ ¢ O ) ), 

X - ' C - ' > 0 :  

( - a t r ) ^  (L (x ,  y )  v R ( x ,  y))--> !~ :/: O, 
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oc ^ L(x,  y ).-.~ ~ :~ 1, 

tr ^ R (x, y )"~ l~ ~ 2. 

and 

To see this, note that our formula asserts the existence of a function o~ =f (x )  
from the set S of nodes to {true, false} (which is to describe the truth value 
computed at each node) and an auxiliary function # =g(y)  from S to {0, 1, 2} 
with the following properties. First f is false wherever g is 0 and f is true wherever 
g is 1 or 2, so g completely determines f. Second, the value of f a t  the output node 
c is true. And finally certain values of g(y) are prohibited if f had certain values at 
the two inputs to y. The prohibitions resulting from each of the last three 
conjuncts of ~ are shown in Table 1, along with the permitted values of g(y) and 

f(Y)- 

Table 1 

prohibited by conjunct 
f (left input) f (right input) (3) (4) (5) g(y) f(y) 

true true 1 2 0 false 
true false 0 1 2 true 
fake trae 0 2 1 true 
false false 0 1 or 2 true 

So our formula requires the NAND-gates to produce the correct outputs. [] 

3. Narrow Henkin quantiflers and nondetermini.ctic log space computability 

In this Section we study 'narrow' Henkin quantifiers of the form 

where a~, fl are, as before, Boolean variables while x and y are tuples of 
individual or Boolean variables. We say that x and y are compatible if they have 
the same length and have variables of the same type at corresponding positions. 
We write x = y  as an abbreviation for the conjunction of the equations x~ =y~ 
between corresponding components of x and y provided x and y are compatible; 
if they are incompatible, then x = y  means false. For future reference, we exhibit 
the definition, i.e. the Skolem form, of 

Vx ::t a,) 
vy $(x, y, a, 

it is 

3A 3B Vx Vy ¢(x, y, A(x), BOO). 
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If x and y are compatible and $ has the 'equality bound' form (x = y---> a~ = fl) ^ 
~p(x, y, or, fl), then this definition reduces to 

3A Yx Vy ~(x,  y, A(x),  A(y)).  

It will be convenient for us to view 2-SAT, the satisfiability problem for 
propositional formulas in conjunctive normal form with only two disjuncts in each 
conjunct, as a quantifier. Given propositional variables P 0 , . . . ,  Pn-1, consider a 
conjunction C of 2-disjunctions of the forms Pi v pj, P i v  7pj, "~pi v pj, and 
-api v -~pj. If we write p and 7p in the equivalent forms 

(true~-->p) and (false~->p), 

then C can be described by a predicate R on { 0 , 1 , . . . , n - 1 } ,  namely 
R(x, y, or, fl)~-->C has a conjunct (or ~->Px) v (fl ~py) .  Conversely, with each such 
quaternary predicate R we associate the Boolean formula 

A {(a"e>Px) v ( f l ~ p y ) : R ( x ,  y, ol, fl)}. 

Let (2-SATx, y, or, fl) R(x, y, ol, fl) mean that this Boolean formula is satisfiable. 
More generally, let 

(2-SAT x, y, or, fl) ¢(x, y, a~, fl) 

be interpreted as true in a structure S if and only if the Boolean formula 

/~ {(ac~->px) v (fl ~-->p,): q~(x, y, re, fl) holds in S} 

is satisfiable. 
Satisfiability of such a Boolean formula means that there exist suitable truth 

values for all the propositional variables Px and py. These truth values define 
predicates A and B on S, where A(x)  holds if and only if Px was assigned the 
value true, and similarly for B. (If x and y are compatible then A and B must 
coincide.) Thus, the formula 

(2-SAT x, y, o~, fl) ¢(x, y, t~, fl) 

is equivalent to 

::IA ::le Vx Vy [(x= y--~ ( A ( x ) o  B(y))) ^ -ndp(x, y, 7A(x), -"B0'))]. 

If x and y are compatible, this reduces to 

3A Vx Vy "adp(x, y, -aA(x), -aA(y)). 

The main result of this section is that narrow Henkin quantifiers are equivalent, 
in a suitable sense, to the quantifiers 2-SAT. 

Theorem 5. Narrow Henkin quantifiers and 2-satisfiability quantifiers are each 
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expressible by means of  the others. More precisely: (V/3~) 
(i) Vy :lfl ~p(x, y, o6 fl) is equivalent to 

(2-SAT xy, y6, tr, fl) (y ^ -76 ^ -~(x ,  y, ~a~, -~fl)) 

(ii) (2-SAT x, y, tr, fl) ~p(x, y, o6 fl) is equivalent to 

(¥x 3~) 
vy 3t~ [ (x:  y - ,  ~ :  t~) ^ -~¢,(x, y, ~,~, -~t~)]. 

Proof. Part (ii) is immediate, by comparison of the existential second-order 
forms given above for 2-SAT and for narrow Henkin quantifiers. For part (i), we 
have the following list of formulas in which the equivalence of each consecutive 
pair is clear either from the discussion above or from pure logic. 

(2-SAT xy, y6, 06 fl) (y ^ ~6  ^ ~p(x,  y, ~ol, -~fl)), 

=lA =lB Vxy Vy6 [(xy = y6 --> (A(xy) ~ B(y6))) 

^ -7(y ^ -16 ^ -7dp(x, y, A(xy) ,  B(y6)))], 

3A 3B Vxy Vy6 [ (xy - y6--~ (A(xy) ~ BO,6))) 

^ (y ^ ~6--, ~(x, y, A(xy), B(y6)))], 
:IA :IB Vx Vy ~p(x, y, A(x true), B(y false)), 

3A'  :IB' Vx Vy ~p(x, y, A ' (x) ,  B'(y)), 

(Vx :~,~) 
vya/~ $(x, y, ~, [3). [] 

The following corollary is obtained by combining Theorem 5 with the 
well-known result [8] that the unsatisfiability problem for conjunctive normal 
forms with two literals per clause is complete, with respect to log space 
computable reductions, for the class ~ of languages nondeterministically 
recognizable in log space. 

Corollary. All global predicates defined by formulas o f  the form 

(Vx 3a) 
vy 3~ $(x, y, ~, ~) ,  

with first-order ~p, are in co-~rZ, and some of them, even with quantifier-free ~p, 
are complete for co-.Af~. [] 

In particular, the narrow Henkin quantifier is not mighty unless co-.AfZ = N ~  
(which would imply N Z  = ~ = N~).  

In part (ii) of Theorem 5, we showed how to express 2-SAT by means of an 
equality bound narrow Henkin quantifier, i.e., the first conjunct after the 
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quantifier requires the two Skolem functions to coincide. Combining this 
observation with part (i), we find that every narrow Henkin quantifier can be 
expressed by an equality bound one. Indeed, we find that 

Vx Ba:) 
Vy3,8 e:(x, y, #) 

is equivalent to 

Vxy =la:) 

vya [(xy =ya - - ,  ^ ^ y, 

This is easily verified directly (without 2-SAT), and the same method can be used 
to change any Henkin quantifier into an equality bound one, at the cost of 
introducing additional universally quantified Boolean variables. 

Immerman [7] extended first-order logic by adding various operators, including 
the transitive closure operator TC, and obtained connections between these 
extended logics and various complexity classes. In the next theorem, we exhibit a 
close connection between TC and narrow Henkin quantifiers. Combining this 
connection with Immerman's results, we obtain a corollary characterizing, more 
precisely than Theorem 5 does, the expressive power of narrow Henkin 
quantifiers in logic with linear order. 

Following Immerman, we write TC ~p(x, y), with compatible k-tuples x and y, 
for the reflexive transitive closure of the binary relation on k-tuples defined by 
the formula ~p. That is, TC ~p(x, y) is equivalent to the disjunction, over all n ~> 0, 
of the formulas 

3ZO" " " Zn(X - -  Z0 h ~ ) ( Z 0 ,  Z l )  A ~1)(Zl, g 2 )  A "  • • A ~l)(Zn-1, Zn) A Zn =y)'~ 

it is also equivalent to the second-order formula 

-~:IA [A(x) ^ nA(y) A YU YV (A(u) A V2(U, v).--)A(v))]. 

(Think of A as the set accessible from x.) The notation TC ~p(x, y) is poorly 
adapted to situations where ~p contains additional variables as parameters or 
where terms are to be substituted for x and y.  For example, if E is the edge 
relation of a graph, then TC E(x, y) means x is connected to y, so, to say that 
F(x) is connected to F(y), where F is a function from vertices to vertices, one 
would write TC E(F(x), F(y)); but this last formula also represents the transitive 
closure of the relation "F(x) is adjacent to F(y)", and this transitive closure 
amounts to "F(x) is connected to F(y) by a path all of whose vertices are in the 
range of F". Ambiguities like this can be avoided either by adopting a more 
accurate but longer notation, as in [4], or by ad hoc conventions. For our present 
purposes, it will suffice to adopt the convention that, if x and y are the specified 
k-tuples of free variables of ~p, then TC ~p~, q), for terms p,  q, means the result 
of substituting p for x and q for y in TC ~p(x, y), not the transitive closure of 
v(p, q). 
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Theorem 6. Narrow Henkin quantifiers and transitive closures can be expressed in 
terms of each other; positive occurrences of either can be expressed by negative 
occurrences of the other. 

Proof. To express TC in terms of a narrow Henkin quantifier, it suffices to 
rewrite the second-order form given above of the definition of TC as 

_~(Vu 3 u )  [(u = v-- ,  ~ =/~) ^ (u = x ~  ~) ^ (u = y - - , - ~ )  
~Vv ~/~ ^ (~ ^ ~:(u, v )~ /~ ) ] .  

For the other direction, we note first that any narrow Henkin quantifier can be 
expressed by one whose tuples of universally quantified variables are compatible: 

(V~y' 3c~ 

where x '  and y '  are tuples of dummy variables compatible with x and y 
respectively. By a remark above, we can also assume, without loss of generality, 
that  we are dealing with an equality-bound quantifier. We therefore wish to 
express, in terms of (negatively occurring) TC, a formula 

3A Vx Vy ¢(x, A(x), y, A(y)). 

Think of this formula as asserting the existence of an assignment A of truth values 
A(x) to all tuples x of the appropriate type, such that all instances of 
dp(x, A(x), y, A(y)) are true. If, for certain x, a:, y, and fl, tp(x, a:, y, ~fl) is false, 
and if we assign x the value m, then we must not assign y the value ~fl, for then 
we would not satisfy dp(x, A(x), y, A(y)), so the value a: for x forces the value fl 
for y. The same holds if ~0 ' ,  ~fl, x, ~) is false. Let ~p(x, a:, y, fl) be the formula 

- ~ ( x ,  ~, y,-~/~) v - ~ ( y ,  "~/~, x, ~); 

whenever it holds, the value a~ for x forces the value fl for y. Since this 'forcing' is 
clearly a reflexive transitive relation on tuples xcr, we see that xa: forces yfl 
whenever TC ~p(x, a:, y, fl) holds (where xa: and yfl are the specified tuples of 
variables for the application of TC). In particular, if TC ~p(x, a:, x,-~a:) then x 
cannot be assigned the value or, and therefore, for an assignment A of the desired 
sort to exist, it is necessary that 

3x 3tr  [TC lp(x, a:, x, ~t~) ^ TC ~p(x, ~tr, x, tr)]. 

We complete the proof of Theorem 6 by showing that this necessary condition is 
also sufficient. 

First, make the preliminary observation that. ~p(x, a:, y, fl) and therefore also 
TC ~(x,  a:, y, fl) are invariant under the operation of interchanging x and y while 
simultaneously interchanging and negating a: and ft. 

In any structure, TC ~p defines a pre-ordering ~ (i.e. a reflexive transitive 
relation) on the tuples xtr. Negating the last component of a tuple defines an 
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anti-automorphism of this pre-order (by the preliminary observation) of order 
two. Furthermore if the structure satisfies the necessary condition above, then we 
never have xa~ and x ~  a~ each ~< the other. 

Lemma. Let (X, <~) be a finite pre-ordered set, and let i :X---> X be an order- 
reversing function such that every x ~ X satisfies i(i(x))= x and either x ~ i(x) or 
i(x) ~ x  (or both). Then there is a subset T of  X, closed upward for <~, containing 
exactly one of  x and i(x) for each x ~ X. 

Granting the lemma for the moment, we apply it to the set of tuples xtr, 
pre-ordered according to TC ~/,, with i(xo:)= x ~  ol. We obtain a set T as in the 
conclusion of the lemma, and we define A(x) to be true if and only if x true e T, 
or equivalently x false ~ T. Thus, we always have xA(x) e T and x ' lA(x )  ~ T. 
This assignment A has the desired property that dp(x, A(x), y, A(y)) holds for 
all x and y. To see this, suppose x and y were a counter-example, i.e., 
~dp(x, A(x), y ,A(y ) )  holds. Then ~(x ,A(x) ,  y, ~A(y)) would hold and, as ~/, 
implies TC ~p, we would havexA(x)<-y-~A(y).  B u t x A ( x ) e  T, y-~A(y)¢  T, and 
T is closed upward, a contradiction. This completes the proof of Theorem 6, 
assuming the lemma. 

Proof of  Lemma. We proceed by induction on the number of elements of X, the 
case X = gl being vacuously true. If X :~ ~, consider an arbitrary x e X. Replacing 
x with i(x) if necessary, we may assume x ~ i(x). Then we decide to put into 
(resp. out of) T all elements ~>x (resp. ~<i(x)); there is no conflict here, as 
x ~ i(x). Note that an element y has been put into T if and only if i(y) has been 
put out of T. The set Y of elements whose membership is still in doubt is smaller 
than X (as x ~ Y). Apply the induction hypothesis to Y, with the restrictions of ~< 
and i, to get T' ~_ Y satisfying the conclusion of the lemma for Y. Finally put all 
members of T'  into T and put all members of Y -  T' out of T. It is easy to verify 
that T has all the required properties. [] 

Remark. A compactness argument shows that the lemma holds without the 
hypothesis that X is finite. 

By 'logic with linear order' ,  we mean logic with an additional logical symbol ~<, 
which functions syntactically as a binary predicate symbol, and which is 
interepreted in every structure as the usual ordering of the universe 
{0, 1 , . . . ,  n -  1}. Immerman [7] proved that the global predicates definable in 
first-order logic with linear order augmented by TC are exactly those that are in 
the log-space hierarchy 2 ' .  L. He also proved that, if we allow only positive 
occurrences of TC, then exactly the N ~  global predicates are expressible. 

The following corollary is obtained by combining these results with Theorem 6. 
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Corollary. The global predicates definable in first-order logic with linear order 
augmented by narrow Henkin quanttfication are exactly those that are in the 
log-space hierarchy. I f  only positive occurrences of  narrow Henkin quantifiers are 
permitted, then exactly the co-N~ global predicates are definable. [] 

4. Remarks 

(A) In the proofs of Theorems 2, 3, and 4, one can fairly easily reduce the 
vocabulary a that is needed. For example, if we take the Boolean circuits in the 
proof of Theorem 4 to be trees, then the two binary predicates L and R can be 
replaced by a single binary predicate, namely the union of L and R augmented by 
loops at the left sons of all nodes. We have made no serious attempt to determine 
the minimal vocabularies for which these results hold. 

(B) In Sections 2 and 3 we used the type windividual  or Boolean of 
existentially quantified variables as an essential ingredient in our classification of 
Henkin quantifiers according to might. It is natural to ask whether the results 
could be extended by taking into account the type of the universally quantified 
variables. Such an extension is easily obtained by observing that universally 
quantified Boolean variables can be eliminated in favor of additional rows in the 
quantifier. Specifically, 
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Proof. If the condition is satisfied, then Q has at least the expressive power of 

either ( ) Vx Vx :Ia' 
Vy or Vy :I# 
Vz :I), 

and is therefore mighty by the results of Section 2. If the condition is not satisfied, 
then by eliminating universally quantified Boolean variables as above, from rows 
without universal quantifiers, we can rewrite any formula Q$  as Q'dp' where Q'  
has, apart from rows consisting just of a single existential quantifier, either just 
one other row, or two other rows both of whose existentially quantified variables 
are Boolean. The existential quantifiers that are in rows without universal 
quantifiers can, without changing the meaning of the formula, be moved to the 
left, s ince(~)~  is logically equivalent to (:Ix) R~b. Thus, we can rewrite Q ' ~ '  in 
the form 3x Q"$ ' ,  where Q" consists of those rows of Q'  that contain universal 
quantifiers. But, because of the limitation on such rows in Q' ,  we know that Q" is 
either linear or narrow, so the global predicate defined by Q"~'  is at worst 
co-2¢'~. This complexity estimate is preserved by first-order quantification, so the 
global predicate defined by 3x Q"q~' (and by Q~)  is co-Ar~. Our assumption that 
N ~  ~: N ~  prevents any co-Ar~ predicate from being AC~-complete, so Q is not 
mighty. [] 

(C) All our theorems have been about formulas in which a Henkin quantifier 
occurs at the beginning and is applied to a first-order (in fact quantifier-free) 
matrix. We remarked in Section 1 that formulas built using the formation rules of 
first-order logic but allowing positive occurrences of Henkin quantifiers can 
always be rewritten in the 'Henkin prenex' form that we considered. It is natural 
to ask about the full logic, called H by Walkoe, obtained from first-order logic by 
adding Henkin quantification as an additional formation rule. This logic contains 
formulas with negative occurrences of Henkin quantifiers, like 

(vx   rq (vu  3oq 
VX 2 ::iy2] \VU2 ::]~32,] $(Xl, X2, Yl, Y2, Yl, U2, 1)1, U2), 

which, by definition of Henkin quantifiers, means 

3Y , Y Vxl, x2, E, V23ul, x2, Y (xO, ul, E(uO, ½(ug). 

The global predicate defined by this formula is in the class 27z e of the polynomial 
time hierarchy [9]. Similarly, a formula of H containing n Henkin quantifiers 
defines a global predicate in the nth level of the polynomial time hierarchy. But, 
in fact, these global predicates are all in ~'2 e t7//~', by a result of Enderton [1, 
Theorem 2], which also applies to infinite structures. 

Moshe Vardi has pointed out to us that Harel [5] has proposed another 



Henkin quantifiers and complete problems 15 

semantics for formulas consisting of a quantifier-free matrix preceded by a 
sequence of Henkin quantifiers and negation symbols. Harel showed that the 
expressive power of this logic is exactly that of second-order logic. Although his 
definition looks natural, there is a price for this increased expressive power, 
namely a strange semantics for nested quantifiers. Whatever the pattern of 
negations, an existentially quantified variable depends only on universally 
quantified variables in the same Henkin quantifier and on the existentially 
quantified variables in previous Henkin quantifiers. On the other hand, a 
universally quantified variable depends on all variables in previous Henkin 
quantifiers and on the existentially quantified variables in later Henkin quanti- 
tiers. Thus, for example, the Henkin quantifier (Vx :ly) is not equivalent, in 
Harel's semantics, to the sequence (Vx)(3y) of Henkin quantifiers; in fact, 
the latter is equivalent to (3y)(Vx). Note also that, whereas ( : ly)R(x,  y) and 
~(Vy) ~R(x, y) are equivalent, (Vx) (3y) R(x, y) is not equivalent to 
(Vx) ~(Vy) ~R (x, y). 

(D) The semantics of Henkin quantifiers treats existential quantifiers quite 
differently from universal ones. This is reflected in the fact that the dual ~ Q -  of a 
Henkin quantifier is usually not a Henkin quantifier; applied to first-order 
formulas, ~ Q ~  produces co-2¢'~ global predicates, not 2¢'~ ones. It is natural to 
try to restore symmetry by returning to the symmetrical 'games' with which 
Henkin introduces generalized quantitiers in [6]. If Q = (A o, < o )  as in Section 
1, then the game for Qtp is played as follows. One player, called 3, assigns values 
to the existentially quantified variables; his opponent, '¢, assigns values to the 
universally quantified variables. When assigning a value to a variable x, a player 
knows the values of only those variables whose quantitiers precede that of x in 
<o.  A play of the game is won by 3 if and only if the chosen values of the 
variables make ~p true. Finally, Qq~ holds if :1 has a winning strategy and fails if V 
has a winning strategy. 

This  definition can be made precise, and kept symmetrical, as follows. A 
strategy for :i consists of functions X~ for all the existential quantifiers (3xi) in Q; 
the argument places of X~ correspond to the quantifiers ('¢yj)<o (:lxi). Strategies 
for V are defined symmetrically. Given strategies for both players, we assign a 
value to each variable xi or yj occurring in Q by applying the corresponding 
function X~ or Yj to the values assigned to the variables whose quantifiers occur 
earlier in <o- (This recursive definition of the values assigned to variables makes 
sense because <~ ,  being a partial order on a finite set, is well-founded.) The 
outcome, for the two given strategies, is a win for :1 (resp. V) if these values for 
the variables make tp true (resp. false). Finally, Qtp is said to hold (resp. fail) if 
there is a strategy for =1 (resp. '¢) which wins against every strategy for V (resp. 
3). 

The price we pay for the symmetry of this definition is that a formula might 
neither hold nor fail; that is, there might be no winning strategy for either player. 
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The simplest example of this phenomenon is given by 

x - - y  :ly 

in any structure with at least two elements. Although unpleasant, this lack of 
determinacy should not be viewed as pathological; it is the usual situation for 
games of imperfect information. 

MiNos Ajtai has suggested applying the von Neumann minimax theorem to 
these games. The theorem asserts the existence of a number p and a probability 
distribution D~ (resp. / ~ )  on the set of ::l's (resp. V's) strategies such that, if ::! 
(resp. V) chooses a strategy at random according to the distribution D3 (resp. 
/ ~ ) ,  then he wins with probability at least p (resp. 1 - p ) ,  no matter what 
strategy his opponent uses. Ajtai suggested that the number p be viewed as a 
truth value for Q ~ .  This truth value is 1 (resp. 0) if and only if Q~ holds (resp. 
fails) in the sense defined above. Formulas which neither hold nor fail have 
intermediate truth values; the example 

x ' y  3y 

has truth value l /n in structures of cardinality n. 
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