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We discuss a variant of the unstable particle Lee model motivated by the problem of large 
width in Higgs meson decay. The essential result is that, in the point-interaction model, the width 
for decay into Goldstone bosons (W's and Z's), defined from the second-sheet unstable particle 
pole, obeys 

3 Fo <~ r < ~ ro, 

where F 0 is the naive perturbative width, and the ordering is from weak coupling at the lower end 
to strong coupling at the upper end. If the point interaction of the Lee model is modified to make 
the tree scattering amplitude for Goldstone particles relativistically invariant, a large-coupling 
upper bound for the width results, 

F < 10.7 m H , 

where by comparison, the naive perturbative width grows like m3H . 
We find that defining the renormalized coupling at the complex Higgs pole is reasonable in 

the Lee model, even when the pole moves far from the real axis. Furthermore, scattering effects 
remain strong, in the sense that the unitarity bound is roughly approached over a large range of 
energies, although the scattering amplitude never reaches more than about 80% of saturation in the 
point-interaction model, contrary to naive perturbation theory. We also point out, without 
discussing it in this paper, what appears to be a new fact about the Lee model, that the Higgs 
propagator has a bound-state pole in addition to the resonance pole. 

1. Introduction 

The Lee model [1] for unstable particles transports the Weisskopf-Wigner [2] 
two-level model to a Fock space setting, and in some sense it is the concrete example 
of a number of unstable particle ideas, including those of second-sheet poles, 
discrete energy dissolved into the continuum, unitary time evolution with deviations 
from exponential decay, exact S-matrix unitarity, and mass, coupling constant, and 
wave function renormalization. 

It has a number of drawbacks. It is not relativistically invariant, because it throws 
away significant pieces of the local interaction; it does not have crossing, and in our 
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case has only s-wave scattering. It has the curious history that for a long time it was 
thought to suffer from ghosts, until Yndurhin [3] noticed that ghosts are an artifact 
of no-recoil kinematics. 

The present study is motivated by the large-width problem for Higgs bosons with 
large mass, which makes it questionable how they are to be observed [4]. We cannot 
claim any definitive insights, because the Lee model we consider for the Higgs- 
Goldstone sector is a drastic truncation of the underlying gauge field theory. But the 
model can at least give hints about certain speculations, for example, concerning the 
interaction of large coupling with violation of the perturbative unitarity bound. We 
also believe that, because of its pedagogical interest as an unstable particle field 
theory, the Lee model deserves to be spelled out more than it has been, either in the 
literature in general or in this paper in particular. 

We specify the model precisely in sect. 2; for now we state that the fundamental 
processes allowed in the Lee model interaction are 

H ~  W + W  , Z Z ,  

where H is a scalar (Higgs) meson with mass m H, and (W+, Z, W_) is an isotopic 
triplet of scalar (Goldstone) mesons with small or zero mass m w (in particular, 
rn H > 2row). In this paper, we take m w strictly zero, because it simplifies the 
analysis, and the difference between zero and small mass should be irrelevant for 
large coupling, when large coupling is tied to large Higgs mass and the concern is 
with large energies. The price to be paid is that there is a bound-state situation that 
gets obscured, as we shall explain shortly. 

With m w strictly zero, we describe our results as follows: 
(i). In the point interaction version, let F 0 be the leading-order perturbation 

1 expression for the Higgs width, and ~F the exact, negative imaginary part of the 
Higgs propagator pole in the energy plane. We prove that there is exactly one pole in 
the lower right quadrant of the resonance sheet. Then for all values of the bare 

coupling, 

F o~< r <  ~F o. (1.1) 

Here F has a monotone-increasing dependence on the bare coupling (which is finite 
in the Lee model), and the upper limit becomes saturated in the strong coupling 
limit. 

Perturbation theory in the Higgs sector of the Weinberg-Salam model suggests 
that as m H becomes large there is a perturbative violation of unitarity, and that the 
Higgs width might grow like m 3 [5]. One could then wonder whether enforcement of 
unitarity might prevent the width from growing as fast as suggested by perturbation 
theory [4], but  the above result shows that unitarity does not of itself have that 
effect. In the exactly unitary, point-interaction Lee model, the width grows just like 
perturbation theory suggests. 
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(ii). In a non-point-interaction version, which includes a form factor chosen to 
make the tree scattering amplitude for Goldstone particles agree with that of the 
fully relativistic sigma model from which the Lee model is truncated, the scaled 
Higgs width has an upper bound at large coupling, 

F / 2 m  H < 5.35. (1.2) 

In that case, the width does not grow as fast as the perturbative expression. There is 
some support for this phenomenon in an interesting large-coupling treatment by 
M.B. Einhorn [6], based on the large-N expansion, which gets a bound of 1 instead 
of 5.35. 

(iii). In both versions of the Lee model, there is a bound-state pole in the Higgs 
propagator  below the W+ W or Z Z  threshold, in case those particles are given a 
mass, or at negative energy, if the masses are zero, in addition to the second-sheet 
resonance pole. At small coupling, both the existence and the non-analytic behavior 
of the bound-state pole position can be obtained correctly at one-loop order. These 
facts have led us to wonder whether a bound-state pole might not also appear in the 
Higgs propagator in the relativistic sigma model (with non-zero Goldstone masses) 
from which our Lee model is truncated, at one-loop order. We have confirmed that 
that is indeed the case, for small coupling and small m w / m  H. 

Whether the one-loop signal really means a bound state in the sigma model is 
unclear to us at this point. In the Lee model with relativistic kinematics, the presence 
of the bound state appears to be a new fact. The fact that it occurs at negative 
energy when m w is zero is an embarrassment to the stability of the vacuum, but we 
do not take it seriously for our application, because of our motivation from large 
energy. The existence of a bound state does support that the force in the I = 0 
channel is attractive, as Lee, Quigg, and Thacker [5] pointed out (at large m H). 

This paper focuses on the unstable particle pole, and omits any details about 
bound states. 

(iv). Since the Lee model is exactly soluble with non-trivial renormalization, we 
can ask what insight it affords into non-perturbative renormalization. In particular, 
the unstable Higgs particle has a non-trivial, although finite, wave function renor- 
malization, which reflects the fact that, in the stable case, the dressing transforma- 
tion from the bare, unperturbed one-particle state is non-trivial. 

There has been some equivocation in the literature about wave function renormal- 
ization for unstable particles. We adopt the attitude that the wave function renor- 
realization should normalize the residue at the second-sheet pole in the Higgs 
two-point function. One could wonder whether that remains meaningful when the 
width grows large and the pole moves far from the real axis. 

If the renormalized coupling is defined in terms of the value of the renormalized 
three-point function (one Higgs and two Goldstone fields) at some point in momen- 
tum space, the Higgs wave function renormalization explicitly feeds into it. In that 
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approach, one has to keep the normalization point away from any bound-state 
energy, to avoid sensitivity in the renormalized coupling. 

A second approach is to define the renormalized coupling in terms of the residue 
of the Higgs pole in the four-point function for Goldstone fields. This avoids any 
direct mention of the Higgs wave function renormalization, and the normalization 
point is "natural" .  

The result in either case, for the point interaction, is that the renormalized 
coupling grows linearly at large bare coupling (in particular, large bare coupling is 
large renormalized coupling). Since nothing strange happens, it seems reasonable to 
normalize at the pole, even though the pole moves far from the physical region. 

In the form factor case, the renormalized coupling saturates to a finite value at 
large bare coupling. Again, this strikes us as reasonable, because the width does that, 
too. 

Indeed, in both cases it would seem reasonable to trade the renormalized coupling 
for the width as a fundamental parameter. 

We display the four-point function approach in sect. 5, but we omit the correspon- 
dence with the three-point function. 

By contrast, in the stable Higgs case, there is no extra bound-state pole; and 
neither the sensitivity question nor that of the plausibility of normalizing far from 
the physical region arises. The well-known result [3], which we do not discuss further 
in this paper, is that the renormalized coupling saturates to a finite value at large 
bare coupling, for a point interaction. 

(v). Although the unstable particle pole moves far from the physical region at 
large coupling, its effects in the amplitude for scattering of its decay products do not 
disappear. The physical resonance signal, where the phase shift rises through ½~r as 
the energy increases on the real axis, whereupon the partial wave unitarity bound 
gets saturated, still occurs in a rough approximation, even though the pole is far 
from the real axis. What happens is that the phase shift rises more slowly and 
lingers, near about 51 ° for the point interaction, over an ever larger interval of 
energy. The unitarity bound is never really saturated; the scattering amplitude comes 
to a little less than 80% of saturation, contrary to naive perturbation theory. In that 
sense, strong coupling has strong effects in the scattering. The effect is not so 
dramatic, but is still present, in the form factor version. 

This phenomenon was pointed out earlier in Einhorn's large-N treatment [6]. It is 
of course a simple idea, that strong coupling means large scattering effects. It tempts 
one to ask, if large width is indeed due to large coupling, whether there might not be 
a way of disentangling such a broad Higgs signal from those of the competing 
processes that are left out by the Lee model. 

In general, we do not treat the form factor interaction in much detail. We do not 
expect either version to have much phenomenological validity at large coupling. We 
have included some discussion of both interactions because they provide examples of 
quite different behaviors at large coupling. We have focused on the point interaction 
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because it is analytically simpler. Also in the interest of simplicity, and because they 
are essentially the same for the point interaction, we have used the bare rather than 
the renormalized coupling as the fundamental parameter. 

2.  D e f i n i t i o n  o f  t h e  m o d e l  

At large Higgs mass, the Higgs-Goldstone sector of the Weinberg-Salam model is 
expected to dominate Higgs decay [5, 7]; that is, only physical Higgs particles, H's ,  
and longitudinal WL'S and ZL'S count. Then we invoke the "scalar dominance 
theorem" [5, 7] for large m H that amplitudes involving (H, W L _+, ZL) are the same as 
the corresponding amplitudes involving (H, W+, Z), where (W_+, Z)  are Goldstone 
scalars, up to terms of order m w / v  r~, for s >> m ~v, m 2. 

The model at this point has a massless, Goldstone boson isotopic triplet ~. ,  with 
_+ 1 = W_+, #0 = Z, and a massive, neutral scalar H, with interaction density 

VI--}wH( cI),f~* + H 2) + ¼•( ~ .~* + H2) 2 , (2.1) 

where the vacuum expectation value v, the Fermi constant GF, the coupling h, and 
the Higgs mass m n are related by 

1 
V 2 2 G F ,  ~ = ~GFm H. 

Although they will shortly become irrelevant, we mention here our conventions for 
isotopic spin. The lower index on ~ labels the charge destroyed by ~ .  We take ~ 
to obey a convention like the complex conjugate of a spherical harmonic. Spherical 
harmonics normally have their indices up. The raising operator for odd integer spin 
differs by a sign from complex conjunction, so 

~ = ( - 1 )  1 - " ~ _ , ,  = _ ~)*  (2.3) 

and - ~ has the same convention as a spherical harmonic. The expression in terms 
of hermitian fields is therefore 

• += - f~- (~l  - i~2), ~ _ =  ~-12 (~J 1 + i~=), ~o = t/i3. (2.4) 

The Lee model truncation is to drop the quartic terms and the H 3 term in (2.1), 
and furthermore to restrict the fundamental interactions to H ~ (W+ W_, ZZ). The 
resulting model can be described in terms of Fock space creation and destruction 
operators a, a* for the Higgs and b~, b* for the Goldstone triplet. We take 
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relativistic normalizations: 

[ a ( k ) ,  a (k ' )* ]  = 2wHS(k -- k ' ) ,  

[b,~(k),ba(k')*] = 2 w 6 ( k -  k')t~Z, 

w ~ = m Z + k  2 , 

wZ = m 2  + k 2 " (2.5) 

We eventually put the renormalized mass m w to zero, and we put m n at the 
observed Higgs level position, the real part of the second-sheet pole in the energy 

plane at k = 0. 
The hamiltonian is 

H = H H + ~H H + H w + V, (2.6a) 

, d3k 
n n  + $ n n  = J T---a,a(~rl + ~WH), 

Z0J H 
(2.6b) 

r d3k 
H w = I - - b * b , ~ w ,  (2.6c) 

J 2w 

V =  V++ V , (2.6d) 

V+= 

V +  ~ V 8¢ , 

- x v  f d3k d3kl d3k2~ ~(k2)a ,  
(2~r) 3/2 2w H 2w 1 L~2 b~(kl )b  

(k)8(k-k, 

(2.6e) 

(2.6f) 

The factor 7/ will be put to one in the usual, point-interaction situation. The 

modification that we consider is 

2O, n (2.7) 

~-~-" W l _ J _ W 2 +  WH ' 

which has the effect of making the tree scattering amplitude for Goldstone particles 
relativistically invariant, and may be thought to put back in part of the effect of the 
relativistic Higgs propagator, which gets truncated into an "old-fashioned perturba- 
tion theory" propagator in the point interaction version. 

Here is a review of the renormalization. 
The mass parameters m H and m w are renormalized quantities. The Higgs 

counter term 8w H is chosen to make the real part of the second-sheet energy pole in 
the Higgs two-point function equal to the renormalized energy parameter o~ n. It is 
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logarithmically divergent in the point-interaction case and finite for our modified ~/. 
The creation and destruction operators and the coupling parameters ~,v are bare 
quantities. 

There is no vacuum self-energy renormalization, because the bare and physical 
vacua are the same, the Fock vacuum for the bare destruction operators. 

There is no Goldstone mass renormalization, because the bare one-particle 
Goldstone states are eigenstates of H. 

Hb~(k)*  Ivac) = o~b,(k)* Ivac). (2.8) 

Since the bare and dressed Goldstone one-particle states coincide, there is also no 
Goldstone wave function renormalization. 

We have already described our attitude towards the Higgs wave function renor- 
malization, which is finite. 

3. Reduction to the decay sector 

The hamiltonian leaves the sector of Fock space spanned by a*lvac ) 
and b*b~ I vac) invariant. Furthermore, the isotopic structure of the interaction 
makes it vanish on the isotopic triplet subspace of that sector. There is non-trivial 
interaction only in the "decay sector", spanned by a*[vac) and b*b"*lvac)= 
~ a (  - -  1 )  1 - ab*b*- a I vac) • 

We choose a basis of momentum eigenstates in the decay sector as follows: 

Ik> = a*(k)ivac>, (klk'> = 2~0H6(k - k ' ) ,  (3.1a) 

1 
= -  b* k l )b~ '*(k2) lvac) ,  Ikl,k2> o( (3.1b) 

<kg, k~lkx, k2> = 12~012~02 [8(k~ - k l ) $ ( k ~  - k2)  + 8 ( k ~  - k2)$(k  ~ - kl)  ] . 

The interaction is then determined by 

g -  2~.  3 - -  (3.2) 
(2,n.) 3/2" 

At this point, the problem has been reduced to an equivalent problem with two 
scalar particles and no isospin; the only vestige of isotopic spin is the factor ~/3- in 
eq. (3.2). 

The theory is solved in the decay sector once the resolvent operator (z - H)-1  is 
known for all complex z. In the Lee model, all matrix elements can be expressed in 
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t e rms  of 

1 
~k ' l  z - H Ik> = 2°~H6(k '  -- k)Gk(z)' (3.3a) 

D(z)=-Gk(z) -1 

1 2 d3kl d3k2 02 1 6 ( k  - k I - k2)  
= z - ~ . - ~ .  2u.gf2,~ 2,~ ~-,~1-,~ 

(3.3b) 

Initially,  the denomina to r  funct ion D(z) is defined in a cut z-plane (the physical,  
or  first sheet) with a cut on the positive real axis f rom E T to oe. Al though we do not  
discuss t hem here, one should remain  alert to the possibil i ty of  real zeros in D below 
the threshold E T. The  integral in D can be simplified by the s tandard  relativistic 

t r ans fo rma t ion  to GSrding-Wightman variables [8]: 

d3k,  d3k2 , / s - 4 m  2 0 ( s - 4 m  2) 
- -  - -  = d4pd[2  V (3.4a) 
2w I 2w 2 s 8 ' 

s = e - p  = ( ~ ,  + ,o2):  - ( k ,  + k 2 )  2, (3.4b) 

D(z) = Z - - , 0 H - -  ~ , 0 .  + f°~dEf(E) 
ET -g-~--Z' 

(3.4c) 

f ( E ) =  ~rg~2 21/E2-E2 / E2=-k2+4m 2, (3.4d) 
4tort ~1 v E 2 - k  2 ' 

~/2 = 1, point  interact ion,  (3.4e) 

2o) H 

E +to H ' 
modif ied interact ion.  (3.4f) 

F o r  simplicity,  we put  m w = 0 f rom now on. Then the square root  threshold 
fac tor  in f (E)  becomes  unity, and, in the point  interact ion case, f= f (E )  is 
cons tant .  We  also work  at k = 0, so the lower limit of  integrat ion in (3.4c) is E T = 0. 
F r o m  now on, we write m = tort and ~m = ~ m  H. For  our  purposes,  it is convenient  
to s tudy  D(z) in the plane cut along the negative z-axis, chosen so that  the upper  
ha l f  plane,  excluding the real axis, is c o m m o n  with that  of  the physical  sheet. We call 
this the " r e s o n a n c e  sheet", to indicate that  it contains  the resonance zero. A 
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bound-s ta te  zero of D below threshold would be found on the cut of  the resonance 

sheet by  approaching  the real axis f rom above. 
In  the point- interact ion case, we introduce a cutoff, to be removed shortly, in the 

upper  limit of  the integral in eq. (3.4c), to make its real part  finite. We fix 8m so that 
1 the resonance zero is at z 0 = m - iv, where m > 0 is fixed, and 7 = 7 F > 0 depends 

on the bare  coupling. It will be clear in sect. 4 that we then have a single zero in the 

right half  of  the resonance sheet (including the positive real axis). With the cutoff, 

we have 

1 D ( z )  = z - m - ~ m  + i~r + In , (3.5a) 
2 

/£ - - Z  0 
6 m = / l n l - - I ,  -~r  < I m l n  < 7r. (3.5b) 

20 

W h e n  the cutof f  is removed, r ~ oo, we get on the resonance sheet, 

i, -lnlm i ,l (3.6) 

with the same definition of  the argument  in the imaginary part  of  the logarithm. 

N o  cutof f  procedure  is necessary for the modified interaction, which gives 

D ( z ) = z - m - S m +  - - - -  i ~ r - l n  , (3.7a) 
2 - I - m  

8m = Re i~r - In . (3.7b) 
Z o + m  

4. The  Higgs  width 

As we said earlier, our  discussion will be more detailed for the point  interaction 

than for the form factor version. 

4.1. POINT INTERACTION 

Let  z = x + i y  be in the fight half of the resonance sheet. The equation for zeros of  

D in the right half  resonance sheet is 

[ z y] 
z = m + f  ln[ m - i-----7 - i~r + i tan -1 (4 .1 )  -- ½~r < tan -1 < ~ r .  
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There are no zeros above or on the real axis in the right half plane, because the 

imaginary part  of the right side is non-vanishing and negative. 
We have chosen 8m to give a resonance zero with real part  at m, z 0 = (m - i./), if 

we can find the negative imaginary part  ./. The equation for TT > 0 is 

Clearly 

~ r + t a n  ] = - -  t a n  t . 
m m ./ 

(4.2) 

7r <~ . / / f  ~ ~¢r. (4.3) 

The leading order expression for small f is 

3 3 
"/0 = ~rf= - - ) k z v  2 = vZG#rn 4 (4.4) 

161r 2 64qr 2 • 

It  is straightforward to see that the graphs of the functions of scaled width . / /m  

defined by the left and right sides of eq. (4.2), for fixed f / m ,  have one and only one 
intersection for TT/m > 0. Furthermore, 

d./ ~r + tan-X(TT/m) 

d f  1 - f m / ( m  2 + ./2) , (4.5) 

which shows that d . / / d f >  0, because y >i ~rf m e a n s  m 2 + ./2 >~ 2./m >/2~rfm >~fm; 

so the denominator  and numerator are both positive. We conclude that ./ is a 

monotone  increasing function of f which vanishes like Y0 = rrf at f =  0 and 
approaches the limit . l / f =  3 ~r  at f =  ~ .  That proves the claim stated in the 
introduction in eq. (1.1). 

We have found that there exists one and only one resonance zero with real part  m 
for all positive bare couplings f .  We now show that there are no other resonance 
zeros in the right half of the resonance sheet. 

It  is convenient to use variables scaled by f instead of m, with reflected imaginary 
part:  ~ = ~ + iT = (x  - iy ) / f .  The equation for the imaginary part  of a zero of D in 
the lower right resonance sheet has the same form as eq. (4.2), even if the real part  is 

not at ~ = m / f :  

~/= ~r + tan-1 ~_ (4.6) 

In the new variables, we label the zero we have found as ~o = (m + iT) / f .  The 
equation for the real part  of a general zero may be cast in the form 

~ -  ~0 = l n l g l -  lnl~ol. (4.7) 
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Any zero, including ~o, must lie at an intersection of the curves in the first 
quadrant  of the ~, 71 plane defined by eqs. (4.6) and (4.7). The first curve, 7 = 71(~), 

obeys 

~r ...< 7 -.< 3 ~'a", 

d71 -71 
d~ ~2 _ ~ + 7~ " 

(4.8) 

The inverse function can be solved explicitly, ~a = 7 / t a n  7. The second curve is 

7 = 72(( )  = [l~012exp 2(~ - ~o) _ ~211/2, 

d72 ~2 _ ~ + 7 2 

d ~  72 
(4.9) 

The factor ~2 _ ~ + 7 2 in the derivatives has no real zeroes for ~ > 0 and 7 > ½, so 
in particular it has none for 7 >/~r. Thus, the first curve always has a negative slope, 
and the second always has a positive slope, in the region 71 >1 ~r where they could 
intersect. 

There is an intersection at ~0, by construction. There can then be no other 
intersection, because the monotonicity of their slopes prevents the curves from 
getting back together again. 

We conclude that ~ = ~0 is the only solution of eq. (4.7), and that there is a unique 
resonance in the lower right quadrant of the resonance sheet, whose imaginary part 
is small at small coupling (and fixed m) and moves to - ~ at an essentially linear 
rate as the coupling parameter goes to oo. 

Recall that we have been working in the complex energy plane at zero three- 
momentum. Including a non-zero momentum would certainly not result in a 
relativistic complex dispersion law for the resonance pole, because the model breaks 
Lorentz invariance. A similar Lorentz symmetry breaking effect is present in the 
modified interaction, to which we now turn, although it builds in relativity at the 
tree level. 

4.2. FORM FACTOR INTERACTION 

In the non-point interaction case, the equation for 7, the negative imaginary part 
of the zero, when the real part is m, is 

~ / _  4 f  1 ( y y ln[1 + ( . / / m ) 2 ] )  ' -  (4.10) 
m m 4 + ( y / m )  2 ~ r + t a n - l m  4m 

where f is the same constant as before, given by eq. (4.4). To discuss the solution, we 
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use scaled variables 7/= "y/m and h = 4 f / m .  The existence, uniqueness, and large 
coupling limit of the solution */(h) of eq. (4.10) can be discussed easily and 
convincingly by plotting a few curves on a small computer, and with a little more 
work can be made rigorous. We state the results. 

The right side of eq. (4.10) has a zero at 

0 = ~r + t a n - l , / -  3'/1 ln(1 + 72), (4.11) 

unique for 0 ~ ~/~< oo, which is the value 

71oo = lim ~ / (h ) ,  
h ---* o¢ 

5.34645 ~< ~/oo ~< 5.3465. (4.12) 

The solution ~/(h) of eq. (4.10) is a monotone, increasing function for 0 ~< h ~< ~ ,  
obeying 0 ~< o (h )  ~< 'loo. This proves the bound stated in eq. (1.2) in the introduction. 

We have not studied the question whether there are extra resonance zeros with 
real part  different from m. 

5. Renormalized coupling and scattering 

Because we want to discuss the saturation of unitarity, we point out that partial 
waves can be constructed by standard relativistic techniques, by using the G~rding- 
Wightman variables mentioned sketchily in sect. 3, even though the theory is not 

Lorentz  invariant. The only practical difference is that the scattering phase shifts are 
not functions of s -- E 2 -p2 alone, but of E and p2 separately. We work as before 
at p = 0, and there is only an s-wave phase shift. 

Let the scattering matrix be parameterized as S = I - 2~riT. Then the W+ W_, Z Z  

(Goldstone)  scattering amplitude, which is only I = 0 in our case, can be expressed 
in terms of the two-particle states defined in eq. (3.1b) as 

1 
< k~, k~I Tlk ,, k2> = 6( E' - E)<k{,k~IV 

E + i e - H  
V l k l , k z )  

k " Ig~12 

(5.1) 

where E = 6% + (°2, where g and 7/ are defined in eqs. (3.2) and (3.4e, f), and where 
we have used the structure of the Lee model interaction to drop a first order term in 
V, and all occurrences of 6H R in the numerator. 
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The s-wave phase shift at k 1 + k 2 = 0 can be found from 

435 

e 2i8(E) - 1 ~r 2 

2i 4m H 
- - I g n l 2 a k ( E  + ie).  (5.2) 

We define the renormalized coupling by comparing the exact G to the tree 
amplitude: 

<k{ ,  k~l  Z l k , ,  k2)tree = ~(4)(k{ --t- k~ - k 1 - k 2 )  - -  
Ig•l 2 1 

2to H E + i e - t o  H 
(5.3) 

where we have used the tree version of G -1, Dtree(Z ) = z - WH" The residue of the 
exact G at the resonance pole z0=  ( m -  iy) at zero momentum is found by 

expanding D ( z )  = ( z  - z o ) D ' ( z o )  + • .- ; we then define 

g2 
2 (5.4) 

g r e n - - i D , ( z 0 )  I • 

For  the point interaction, we find at zero momentum 

g2 

2 (5 .5)  
gren "~- i1 - - f / ( m  -- iy)[ " 

Keeping in mind f =  ~rg2/4m and the bound in eq. (4.3) on 3', it is clear that 2 gren is 
essentially linear in the bare coupling g2, as we claimed in the introduction, going to 
%rg 2 as g 2 ~  oo. 

The point-interaction phase shift can be expressed in the physical region, E > 0, 

in terms of f :  

e 2i8° - 1 ~ ' f  

2i E -  m + f [ l n l ( m -  i y ) / E  I + irr] " 
(5.6) 

It  is trivial that unitarity is exact. It is also not hard to check that for large f there is 
no value of E that makes the real part  of the denominator in the above equation 
zero, which would put the scattering amplitude at its maximum size with 80 = ½7r. 
The magnitude of the denominator can, however, be minimized by minimizing the 
real part,  at E = f .  In the strong coupling limit, that produces 

"/t 
ei~°sin 80 = (5.7) 

1 + ln3~ " + i~r ' 

when f / m  becomes large. This yields a phase shift 8 o = 51 ° at maximum scattering 
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in the s t rong coupl ing limit. The expression (5.6) shows that the scattering ampli tude 
will remain  appreciable over an interval in E of  order f ,  for f large. 

The  renormal ized coupling constant  for the form factor interaction is obtained by 
subst i tut ing z = m - i3, into 

2m (m z ) 
D ' ( z ) = l  ( z + m )  2 l+--z -ln--m +i~r . (5.8) 

At  large f ,  the renormalized coupling saturates to 

2 g . . . . .  -= 4.4m 2 , (5.9) 

where we pu t  in the limiting value for "y/m from eq. (4.12). I f  we define the 

renormal ized  version of  the sigma model  coupling, )~v in eq. (2.1), by  the same 
propor t iona l i ty  factor  as in g . . . . . .  we get 

(~ko) . . . . .  ~ 13.5m. (5.10) 

Al though  we think it utterly without  phenomenological  meaning, we ment ion that, 

if the mass and coupling constant  relations in eq. (2.2) are taken as renormalized 

equations,  neglecting any radiative corrections, with the usual expression for the 

Fermi  cons tan t  in terms of m w and the Weinberg angle, then eq. (5.10) gives an 

upper  b o u n d  mH/m w < 100 at large coupling. 

The  large coupl ing phase shift at maximum scattering can be worked out, but  the 
tenuous  validity of  the model makes it hardly worth the effort. The scattering 

ampl i tude  should be broad, but not as broad  as in the point  interaction case. 

I t  is a pleasure to acknowledge that this paper  was stimulated by questions posed 
by  G o r d o n  L. Kane,  and to thank both him and Mart in B. Einhorn for helpful 

conversat ions.  
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