
Annals of Pure and Applied Logic 32 (1986) 1-16
North-Holland

H E N K I N Q U A N T I F I E R S A N D C O M P L E T E P R O B L E M S

Andreas BLASS* and Yuri GUREVICH~f
Mathematics Department and Electrical Engineering and Computer Science Department, The
University of Michigan, Ann Arbor, MI 48109, USA

Communicated by K. Kunen
Received 20 March 1984

We analyze computational aspects of partially ordered quantification in first-order logic.
show that almost any non-linear quantifier, applied to quantifier-free first-order formtt
suffices to express an N~-complete predicate. The remaining non-linear quantifiers expJ
exactly co-NLe predicates.

Introduction

Certain applications of logic to computer science, for example those discus:
in [4], have the following features: only finite models are of interest,
first-order logic is not sufficiently expressive. Accordingly, various extensions
first-order logic have been proposed and analyzed for finite structures. "
analysis often reveals connections with computational complexity, and ind
some of the extensions were proposed just for the purpose of obtaining s
connections. (See [4], [7] and the works cited there.) It is natural to consider ~
those extensions of first-order logic which appear in the logical literature
whose introduction was motivated by considerations quite distant from comp~
science.

One such extension, perhaps the oldest that can be meaningfully applie~
finite models, is the logic with partially ordered quantification introduce¢
Henkin [6]. We show in this paper that formulas obtained from first-order a
by application of these so-called Henkin quantifiers axe able to express .
complete properties of finite structures, for example 3-colorability of t
graphs. This expressive power persists even if rather stringent restrictions
imposed on the Henkin quantifiers. However, Henkin quantifiers of
extremely restricted sort, which we call narrow Henkin quantifiers, express,
applied to first-order formulas, exactly the co-N~ properties of finite structu

We use the customary notations and conventions of first-order logic
equality, except that we also allow Boolean variables, a~, f l , . . . , which
over {true, false}. These can easily be eliminated by coding, but the coding ,~

* Partially supported by NSF grant MCS 81-01560.
t Partially supported by NSF grant MCS 83-01022.

nl~Z_,"k"~?/R~/.~_~.50 t~) 1986, Elsevier Science Publishers B.V. (North-Holland)

2 A. Blass, Y. Gurevich

make some formulas unnecessarily complex. Formally, we work with a two-sorted
language whose second sort is to be interpreted as {true, false} in all structures
and therefore need never be specified when we define a structure. We can view
predicates as functions whose values are of this second sort.

We frequently consider algorithms taking finite structures S (for a finite
vocabulary a) as inputs. In such situations, we always assume that the universe of
S is (0, 1, . . . , n - l}, for the appropriate natural number n, and that the
structure is presented in some standard format whose length and n are bounded
by polynomials of each other.

1. What are Henkin quantifiers?

In [6], Henkin introduced several new sorts of quantifiers, including partially
ordered quantifiers as in the expression

This expression means that for every x1 there is a y, and for every x2 there is a y2
depending only on .x2 such that @(x1, x2, y,, y2). More formally, it means that
there are functions Yl(xl) and Y2(x2) such that

Henkin asked whether (1) is expressible in first-order logic (if # is) and, if not,
whether first-order logic enriched by

11

(” “) 'dx2 3Y2

is recursively axiomatizable. Ehrenfeucht answered both questions negatively by
showing how to express the quantifier “for infinitely many x” in this enriched
logic; his solution is given in [6].

Henkin quantifiers were extensively studied by Walkoe [lo], who considered
them to be strict partial orders Q = (AP, Cp) where A, is a finite set of ordinary
first-order quantifiers and Ce describes the dependence relationships between the
existential and universal quantifiers in A,. The meaning of such a quantifier
Q is defined, as for (l), by Skolemization. For example, if A, =
{Vxl, Vx2, Vx3, 3y,, 3y2, 3y3} and cp is given by Vx&3yj when i fj as in the
figure

Henkin quantifiers and complete problems 3

then Q @(XI, ~2, ~3, ~1, ~2, ~3) means that there are binary functions &, y2, y3
such that

Notice that the only relevant information in Ce is what universal quantifiers

precede what existential quantifiers. Walkoe calls this the essential order of Q,

while Henkin considers, in effect, only orders where all of ce is essential. The
linearly ordered quantifier strings of ordinary first-order logic correspond to
the linear Henkin quantifiers, in which -+ is linear or (since we can ignore the
inessential part of -$) the existential quantifiers are linearly preordered by the
inclusion relation on their sets of universal predecessors.

Following Walkoe, we call a Henkin quantifier standard if A, is the disjoint
union of chains (with respect to -$) in each of which the last member is
existential and all the others are universal. Such a quantifier, like that in (l), can
be written as a sequence of rows each of which consists of universal quantifiers
followed by a single existential quantifier. It is not difficult to express an arbitrary
Henkin quantifier by means of a standard one. For example, if Q is the
six-element quantifier above, then Q $(x1, x2, x3, yl, y2, y3) is equivalent to

(1 vx1 .vx; $2 [Xl = x; A x2 = d A x3 =x;+ 44x1, x2, x3, Yl, y2, Y3)l.

vx; vx; 3y3

The concatenation of two Henkin quantifiers is equivalent to a single Henkin
quantifier. For example,

is equivalent to the quantifier Q with domain {Vxl, Vx2, Vx3, Vx4, 3y,, 3y2,

3~3, 3~~) and
3y, preceded by Vxl,
Sy2 preceded by Vx2,

3y3 preceded by Vxl, Vx2, and Vx3, and
3y4 preceded by Vxl, Vx2, and Vx4.

It follows easily that any formula built according to the formation rules of
first-order logic but allowing positive occurrences of Henkin quantifiers can be
rewritten as a single standard Henkin quantifier followed by a quantifier-free
first-order formula. Walkoe showed [lo, Theorem 4.31 that the expressive power
of such formulas is exactly the same as the expressive power of existential
second-order formulas. For example, the sentence

3R VXYZ [(R(x, y)+ R(x - 2, y - 2)) A R(a, b) A +b, a)]

4 A. Blass, Y. Gurevich

can be rewritten to make the arguments of R simply variables,

3 R Vxyzuv[(R(x , y) A U = X . Z A V = y . Z ~ R(u , v))

A (X : a A y : b ~ R(x , y))

^ (x = b A y=a---> ~ R (x , y))],

and can then be written in Henkin quantifier form as

(Vx Vy
Vu Vv -I/3

Vz

[(X = U A y = V"-> tr = /3)

A(tr A U = X " Z A v = y " z---> /3)

A (X = a A y = b - - - ~ t r) A (x = b A y = a---*~tr)].

Here a~ and fl are Boolean variables. So the associated Skolem functions are
actually binary predicates, and the conjunct (x = u A y = V ~ tr =/3) forces them
to be the same predicate R. The remaining conjuncts are essentially copied from
the previous version of the formula, and the last row of the quantifier should, if
we insist on standard form, have a dummy existential quantifier added. The same
rewriting procedure can be applied to any second-order existential formula once
it has been put into Skolem form so that all its first-order quantifiers are
universal.

In Theorem 1 below, we apply this result of Walkoe to give the simplest
connection between Henkin quantifiers and complexity theory. Before stating the
theorem, we introduce some useful terminology.

By an l-ary global predicate for a vocabulary a, we mean a function at assigning
to each finite a-structure S an l-ary predicate atS:st---> {true, false}. The decision
problem for at is the problem specified by:

Instance. A finite a-structure S and ti e S ~.
Question. Does ats(ti) hold?
In particular, any formula q~ with l free variables defines an l-ary global

predicate. When l = 0, the decision problem for this global predicate is the
problem of deciding, for any given structure, S, whether the sentence q~ is true

in S.

Theorem 1. For any global predicate at, the fol lowing are equivalent.

(1) The decision problem for at is in Ac~.

(2) ~r is expressible by an existential second-order formula.

(3) at is expressible by a formula Qdp where Q is a Henkin quantifier and dp is a

quantifier-free first-order formula.

ProoL The equivalence (1) o (2) is a theorem of Fagin [2], and the equivalence
(2) o (3) is the theorem of Walkoe cited above. []

Henkin quantifiers and complete problems 5

2. Henkin quantifiers and N~-complete problems

Theorem 1 implies in particular that the global predicate defined by a formula
Q~, with Q a Henkin quantifier and ~ a quantifier-free first-order formula, can
be Y~-complete. In this section, we investigate how complicated Q must be in
order for this phenomenon to occur. Useful measures of the complexity of Q, for
this purpose, are the number of rows (if Q is standard) and the type m individual
or Boolean - - of the existentially quantified variables. For the sake of brevity, we
call a Henkin quantifier mighty if, by applying it to a quantifier-free first-order
formula, one can define an :O'S-complete global predicate. Linear Henkin
quantifiers are, of course, not mightly unless ~ = ~ = Ac~, since first-order
definable predicates are in ~ (logspace computable). We shall show in this
section that almost any non-linear Henkin quantifier is mighty.

In the first place, as long as the existentially quantified variables are individual
ones ranging over the universe of the structure, rather than Boolean ones, all
non-linear Henkin quantifiers are mighty.

Theorem 2. The quantifier (VX1 3y1~ \VX2 3y2] is mighty.

Proof. In a vocabulary tr with a binary predicate symbol E and three constant
symbols 0, 1, 2, let ~ be the conjunction of

Xl = X2-'~ Yl = Y 2 ,

Y l = 0 v y l = l v y l = 2 , and

EXlX2-'-~ Yl ~ Y2.

Then, in any a-structure where 0, 1, 2 denote distinct elements,

Vxl 3y1~

Vx2 3y2/~

holds if and only if the graph defined by E is 3-colorable. It is well-known [3] that
3-colorability is an ~C~-complete problem. []

Observe that, in the proof of Theorem 2, the existentially quantified variables
ranged, in effect, over only a three-element set, because of the second conjunct in
9. If we introduce 'almost Boolean' variables/~, v to range over {0, 1, 2}, then
the same proof shows:

Corollary. (Vxl 21p \¥x2 3v) is mighty. []

6 A. Blass, Y. Gurevich

It is natural to try to obtain a similar result with Boolean variables a~, fl in place
of the almost Boolean ones. We shall see later that this cannot be done without
proving Ar~ = At#. In the next two theorems, however, we almost achieve this
replacement.

Theorem 3.
Vx 3 ~)

Vy 3fl
Vz 37

is mighty .

Proof. Think of a Boolean circuit built from binary NAND-gates (where NAND
means negated conjunction) as being a structure for the vocabulary a that consists
of a constant symbol c (designating the output node) and a binary relation symbol
I (where I (x , y) means that node x produces one of the two inputs to node y). We
assume, without loss of generality, that the two inputs two each NAND-gate
come from distinct nodes; at worst we just make two copies of every node: Then
the AC~-complete satisfiability problem--decide whether such a circuit has
output true for some inputs is given by the formula

Vx
3# vy 4,

Vz 37

where 4, is the conjunction of

x = y---> 0: = fl, y = z---> fl = 7, z = x---> 7 = 0:,

I(X, Z) A I (y , z) A x ~ y"-> 7 ='a(0: A fl) , and x = c---> 0:.

(The third of the five conjuncts is redundant but was included for symmetry.) [-7

Vx 30:) is mighty . Theorem 4. Vy =l/z

Proof. Think of Boolean circuits as in the previous proof except that, for each
NAN-D-gate, we distinguish a left and a right input. Thus, ~ now contains c as
before and two binary predicates L and R whose disjunction would be the
previous L The satisfiability problem is described by

where 4, is the conjunction of

x = y--> (0: ~-> (l~ ¢ O)),

X - ' C - ' > 0 :

(- a t r) ^ (L (x , y) v R (x , y))--> !~ :/: O,

Henkin quantifiers and complete problems 7

oc ^ L(x, y).-.~ ~ :~ 1,

tr ^ R (x, y)"~ l~ ~ 2.

and

To see this, note that our formula asserts the existence of a function o~ =f (x)
from the set S of nodes to {true, false} (which is to describe the truth value
computed at each node) and an auxiliary function # =g(y) from S to {0, 1, 2}
with the following properties. First f is false wherever g is 0 and f is true wherever
g is 1 or 2, so g completely determines f. Second, the value of f a t the output node
c is true. And finally certain values of g(y) are prohibited if f had certain values at
the two inputs to y. The prohibitions resulting from each of the last three
conjuncts of ~ are shown in Table 1, along with the permitted values of g(y) and

f(Y)-

Table 1

prohibited by conjunct
f (left input) f (right input) (3) (4) (5) g(y) f(y)

true true 1 2 0 false
true false 0 1 2 true
fake trae 0 2 1 true
false false 0 1 or 2 true

So our formula requires the NAND-gates to produce the correct outputs. []

3. Narrow Henkin quantiflers and nondetermini.ctic log space computability

In this Section we study 'narrow' Henkin quantifiers of the form

where a~, fl are, as before, Boolean variables while x and y are tuples of
individual or Boolean variables. We say that x and y are compatible if they have
the same length and have variables of the same type at corresponding positions.
We write x = y as an abbreviation for the conjunction of the equations x~ =y~
between corresponding components of x and y provided x and y are compatible;
if they are incompatible, then x = y means false. For future reference, we exhibit
the definition, i.e. the Skolem form, of

Vx ::t a,)
vy $(x, y, a,

it is

3A 3B Vx Vy ¢(x, y, A(x), BOO).

8 A. Blass, Y. Gurevich

If x and y are compatible and $ has the 'equality bound' form (x = y---> a~ = fl) ^
~p(x, y, or, fl), then this definition reduces to

3A Yx Vy ~(x, y, A(x), A(y)).

It will be convenient for us to view 2-SAT, the satisfiability problem for
propositional formulas in conjunctive normal form with only two disjuncts in each
conjunct, as a quantifier. Given propositional variables P 0 , . . . , Pn-1, consider a
conjunction C of 2-disjunctions of the forms Pi v pj, P i v 7pj, "~pi v pj, and
-api v -~pj. If we write p and 7p in the equivalent forms

(true~-->p) and (false~->p),

then C can be described by a predicate R on { 0 , 1 , . . . , n - 1 } , namely
R(x, y, or, fl)~-->C has a conjunct (or ~->Px) v (fl ~py) . Conversely, with each such
quaternary predicate R we associate the Boolean formula

A {(a"e>Px) v (f l ~ p y) : R (x , y, ol, fl)}.

Let (2-SATx, y, or, fl) R(x, y, ol, fl) mean that this Boolean formula is satisfiable.
More generally, let

(2-SAT x, y, or, fl) ¢(x, y, a~, fl)

be interpreted as true in a structure S if and only if the Boolean formula

/~ {(ac~->px) v (fl ~-->p,): q~(x, y, re, fl) holds in S}

is satisfiable.
Satisfiability of such a Boolean formula means that there exist suitable truth

values for all the propositional variables Px and py. These truth values define
predicates A and B on S, where A(x) holds if and only if Px was assigned the
value true, and similarly for B. (If x and y are compatible then A and B must
coincide.) Thus, the formula

(2-SAT x, y, o~, fl) ¢(x, y, t~, fl)

is equivalent to

::IA ::le Vx Vy [(x= y--~ (A (x) o B(y))) ^ -ndp(x, y, 7A(x), -"B0'))].

If x and y are compatible, this reduces to

3A Vx Vy "adp(x, y, -aA(x), -aA(y)).

The main result of this section is that narrow Henkin quantifiers are equivalent,
in a suitable sense, to the quantifiers 2-SAT.

Theorem 5. Narrow Henkin quantifiers and 2-satisfiability quantifiers are each

Henkin quantifiers and complete problems 9

expressible by means of the others. More precisely: (V/3~)
(i) Vy :lfl ~p(x, y, o6 fl) is equivalent to

(2-SAT xy, y6, tr, fl) (y ^ -76 ^ -~(x , y, ~a~, -~fl))

(ii) (2-SAT x, y, tr, fl) ~p(x, y, o6 fl) is equivalent to

(¥x 3~)
vy 3t~ [(x: y - , ~ : t~) ^ -~¢,(x, y, ~,~, -~t~)].

Proof. Part (ii) is immediate, by comparison of the existential second-order
forms given above for 2-SAT and for narrow Henkin quantifiers. For part (i), we
have the following list of formulas in which the equivalence of each consecutive
pair is clear either from the discussion above or from pure logic.

(2-SAT xy, y6, 06 fl) (y ^ ~6 ^ ~p(x, y, ~ol, -~fl)),

=lA =lB Vxy Vy6 [(xy = y6 --> (A(xy) ~ B(y6)))

^ -7(y ^ -16 ^ -7dp(x, y, A(xy) , B(y6)))],

3A 3B Vxy Vy6 [(xy - y6--~ (A(xy) ~ BO,6)))

^ (y ^ ~6--, ~(x, y, A(xy), B(y6)))],
:IA :IB Vx Vy ~p(x, y, A(x true), B(y false)),

3A' :IB' Vx Vy ~p(x, y, A ' (x) , B'(y)),

(Vx :~,~)
vya/~ $(x, y, ~, [3). []

The following corollary is obtained by combining Theorem 5 with the
well-known result [8] that the unsatisfiability problem for conjunctive normal
forms with two literals per clause is complete, with respect to log space
computable reductions, for the class ~ of languages nondeterministically
recognizable in log space.

Corollary. All global predicates defined by formulas o f the form

(Vx 3a)
vy 3~ $(x, y, ~, ~) ,

with first-order ~p, are in co-~rZ, and some of them, even with quantifier-free ~p,
are complete for co-.Af~. []

In particular, the narrow Henkin quantifier is not mighty unless co-.AfZ = N ~
(which would imply N Z = ~ = N~).

In part (ii) of Theorem 5, we showed how to express 2-SAT by means of an
equality bound narrow Henkin quantifier, i.e., the first conjunct after the

10 A. Blass, Y. Gurevich

quantifier requires the two Skolem functions to coincide. Combining this
observation with part (i), we find that every narrow Henkin quantifier can be
expressed by an equality bound one. Indeed, we find that

Vx Ba:)
Vy3,8 e:(x, y, #)

is equivalent to

Vxy =la:)

vya [(xy =ya - - , ^ ^ y,

This is easily verified directly (without 2-SAT), and the same method can be used
to change any Henkin quantifier into an equality bound one, at the cost of
introducing additional universally quantified Boolean variables.

Immerman [7] extended first-order logic by adding various operators, including
the transitive closure operator TC, and obtained connections between these
extended logics and various complexity classes. In the next theorem, we exhibit a
close connection between TC and narrow Henkin quantifiers. Combining this
connection with Immerman's results, we obtain a corollary characterizing, more
precisely than Theorem 5 does, the expressive power of narrow Henkin
quantifiers in logic with linear order.

Following Immerman, we write TC ~p(x, y), with compatible k-tuples x and y,
for the reflexive transitive closure of the binary relation on k-tuples defined by
the formula ~p. That is, TC ~p(x, y) is equivalent to the disjunction, over all n ~> 0,
of the formulas

3ZO" " " Zn(X - - Z0 h ~) (Z 0 , Z l) A ~1)(Zl, g 2) A " • • A ~l)(Zn-1, Zn) A Zn =y)'~

it is also equivalent to the second-order formula

-~:IA [A(x) ^ nA(y) A YU YV (A(u) A V2(U, v).--)A(v))].

(Think of A as the set accessible from x.) The notation TC ~p(x, y) is poorly
adapted to situations where ~p contains additional variables as parameters or
where terms are to be substituted for x and y. For example, if E is the edge
relation of a graph, then TC E(x, y) means x is connected to y, so, to say that
F(x) is connected to F(y), where F is a function from vertices to vertices, one
would write TC E(F(x), F(y)); but this last formula also represents the transitive
closure of the relation "F(x) is adjacent to F(y)", and this transitive closure
amounts to "F(x) is connected to F(y) by a path all of whose vertices are in the
range of F". Ambiguities like this can be avoided either by adopting a more
accurate but longer notation, as in [4], or by ad hoc conventions. For our present
purposes, it will suffice to adopt the convention that, if x and y are the specified
k-tuples of free variables of ~p, then TC ~p~, q), for terms p, q, means the result
of substituting p for x and q for y in TC ~p(x, y), not the transitive closure of
v(p, q).

Henkin quantifiers and complete problems 11

Theorem 6. Narrow Henkin quantifiers and transitive closures can be expressed in
terms of each other; positive occurrences of either can be expressed by negative
occurrences of the other.

Proof. To express TC in terms of a narrow Henkin quantifier, it suffices to
rewrite the second-order form given above of the definition of TC as

_~(Vu 3 u) [(u = v-- , ~ =/~) ^ (u = x ~ ~) ^ (u = y - - , - ~)
~Vv ~/~ ^ (~ ^ ~:(u, v)~ /~)] .

For the other direction, we note first that any narrow Henkin quantifier can be
expressed by one whose tuples of universally quantified variables are compatible:

(V~y' 3c~

where x ' and y ' are tuples of dummy variables compatible with x and y
respectively. By a remark above, we can also assume, without loss of generality,
that we are dealing with an equality-bound quantifier. We therefore wish to
express, in terms of (negatively occurring) TC, a formula

3A Vx Vy ¢(x, A(x), y, A(y)).

Think of this formula as asserting the existence of an assignment A of truth values
A(x) to all tuples x of the appropriate type, such that all instances of
dp(x, A(x), y, A(y)) are true. If, for certain x, a:, y, and fl, tp(x, a:, y, ~fl) is false,
and if we assign x the value m, then we must not assign y the value ~fl, for then
we would not satisfy dp(x, A(x), y, A(y)), so the value a: for x forces the value fl
for y. The same holds if ~0 ' , ~fl, x, ~) is false. Let ~p(x, a:, y, fl) be the formula

- ~ (x , ~, y,-~/~) v - ~ (y , "~/~, x, ~);

whenever it holds, the value a~ for x forces the value fl for y. Since this 'forcing' is
clearly a reflexive transitive relation on tuples xcr, we see that xa: forces yfl
whenever TC ~p(x, a:, y, fl) holds (where xa: and yfl are the specified tuples of
variables for the application of TC). In particular, if TC ~p(x, a:, x,-~a:) then x
cannot be assigned the value or, and therefore, for an assignment A of the desired
sort to exist, it is necessary that

3x 3tr [TC lp(x, a:, x, ~t~) ^ TC ~p(x, ~tr, x, tr)].

We complete the proof of Theorem 6 by showing that this necessary condition is
also sufficient.

First, make the preliminary observation that. ~p(x, a:, y, fl) and therefore also
TC ~(x, a:, y, fl) are invariant under the operation of interchanging x and y while
simultaneously interchanging and negating a: and ft.

In any structure, TC ~p defines a pre-ordering ~ (i.e. a reflexive transitive
relation) on the tuples xtr. Negating the last component of a tuple defines an

12 A. Blass, Y. Gurevich

anti-automorphism of this pre-order (by the preliminary observation) of order
two. Furthermore if the structure satisfies the necessary condition above, then we
never have xa~ and x ~ a~ each ~< the other.

Lemma. Let (X, <~) be a finite pre-ordered set, and let i :X---> X be an order-
reversing function such that every x ~ X satisfies i(i(x))= x and either x ~ i(x) or
i(x) ~ x (or both). Then there is a subset T of X, closed upward for <~, containing
exactly one of x and i(x) for each x ~ X.

Granting the lemma for the moment, we apply it to the set of tuples xtr,
pre-ordered according to TC ~/,, with i(xo:)= x ~ ol. We obtain a set T as in the
conclusion of the lemma, and we define A(x) to be true if and only if x true e T,
or equivalently x false ~ T. Thus, we always have xA(x) e T and x ' lA(x) ~ T.
This assignment A has the desired property that dp(x, A(x), y, A(y)) holds for
all x and y. To see this, suppose x and y were a counter-example, i.e.,
~dp(x, A(x), y ,A(y)) holds. Then ~(x ,A(x) , y, ~A(y)) would hold and, as ~/,
implies TC ~p, we would havexA(x)<-y-~A(y). B u t x A (x) e T, y-~A(y)¢ T, and
T is closed upward, a contradiction. This completes the proof of Theorem 6,
assuming the lemma.

Proof of Lemma. We proceed by induction on the number of elements of X, the
case X = gl being vacuously true. If X :~ ~, consider an arbitrary x e X. Replacing
x with i(x) if necessary, we may assume x ~ i(x). Then we decide to put into
(resp. out of) T all elements ~>x (resp. ~<i(x)); there is no conflict here, as
x ~ i(x). Note that an element y has been put into T if and only if i(y) has been
put out of T. The set Y of elements whose membership is still in doubt is smaller
than X (as x ~ Y). Apply the induction hypothesis to Y, with the restrictions of ~<
and i, to get T' ~_ Y satisfying the conclusion of the lemma for Y. Finally put all
members of T' into T and put all members of Y - T' out of T. It is easy to verify
that T has all the required properties. []

Remark. A compactness argument shows that the lemma holds without the
hypothesis that X is finite.

By 'logic with linear order' , we mean logic with an additional logical symbol ~<,
which functions syntactically as a binary predicate symbol, and which is
interepreted in every structure as the usual ordering of the universe
{0, 1 , . . . , n - 1}. Immerman [7] proved that the global predicates definable in
first-order logic with linear order augmented by TC are exactly those that are in
the log-space hierarchy 2 ' . L. He also proved that, if we allow only positive
occurrences of TC, then exactly the N ~ global predicates are expressible.

The following corollary is obtained by combining these results with Theorem 6.

Henkin quantifiers and complete problems 13

Corollary. The global predicates definable in first-order logic with linear order
augmented by narrow Henkin quanttfication are exactly those that are in the
log-space hierarchy. I f only positive occurrences of narrow Henkin quantifiers are
permitted, then exactly the co-N~ global predicates are definable. []

4. Remarks

(A) In the proofs of Theorems 2, 3, and 4, one can fairly easily reduce the
vocabulary a that is needed. For example, if we take the Boolean circuits in the
proof of Theorem 4 to be trees, then the two binary predicates L and R can be
replaced by a single binary predicate, namely the union of L and R augmented by
loops at the left sons of all nodes. We have made no serious attempt to determine
the minimal vocabularies for which these results hold.

(B) In Sections 2 and 3 we used the type windividual or Boolean of
existentially quantified variables as an essential ingredient in our classification of
Henkin quantifiers according to might. It is natural to ask whether the results
could be extended by taking into account the type of the universally quantified
variables. Such an extension is easily obtained by observing that universally
quantified Boolean variables can be eliminated in favor of additional rows in the
quantifier. Specifically,

14 A. Blass, Y. Gurevich

Proof. If the condition is satisfied, then Q has at least the expressive power of

either () Vx Vx :Ia'
Vy or Vy :I#
Vz :I),

and is therefore mighty by the results of Section 2. If the condition is not satisfied,
then by eliminating universally quantified Boolean variables as above, from rows
without universal quantifiers, we can rewrite any formula Q$ as Q'dp' where Q'
has, apart from rows consisting just of a single existential quantifier, either just
one other row, or two other rows both of whose existentially quantified variables
are Boolean. The existential quantifiers that are in rows without universal
quantifiers can, without changing the meaning of the formula, be moved to the
left, s ince(~)~ is logically equivalent to (:Ix) R~b. Thus, we can rewrite Q ' ~ ' in
the form 3x Q"$ ' , where Q" consists of those rows of Q' that contain universal
quantifiers. But, because of the limitation on such rows in Q' , we know that Q" is
either linear or narrow, so the global predicate defined by Q"~' is at worst
co-2¢'~. This complexity estimate is preserved by first-order quantification, so the
global predicate defined by 3x Q"q~' (and by Q~) is co-Ar~. Our assumption that
N ~ ~: N ~ prevents any co-Ar~ predicate from being AC~-complete, so Q is not
mighty. []

(C) All our theorems have been about formulas in which a Henkin quantifier
occurs at the beginning and is applied to a first-order (in fact quantifier-free)
matrix. We remarked in Section 1 that formulas built using the formation rules of
first-order logic but allowing positive occurrences of Henkin quantifiers can
always be rewritten in the 'Henkin prenex' form that we considered. It is natural
to ask about the full logic, called H by Walkoe, obtained from first-order logic by
adding Henkin quantification as an additional formation rule. This logic contains
formulas with negative occurrences of Henkin quantifiers, like

(vx rq (vu 3oq
VX 2 ::iy2] \VU2 ::]~32,] $(Xl, X2, Yl, Y2, Yl, U2, 1)1, U2),

which, by definition of Henkin quantifiers, means

3Y , Y Vxl, x2, E, V23ul, x2, Y (xO, ul, E(uO, ½(ug).

The global predicate defined by this formula is in the class 27z e of the polynomial
time hierarchy [9]. Similarly, a formula of H containing n Henkin quantifiers
defines a global predicate in the nth level of the polynomial time hierarchy. But,
in fact, these global predicates are all in ~'2 e t7//~', by a result of Enderton [1,
Theorem 2], which also applies to infinite structures.

Moshe Vardi has pointed out to us that Harel [5] has proposed another

Henkin quantifiers and complete problems 15

semantics for formulas consisting of a quantifier-free matrix preceded by a
sequence of Henkin quantifiers and negation symbols. Harel showed that the
expressive power of this logic is exactly that of second-order logic. Although his
definition looks natural, there is a price for this increased expressive power,
namely a strange semantics for nested quantifiers. Whatever the pattern of
negations, an existentially quantified variable depends only on universally
quantified variables in the same Henkin quantifier and on the existentially
quantified variables in previous Henkin quantifiers. On the other hand, a
universally quantified variable depends on all variables in previous Henkin
quantifiers and on the existentially quantified variables in later Henkin quanti-
tiers. Thus, for example, the Henkin quantifier (Vx :ly) is not equivalent, in
Harel's semantics, to the sequence (Vx)(3y) of Henkin quantifiers; in fact,
the latter is equivalent to (3y)(Vx). Note also that, whereas (: ly)R(x, y) and
~(Vy) ~R(x, y) are equivalent, (Vx) (3y) R(x, y) is not equivalent to
(Vx) ~(Vy) ~R (x, y).

(D) The semantics of Henkin quantifiers treats existential quantifiers quite
differently from universal ones. This is reflected in the fact that the dual ~ Q - of a
Henkin quantifier is usually not a Henkin quantifier; applied to first-order
formulas, ~ Q ~ produces co-2¢'~ global predicates, not 2¢'~ ones. It is natural to
try to restore symmetry by returning to the symmetrical 'games' with which
Henkin introduces generalized quantitiers in [6]. If Q = (A o, < o) as in Section
1, then the game for Qtp is played as follows. One player, called 3, assigns values
to the existentially quantified variables; his opponent, '¢, assigns values to the
universally quantified variables. When assigning a value to a variable x, a player
knows the values of only those variables whose quantitiers precede that of x in
<o. A play of the game is won by 3 if and only if the chosen values of the
variables make ~p true. Finally, Qq~ holds if :1 has a winning strategy and fails if V
has a winning strategy.

This definition can be made precise, and kept symmetrical, as follows. A
strategy for :i consists of functions X~ for all the existential quantifiers (3xi) in Q;
the argument places of X~ correspond to the quantifiers ('¢yj)<o (:lxi). Strategies
for V are defined symmetrically. Given strategies for both players, we assign a
value to each variable xi or yj occurring in Q by applying the corresponding
function X~ or Yj to the values assigned to the variables whose quantifiers occur
earlier in <o- (This recursive definition of the values assigned to variables makes
sense because <~ , being a partial order on a finite set, is well-founded.) The
outcome, for the two given strategies, is a win for :1 (resp. V) if these values for
the variables make tp true (resp. false). Finally, Qtp is said to hold (resp. fail) if
there is a strategy for =1 (resp. '¢) which wins against every strategy for V (resp.
3).

The price we pay for the symmetry of this definition is that a formula might
neither hold nor fail; that is, there might be no winning strategy for either player.

16 A. Blass, Y. Gurevich

The simplest example of this phenomenon is given by

x - - y :ly

in any structure with at least two elements. Although unpleasant, this lack of
determinacy should not be viewed as pathological; it is the usual situation for
games of imperfect information.

MiNos Ajtai has suggested applying the von Neumann minimax theorem to
these games. The theorem asserts the existence of a number p and a probability
distribution D~ (resp. / ~) on the set of ::l's (resp. V's) strategies such that, if ::!
(resp. V) chooses a strategy at random according to the distribution D3 (resp.
/ ~) , then he wins with probability at least p (resp. 1 - p) , no matter what
strategy his opponent uses. Ajtai suggested that the number p be viewed as a
truth value for Q ~ . This truth value is 1 (resp. 0) if and only if Q~ holds (resp.
fails) in the sense defined above. Formulas which neither hold nor fail have
intermediate truth values; the example

x ' y 3y

has truth value l /n in structures of cardinality n.

References

[1] H. Enderton, Finite partially ordered quantifiers, Z. Math. Logik 16 (1970) 393-397.
[2] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: R. Karp,

ed., Complexity of Computation, SIAM-AMS Proc. 7 (1974) 43-73.
[3] M. Garey and D. Johnson, Computers and Intractability, (W.H. Freeman, San Francisco, 1979).
[4] Y. Gurevich, Toward logic tailored for computational complexity, Proc. 1983 European Logic

Colloquium in Aachen, Lecture Notes in Math. (Springer, Berlin, to appear).
[5] D. Harel, Characterizing second order logic with first order quantifiers, Z. Math. Logik

Grundlagen Math. 25 (1979) 419-422.
[6] L. Henkin, Some remarks on infinitely long formulas, in: Infiuitistic Methods (Warsaw, 1961)

167-183.
[7] N. Immerman, Languages which capture complexity classes, Proc, 15th ACM Symposium on

Theory of Computing (1983) 347-354.
[8] N. Jones, E. Lien and W. Laaser, New problems complete for nondeterministic log space, Math.

Systems Theory 10 (1976) 1-17.
[9] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977), 1-22.

[10] W. Walkoe, Finite partially-ordered quantification, J. Symbolic Logic 35 (1970) 535-555.

