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Section 11. Organic Molecules

EXCITON DYNAMICS IN THIN WIRES *
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When are molecular wires thin enough to show one-dimensional exciton kinetics? What are the characteristics of one-dimen-
sional kinetics? What applications are there? Cylindrical naphthalene wires ( 5-5000 nanometer radius) show a definite one- to
three-dimensional transition (about 25 nm for triplet excitons at 4 K; 40 nm at 77 K). Nuclear channel pore membranes (poly-
carbonate) serve as templates and calibrators. Monte Carlo simulations on finite-width wires are consistent with the experiments.
Vycor glass pores are effectively one-dimensional. A new experimental criterion is based on excitation pulse width. It gives both
topological and stochastic information (i.e. dimensionality and hopping rate). Its applicability to ultrathin wires and porous glass
is demonstrated via simulations and experiments. The triplet exciton migration (multiple hopping) length is 50-100 molecules

for all samples.
1. Introduction

Solid-state and stochastic problems in one dimension
have been of long-standing theoretical interest [1-5].
Currently, electronics in thin wires is of much theoretical
and practical interest [6-9]. The theoretical enigmas (lo-
calization, mesoscopic phenomena, boundary effects) are
compounded by experimental difficulties: minute cur-
rents, heat dissipation, shorts, non-uniformity and sus-
pect testing procedures. Many of these difficulties are not
present with Frenkel excitons. There are no Coulomb re-
pulsions and for triplet excitons the interactions are ex-
tremely short-ranged and the surface effects are minimal
[4,10]. Moreover, triplet excitons are already localized
in the bulk [11] and thus there is no localiza-
tion-delocalization transition or cross-over. Experimen-
tally one can rely on optical measurements which are as
simple for thin wires as for the bulk. Furthermore, sample
uniformity or continuity is not a crucial factor. One can
thus concentrate on the mesoscopic properties of interest,
stemming from the confinement of the excitons inside a
thin “wire”.

Recently, porous materials and “fractal” networks have
also been of much interest [12-15]. The difference be-
tween a fractal network and a quasi-one-dimensional net-
work is often not very clear [12-16]. Energy transfer
[13,14] and exciton kinetics [ 1 5] have been used for the
characterization of such networks (e.g. pore networks of
porous media). Understanding the characteristics of truly
one-dimensional networks and the effects of sample di-
ameter is thus of practical interest. Furthermore, molec-
ular of polymeric chains, fibers, filaments and networks
exist in most synthetic, natural and biological organic sys-
tems, from organic conductors to neuron transmitters.
Molecular exciton kinetics in thin filaments are of rele-
vance to all these systems.

We note that our system differs significantly from pre-
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viously studied quasi-one-dimensional systems [ 17~20].
The latter are essentially two or three-dimensional sys-
tems with highly anisotropic exciton-exchange interac-
tions. Thus, for a short time the exciton is confined in
one-dimension. However, there is always a finite proba-
bility of moving along other directions (interchain hop-
ping), resulting in a two- or three-dimensional behavior
over longer times (this usually confines the measure-
ments to ultra-short times). Moreover, the phonons and
exciton-phonon interactions in these systems are seldom
one-dimensional. In contrast, our systems are truly one-
dimensional over long times and there is no escape or
tunneling out of the thin, one-dimensional systems. (Our
ultrathin wires are obviously three-dimensional on ex-
tremely short time scales.)

Exciton transport is usually monitored via the kinetics
of trapping or annihilation [11,15,18]. The kinetic pro-
cess may be unary, pseudo-unary or binary (monomole-
cular, pseudo-monomolecular or bimolecular in chemical
language), e.g. trapping, heterofusion or homofusion, re-
spectively [4,15,21]. In all these cases the “rate-con-
stant” (instantaneous reactive collision probability per
unit density) is given by [21]

k~dsS/dt . (1)

where S is the mean number of distinct lattice sites vis-
ited by a single exciton (in the absence of reactive pro-
cesses). We note that eq. (1) is valid for all topologies, in
contrast to the expression k~ D(D=diffusion constant)
which is valid only for 3-dimensional (homogeneous)
lattices. To a very good approximation one has [21]:

S~1" 12<f<1 (2)
k~t" 1712<h=1-f<1. (3)

At long times h=0 for three-dimensional lattices and
h=1/2 for one-dimensional lattices. We note that for
fractal lattices 1=1—d/2 where d, is the spectral dimen-
sion [21-23]. The pragmatic questions we pose are: How
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thin has a wire to be to give one-dimensional behavior
(h=1/2)? What is the nature of the crossover from three-
dimensional to one-dimensional behavior? What does this
crossover depend on? What can we learn from it? What is
the use of thin exciton wires?

We note here that in perfect crystalline samples the cx-
citons move freely (at random, due to phonons). result-
ing in binary (bimolecular) exciton-exciton annihilation
[21.24]:

A+ A -hy ., (4)

where av designates fluorescence (“delayed™). Thus the
annihilation rate R and the fluorescence rate F are given
by [24]

where p ;1s the free exciton density. However. in most real
samples [15,25], a fraction of the free excitons (.1) are
quickly trapped. giving a roughly constant density p,, of
trapped excitons (.4'), resulting in a pseudo-unary
(pseudo-monomolecular) annihilation reaction and rate:

A+A4 —hr. (6)
F~R=k'p, k' =kp, . (7)

In addition. the triplet excitons undergo natural decay
(lifetime 1):

A-hy: P=t 'p,. (8)
The overall results are thus:
k~F/P" n=1.2. (9)

where n=2 1s for perfect (trapless) samples and n=1 is
for real samples (with traps). We note that for three-di-
mensional samples & (and log k) is expected to be con-
stant in time while for one-dimensional samples k~¢ '
and log A ~log t (with a slope of —1/2).

Exciton and electron-hole recombination kinetics are
believed [4.25-27] to depend only on the initial density,
for a given sample and given thermodynamic parameters
(temperature ). The same goes for surface and solid state
reactions [27.28], including defect aggregation [29].
Whether the cnsemble has been prepared under steady-
state conditions (e.g. ¢cw excitation) or as a random en-
semble (e.g. pulse excitation) was believed not to matter.
as long as the global density is the same at initiation time
(1=0). We show that the above assumption works quite
well for homogeneous samples, but not for heterogeneous
or low-dimensional samples. Specifically, for some frac-
tal-like. quasi-linear or dispersed samples the focal densi-
ties and pair-correlation functions determine the decay
functions, especially at ear/y times. Such experiments can
thus serve as probes for the dimensionality as well as the
geometric and/or energetic heterogeneity of the sample.
They can also serve as indicators of diffusive vs. disper-
sive motion, of the degree of motional coherence and of
the degree of stirring and self-stirring of the ensemble. This

method may also provide an absolute calibration for the
hopping time.

2. Experimental

Experiments were carried out on naphthalene impreg-
nated porous glass (Vycor), porous polymeric mem-
branes, naphthalene powder [15.21]. and perfectly
crystalline isotopic alloys of naphthalene [21.24]. The
purification, preparation and other experimental proce-
dures were the same as in previous studies [ 15.21,24.30].
The random population of triplet naphthalene excitons
was produced by “pulse™ excitation: msec duration pulses
produced via mechanically shuttered xenon lamp cxcita-
tion [15.21,24.30]. The steady statc population was cre-
ated via excitation by the same xenon lamp. but the lamp
was “on’ till well after a steady state phosphorescence
signal was established (several seconds). and then shut-
tered “off . Neutral density filters insured equal phos-
phorescence signals at time “zero” (the closing time of
the shutters in both excitation modes). Both phospho-
rescence and delayed fluorescence decays are quite differ-
ent for the pulsed vs. steady-state excitation mode.
especially at early times. Fig. 1 shows phosphorescence
and fluorescence decays for both pulsed and steady-state
excitations of naphthalene embedded porous glass. Simi-
lar results are obtained for naphtalene powders, and for
low concentration naphthalene isotopic alloys (“below
percolation™). On the other hand, no such differences in
decay curves can be scen for high concentration alloys
(“above percolation™) or nearly perfect naphthalene
crystals [30].

Significant i1s the use of channel-pore (“nuclepore™)
[31] polycarbonate membranes. These 6 micron thick
membranes come with well 1solated, cviindrical pores (fig.
1 of ref. [32]). While a given membrane has uniform pore
diameters, membranes with different pore diameters are
available and we used them in the range of 10 nm (100
A) 10 one micron (10000 A). Some typical results are
shown in fig. 2 (7'=4 K). We note that only the pseudo-
unary model (#=1) resulted in linear slopes. The binary
model (n=2) cannot be fitted with straight lines and,
moreover, results in non-constant A curves even for the
thickest wires (1.2 um). The totality of the / values (neg-
ative slopes), for all wires (each at 4 and 77 K). is given
in fig. 3.

3. Monte Carlo simulations

A system of random walkers is created on various lat-
tices. In one case (1) the walker population is created via
a random placement of particies on the lattice. This mim-
ics the creation of naphthalene excitons via “pulse™ (the
weak optical absorption of photons is presumed to be
random over the thin sample). When two walkers collide
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Fig. 1. Delayed fluorescence decay from naphthalene in Vycor glass at 6 K following excitation (310 nm) durations of (A) 11 s;(B) 20
ms. The excitation of (A) had a neutral density filter of 1.2 to equalize the initial phosphorescence intensity of (A) and (B).

they annihilate: A+ 4 0. This mimics the exciton reac-
tion: triplet+triplet—Av, where Av is fluorescence (“de-
layed™). (The “natural decay” (phosphorescence) of the
walkers has been incorporated in some simulations, but
plays a minor role due to the relatively long triplet life-
time). For the second case (II), the steady state excita-
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tion is simulated via a steady rate of particle creation. The
particles move at random and annihilate (4+4-0). After
a while a steady state density of walkers is established
[33,34]. The creation of particles is stopped at a time de-
fined as “zero”. The random walk and annihilation con-
tinue and are monitored. Case I (random creation) is
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Fig. 2. Annihilation rate coefficient R=F/P vs. time on a In-In scale, for naphthalene filled channel-pore polycarbonate membranes at
T=4 K. The pore diameters are (A) 150 A, (B) 300 A (C) 500 Aand (D) 800 A. Note that the trapped (bound) exciton phosphores-
cence is excluded via an interference filter (centered at the free exciton peak).
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Fig. 3. Exponent & vs. wire diameter (in angstrom ). at 4 K (O)
and 77 K (X). The 20 A point ( ~A) is for porous Vycor (ref.
[153]). Note break in scale.

normalized by starting with the same global density
(number of particles) as Case II (at time “zero™). We
note that while the initial global densities (monitored ex-
perimentally via phosphorescence) are equal in both Case
I and II (for both simulation and experiment). this does
not guarantee an cqual annihilation rate (delayed fluores-
cence) at time “zero™” (or at any other time). The anni-
hilation rate depends on the /local densitics.

4. Results and discussion

We have simulated diffusion-limited reactions on true
on¢-dimensional systems and also on quast-one-dimen-
sional svstems such as two- and three-dimensional “wires”™
(see fig. | of ref. [35]). For instance. for the rcaction
A+4-0 we find an initial classical behavior, followed
quickly by a one-dimensional behavior (for pulsed reac-
tions). For long tintes we find 7= 0.5. for both geminate
and non-geminatc generation of 1. These are the same re-
sults as for a strictly one-dimensional chain [33]. We
conclude that the typical one-dimensional behavior for
annihilation reactions is preserved for one-dimensional
wires with finite thickness. for both “flat™ and “round”
wires. This is true as long as the length of the wire 1s large
compared to its cross-section and provided that the ob-
servation time is long compared with the time it takes a
particle to reach the edge of the wire [35].

For the naphthalene wires in the cvlindrical polycar-
bonate membranes (figs. 2. 3) we observed that the thin-
nest wires vield a value 4= 0.5, while the thickest wires
give A= 0. for both temperatures. Actually, extrapolating
to zero diameter, h—0.49£0.02. On the other hand. for
micron sized wires 2—-0.02+0.02. These two limiting
values are in excellent agreement with the theoretically
expected values of #=1/2 and A=0. respectively. The
cross-over {between /#x~0 and A=x~1/2) occurs at diame-
ters of about 500 to 800 A at 4 and 77 K, respectivels.
The cross-overs arc relatively sharp and their tempera-

ture dependence 1s relatively mild. The higher value at
higher temperatures is consistent with a somewhat taster
hopping rate.

In our interpretation the cross-over radius is roughly
consistent with the average cruising range /. (end-point to
end-point distance) of the exciton, within its lifetime. An
indirect, rough estimate for the naphthalene cruising range
in similarly prepared samples was given [15] as 2= 1000
A. This is in excellent agreement with our present result
(7> 3500 A). Obviously. for wires with radius #> 4 the
excitons do not “feel™ the pore boundaries while for r << 4
the excitons are severely confined along two of the three
directions. We note that the polycarbonate excitation en-
ergy values are so much higher than those of naphthalene
that there is a vanishing probability for barrier crossing
or tunneling (A£> 100A7 even at 77 K).

Of particular interest 1s the resolution of the porous glass
(Vvcor) dilemma [15]. The nature of the pore network
has been highly controversial [ 12-16]. It has been argued
on one hand that it 1s a random (percolation-like) net-
work with a fractal dimension on the order of two [13].
On the other hand it has been argued to be non-fractal but
essentially one-dimensional [12.15.16]. Using the exci-
ton kinetics technique it was argued [15] that the effec-
tve spectral dimension is 1.05. ie. effectively one-
dimenstonal. Our present study uses the same approach
for “calibrated™ cvlindrical pores which are obviously non-
fractal and one-dimensional. We have included the older
[15] Vycor glass measurements as a data point in fig. 3.
It essentially falls on the same curve as the new. polycar-
bonate data. The Vycor data are thus totally consistent
with a one-dimensional pore topology. Further proof is
given below.

The naphthalene-embedded porous Vvcor data of fig.
| are now replotted (fig. 4 in a ratio plot of the annihila-
tion rates (pulse-generated over steady-state-generated
delaved fluorescence). We note the high initial (short time)
value of this ratio (about seven). It turns out that only
with one-dimensional topologies can one achieve such
high initial ratios. For comparison, fig. 4 gives the simu-
lation results for a number of topologies. A cubic topol-
ogy results in an effective ratio of wnirr, the classically
expected value. Three-dimensional topologies of percola-
von clusters (including the whole ensemble of percola-
tion islands!) and monodisperse cubic islands (3 x 3 X 3)
give ratios higher than unity but lower than five. The same
1s true for two-dimensional topologies (including frac-
tals. e.g. Sierpinski carpets, critical percolation clusters and
the monodisperse square islands). Only the one-dimen-
sional topologies (continuous and disperse) give curves
resembling the experimental data (fig. 4).

The above experimental data appear to require a wire-
like topology. with at lcast partial breaks (an assembly of
worms is a good picture). Independent knowledge of the
exciton hopping time would narrow down the topology
(giving an cffective “worm-length™). On the other hand,
the present information suffices to constrain the average



R. Kopelman et al./Exciton dynamics in thin wires 293

RATE (mandom: steady state)

RATIO

STEP #
Fig. 4. Ratio of annihilation rates (pulsed over steady-state generation) vs. time: (A) Vycor glass (see fig. 1) with time in ms. (B) One-
dimensional islands (20 sites each). (C) One-dimensional chain. (D) Three-dimensional percolation clusters (cubic, 40% occupation.
all clusters). (E) Three-dimensional lattice (cubic). (F) Three-dimensional islands (3 X 3 X 3 sites each). Note; 1. Each simulated en-
semble includes about 30 000 sites. 2. Simulation time in number of steps.

individual hopping time to about | ms (certainly within
an order of magnitude). This translates into an effective
cruising length of about 50 molecules or about 250 to 400
A. This is in good agreement with the polycarbonate-
embedded wires (see above) and our previous estimate
[15].

We have argued above, based on a different kind of ki-
netic parameter (the heterogeneity exponent for /ong time
decays). that naphthalene channels in porous Vycor are
quasi-one-dimensional. Qur present kinetic data (based
on local densities at ear/y decay times) appear to be con-
sistent with the above picture and with other work [12].
More importantly, the high value of the heterogeneity ex-
ponent (£=0.5) is characteristic of an effective one-di-
mensional topology. On the other hand, our data are not
consistent with a percolation-network topology for the
Vycor pore network [13]. To test this we have tested the
percolation clusters of isotopic mixed alloys [24]. Pre-
vious mixed crystal data [24] showed that the heteroge-
neity factor increases below 12% napthalene (C, H; in
C,0Dy) alloy concentrations ( while above 12% /4=0). At
low concentrations we now observe initial rate ratios
higher than unity but below three, while at higher concen-
trations (39%) we obtain a ratio of unity [36]. This is
consistent with our simulations [36] (see also fig. 4).

The local density (early decay time) kinetic effect is
thus a new criterion for the characterization of sample
heterogeneity (we include low dimensionality as a special
case of heterogeneity). We further note that the exciton
transport in these samples is incoherent (hopping) [11].

B
100
TIME

(msec)

A coherent transport would give different results. Ob-
viously there is no mixing (stirring) mechanism avail-
able for our exciton ensembles. Homogeneous chemical
kinetics implies efficient stirring (convection) and thus
no local density effects. However, it is interesting to see
that the diffusion-caused *'self-stirring™ [37] is sufficient
to effectively quench the /ocal density effect in the ““ho-
mogeneous” lattices (simple cubic - fig. 4, as well as
square lattice and others [36]). Thus, exciton hopping in
perfect (non-alloy) crystals is not expected to show the
local density effect. Indeed. it is not observed.

As mentioned above, this new effect may also enable
one to calibrate the absolute number of random hopping
events within a given time period. The simulations indi-
cate that the delaved fluorescence ratio (fig. 4) reaches
unity after roughly 107 ““steps”. Experimentally, this ratio
of unity is achieved after about 0.1 s. This again gives an
average hopping time of about 1 ms (assuming effective
one-dimensional topology ).

We expect similar local density effects to appear in many
analogous solid-state and ‘“‘physical™ reactions: Elec-
tron-hole recombination, defect annihilation or aggrega-
tion. and soliton-antisoliton annihilation. The same
should be true for diffusion-limited solid-state and sur-
face chemical reactions.

5. Summary

1) We have produced cylindrical molecular crystal wires
down to a radius of 5 nm: The recombination process in-
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volves free and bound excitons (“heterofusion™). The
triplet exciton kinetics fits a multiple-hopping model. The
overall migration range is about 25 nm at 4 K and 40 nm
at 77 K. The /long-time exciton transport is strictly one-
dimensional in the ultra-thin wires. The fractal-like kinet-
ics model works well in a low-dimensional non-fractal
system. 2) The porous-glass (Vycor) channels are de-
scribed well by a non-fractal, quasi-one-dimensional to-
pology. The naphthalene plugs in the Vycor pores are
shown to be worm-like. These naphthalene-embedded
Vycor pores also show a triplet exciton migration length
of about 25 to 40 nm. The Vycor sample exciton hopping
time (per molecule), along the pore, is on the order of |
ms. 3) The exciton annihilation method appears to be a
reliable tool for probing spectral dimensions and low-di-
mensional topologies. A new method, based on /nitial lo-
cal density effects is described. The initial density method
is very sensitive to topology and hopping time.
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