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EFFECTS OF SEGREGATION OF M A R K E D  AND N O R M A L  SPECIES IN SANS FROM 
CRYSTALLINE POLYMERS 

G.C. SUMMERFIELD 
Department of Nuclear Engineering, The University of Michigan, Ann Arbor, MI 48109, USA 

The use of deuterium marking has proved to be very valuable in studying single-chain behavior in amorphous polymer 
systems. However, it has been difficult to use the technique for crystalline polymers because of anomalous forward 
scattering. This scattering has been attributed to segregation of the normal and deuterated species resulting from the small 
differences between them. Computations of the effects of segregtion have all assumed the absence of correlation between 
concentration and density fluctuations. This assumption precludes the possibility of different concentrations of marked 
polymer in the amorphous and crystalline regions of the sample. To explain the magnitudes of the anomalous scattering the 
previous computations required what seems to be extreme segregation of the two species. Here we compute the effects of 
concentration variations between the amorphous and crystalline regions and show that even modest differences in 
concentration can produce the observed magnitudes of the anomalous, forward scattering. Unfortunately the results seem to 
show that single chain SANS experiments in segregated, crystaline polymers are fundamentally problematical. 

1. Introduction 

The study of single chain characterisics of 
amorphous polymers using SANS on samples 
composed of mixtures of normal and deuterated 
polymer has contributed greatly to our undrstand- 
ing of dense polymer systems. However, attempts 
[1-5] to apply the technique to crystalline poly- 
mers have been plagued by anomalous, forward 
scattering. This anomalous, forward scattering 
has been attributed by all authors to some form of 
segregation of the deuterated and normal species 
beause of the small differences between them 
[1-5]. 

There have been attempts to calculate the 
magnitude of this excess scattering [1-5]. In each 
calculation, the author assumed some model for 
the manner in which the species segregated. It 
seems fair to say that, in every case, an extreme 
degree of segregation was needed to explain the 
magnitude of the excess scattering. A common 
feature of all of these models is the absence of a 
correlation between concentration and density 
fluctions. That is, there is assumed to be no 
correlation between regions of high or low con- 
centration of marked polymer and regions of high 
or low polymer density. If the sample is composed 

only of crystalline and amorphous regions, this 
would mean that the overall concentration of 
marked polymer in these two regions would be 
the same. This assumption was tested in ref. 3. It 
also would mean that the patterns of segregaion 
in the two regions would be the same. These do 
not seem to be entirely reasonable assumptions. 
Here we shall try to rectify the assumption of an 
absence of correlation between density and con- 
centration fluctions. We shall assume that the 
concentrations of deuterated polymer in the 
amorphous and crystalline regions are different. 

2. Calculations 

The derivation of the neutron scattering from a 
mixture of normal and deuterated polymer can be 
written in terms of a set of probabilities PNHN'H, 
Pr~DN'D and PNDN'H [6], where, for example, 
PNHN'H is the probability that the polymers whose 
centers of mass are at R N and R N, are both 
normal. Here we assume that this probability 
depends upon whether R N and R N, are in an 
amorphous or crystalline region. So, let us label 
chains as N or M if the center of mass is in a 
crystalline or amorphous region respectively. If 
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we take the m o n o m e r  positions relative to the 
center of mass to be r t for crystalline and ri for 
amorphous  regions, we can write the neutron 
cross section as 

S ( Q ) = (  ~M,iaMexp(iQ'(RM + ri)) 

) + ~'~ a N exp( iQ .  (R N + rl) ) . (1) 
N,l 

Here  a M and a N are the scattering lengths of the 
monomers ,  Q is the neutron wave vector transfer,  
and ( - . .  } signifies the ensemble average. 

We now need a larger set of probabilities since 
we assume that they depend upon where the 
centers of mass of  the polymers  are. Our  assump- 
tion is quite simple. It  is that the relative concen- 
trations of marked  polymer  are x A and x c in the 
amorphous  and crystalline regions respectively. 
Other  than this, we assume that the mixing of the 
species is random. Now we need ten probabilities. 

Six of them, PMHM'H, PMDM'D, PMHM'D, PNHN'H, 
PNDN'D, and PNHN'O, the same as given in refer- 
ence [6] with the appropr ia te  x (x c or XA). The 
other four are PMHNH = (1 -- XA)(1 -- XC), 
PMDND = XAXc'  PMHND = (1  --  X A ) X c ,  and 
PMDNH = XA(1 -- XC)" Using these P 's ,  we obtain 
for equation (1) 

S~A(Q) ( l / n2 )  ( ~  sexp(iQ'r i )  2). = (4) 

We cannot extract the single chain form factors 
f rom (2). We cannot even extract their average as 
given in the first term of (2) because of the 
complexity of the last term. The last term is not 
just a total scattering term since the amorphous  
and crystalline contributions are weighted differ- 
ently. 

In order  to proceed,  we must make some 
further assumption. It is not a simple mat ter  to 
determine the last term in (2). However ,  there is 
one assumption that we can make  which does 
simplify this term and which can give us an idea of 
its magnitude. This assumption is that chains 
remain in the same region as their centers of 
mass. Then the sum over  N and l is just a sum 
over  the monomers  in the crystalline regions and 
the sum over  M and i is just a sum over  monomers  
in the amorphous  regions. Then it is an easy 
mat ter  to show that the last term in (2) becomes 

(acP  c - aAPA) 2 f d3r exp( iQ ,  r)7(r) 2, (5) 

where 3' is zero in amorphous  regions and unity in 
crystalline regions. 

S( Q ) = (a H - aD )2n2 { Xc(1 -- xc) NcSsc( Q ) 3. Discussion 

+ x A O  - x A ) N ~ S s A Q ) }  

+ ( a A ~ e x p ( i Q . ( R  M + ri) ) 
M,i 

) + a c ' ~  exp( iQ-  (R N + rt) ) , (2) 
N,l 

where a c = a l l ( l - -  XC) + aDX c and a A = aH(1- -  
XA) + aDXD; n is the degree of polymerizat ion;  
N A and N c are the numbers  of  chains with centers 
of mass in the amorphous  and crystalline regions 
respectively; and Ssc and SsA are the single chain 
scattering functions, 

Ssc(Q ) = (1 /n  2) exp(iQ • rt) , (3) 

(5) is effectively the D e b y e - B u e c h e  [7] result 
for scattering f rom a two component  system in 
which the contrast  of the components  is acp c - 
aAP A. Even when x A and x c are quite close to the 
average concentration,  this contrast can be very 
large and can produce a large forward scattering. 
In fact (x A - X c ) ~ 1 0  2 will produce forward 
scattering of the observed magnitude.  We will not 
pursue this numerical computat ion further since 
the assumptions we made going f rom (2) to (5) 
are clearly not valid. The result does show that 
there can be a very large effect f rom having 
different concentrations of marked  polymer  in the 
crystalline and amorphous  regions. Unfortunately 
(2) also shows that,  in that case, we cannot 
extract single chain form factors. 
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