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Let ¢: [0, o) — [0, oc) be a continuous subadditive strictly increasing function
and $(0)=0. Let E and F be Banach spaces. A bounded linear operator 4: £— F
will be «called ¢-summing operator if there exists A>0 such that
Yo @A S ASupxy <1 oro ¢ 1<x;, x*)], for all sequences {x,,..x,}SE.
We set T]%(E, F) to denote the space of all ¢-summing operators from E to F. We
study the basic properties of the space JT%(E, F). In particular, we prove that
[T¢(H, H)=T[1"(H, H) for 0<p<1, where H is a Banach space with the metric
approximation property. < 1987 Academic Press. Inc.

0. INTRODUCTION

Let ¢: [0, 00)—> [0, 0) be a continuous function. The function ¢ is
called a modulus function if

(1) dlx+y)<d(x)+o(y)
(i) ¢(0)=0

(iii) ¢ is strictly increasing.

The functions ¢{x)=x", 0<p<1 and ¢(x)=1In(l +x) are examples of
modulus functions.

For Banach spaces E and F, a bounded linear operator A: E— F is
called p-summing, 0 < p < oo, if there exists 1> 0 such that

Y JAxIr<A sup S <o X1,

i=1 fx*h<1/=1

for all sequences {x,,..,x,} S E For p=1, this definition is due to
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Grothendieck [3], and for p # |, the definition was given by Pietsch [6]. If
TT7(E, F) is the space of all p-summing operators from E to F, then it is
well known [3, p. 293] that TT7(E, F)=T]%(E, F) for 0<p, ¢< 1. If E and
F are Hilbert spaces then [[XE, F)=J[Y%E, F) for O<p<g<ow
[6,p.302].

The object is to introduce ¢-summing operators for modulus functions ¢.
The basic properties of these operators are studied. We, further, prove that
¢-summing operators are p-summing for 0 <p <1, for Banach spaces
having the metric approximation property.

Throughout this paper, L(E, F) denotes the space of all bounded linear
operators from £ to F. The dual of £ is £* The compact elements in
L(E, F) will be denoted by K(E, F). The unit sphere of a Banach space £ is
denoted by S(E). The set of complex numbers is denoted by C.

1. [TYE, F)

Let £ and F be two Banach spaces and ¢ be a moduius function on
[0, oo). Consider the following two spaces:

(i) PPCEY={(x,):sup o1 2nd [{x,, x*>| <00, x,€ E}.
(i) PF)={(x,):2,¢lx,|<wc, x,eE}
For x=(x,)el’ {(E), we define
lxll,= sup Y ¢1<{x,, x*>i,

fx* <t o

and for y=(y,)e I’(F) we define

Iyl=2 ¢yl

It is a routine matter to verify the following result:

THEOREM 1.1.  The spaces (I* (EY, || |.) and (I*(F), | |.) are complete
metric linear spaces.

Remark 1.2. The spaces I?{E) and [/?(E) are generalizations of the
spaces [”{E) and I"(E) for 0<p<1. We refer to [6, Chap.16;1] for a
discussion of such spaces.

A linear operator T:I?{ E) — [*(F) will be called metrically bounded if
there 1s a 4> 0 such that

Tl < A llxI,
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for all x=(x,)el?{E). Clearly every metrically bounded operator is
continuous. We let L?(E, F) denote the space of all metrically bounded
operator from [*{E) into [Y(F). For TelL*EF), we set
[Tl ,=1inf {A: | Tx[|, <A |||, xel?{EY}. The proof of the following result
is similar to the proof in case of Banach spaces, [7, p. 185], and it will be
omitted.

THEOREM 1.3. The space (LY(E, F), || |l,) is a complete metric linear
space.

DerNiTiON 1.4, Let E and F be two Banach spaces. Then, a bounded
linear operator T: E — F is called ¢-summing if there is 1> 0 such that

LAITx, <4 sup 3 41<{x,, x*)| (*)

le*l <1y
for all sequences {x,,.., x,} S E.

The definition is a generalization of the definition of p-summing
operators for 0 <p<1. We refer to [6] for a full study of p-summing
operators 0 < p < c0.

Let [T%(E, F) be the set of all ¢-summing operators from E to F. Every
Te[1*(E, F) defines an element T'e L¢(E, F) via:

T: 1Y (EY > I*(E)
T((x,)) = ((Tx,)).

For Te[]%E, F) we define the ¢-summing metric of T as: |7, = | T||¢,.
Hence |T)l,=inf{i:* holds}. The definition of ¢-summing operators
together with Theorem 1.2 implies:

TueoreM 1.5. ([T%(E, F). || | #) Is a complete melric linear space.

THEOREM 1.6. Let AeIl*(E, F),Be L(G, E), and De L(F, H). Then
ABeT1%(G, E) and DAe[1%(E, H). Further, |AB|,<(||Bl +1) |4]l, and
DA 4 < (1Dl +1) ||4] 4.

Proof. The proof follows from the fact that for all a>0,
dlary<{(a+1)¢(r) which is a consequence of the monotonocity and
subaddivity of ¢. Q.ED.

Let B,(E*) be the unit ball of E* equibbed with the w*-topology, and M
be the space of all regular Borel measures on B,(E£*). The unit sphere of M
1s denoted by S(M).
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THEOREM 1.6. Let A€ L(E, F). The followings are equivalent:
(i) AeTl*E F).
(i1) There exists A>0 and ve S(M) such that

él4x] <2 L RUCENPIES!

HE
Proof. (ii) — (i) This is evident.
(i) > (ii) Let Ae[I%E, F) and i=|A|,. For every finite sequence

{x1, . Xy} € E, define the map:

Q:SM)Y-C

)= L $1Ax, | =A% [l D ldue (o)
1 B

n=1

Clearly, the function Q is convex. Further, there is a point u,e S(M) such
that Q(uy) <0. Indeed choose u,=the dirac measure at xF, where

N N
Y oI<x, xE> = sup Y4 1<x,, x*|.

ix*ll <11

Further, if {Q, .., Q,} is a collection of such functions defined by (x),
then for any a,, .., a,, >} a, =1, there is @ defined in a similar way, such
that 37 @, Q(p) < Q(u) for all pe S(M). Hence the collection of functions
on S(M) defined by (xx) satisfies Fan’s lemma [6, p. 40]. Consequently
there is a measure v in S(M) such that Q(v) <0 for all Q defined by (#*).
In particular if Q is defined by (x*) with associated sequence {x}, x€ E, we
get

o || Ax]| gAjB L PICsX d QED.

e

Remark 17. The proof of Theorem 1.6 is similar to the proof of
Theorem 17.3.2. in [6], where ¢(¢) =", 0 < p < 1. We included the detailed
proof here for completeness and to include modulus functions.

2 T1°(H, H)=T1"(H, H),0<p<|1

Let m be the Lebesgue measure on [/=[0,1]. For the modulus
function ¢, set L? to denote the space of all measurable functions f on
[0,1] for which [i¢|f(t)ldm(r)<oo. For feL’? we define
Ifls=¢""f8¢|f(2) dm(r). The function || {4 is not a metric on L%
However, we can define a topology via: f,—f in L% if
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¢"1j¢ | f,—F | dm(z) — 0. It is not difficult to prove that such a topology
makes L? a topological vector space. In case ¢(t)=1", 0<p<1, L? is a
quasi-normed space [4, p. 159]. If (1) =t/(1 + t), we write L° for L’.

The concept of ¢-summing operators is still valid for operators
T: E— L?, where E is a Banach space.

DeFINITION 2.1.  Let E be a Banach space. A linear map T: E— L? is
called ¢-decomposable if there is a function y: [0, 1] — E* such that

(i) The function {x, ¥(¢)) is m-measurable and
(Tx)(t)={x,Y(t)>aem. forall xekL.

(ii) There exists fe L' such that [y (7)] <f(z) a.em.

This definition is due to Kwapien [5] for ¢(¢) = ¢”. In [ 5], the function f
in (ii) is assumed to belong to L”. Since L? < L° for all modulus functions
¢, the following lemma is immediate:

LEMMA 2.2.  Every ¢-decomposable map T- E — L? is O-decomposable.

THEOREM 2.3. Let E be any Banach space. If a linear map T- E— L? is
¢-decomposable, then T is ¢-summing.

Proof. Let y: [0, 1]— E* be as in Definition 2.1 and {x,, .., xy} S E.
Then

> |sz,,|r¢=§¢[¢l [ 1wt dm(z)]

V(1) ‘
<x”’ W > (1)

(I /I +1) sup Y ¢ lx,, x*>]. Q.ED.

lx*f<t

<> [ i+ 1)
1 Y0

Before we state the next theorem, we should remark that the topology
on L? generated by the gauget | fll,=¢ ' |4 |f|dm, is equivalent to
the topology generated by the metric || fl , = j ¢ | f] dm. Consequently, the
bounded sets in both topologies coincide.

THEOREM 24. Let Te L(E, F) such that T* € [T°(F*, E*). If F has the
metric approximation property, then for any continuous linear map
y: F— L?, the map yT is ¢-decomposable.

Proof. First, we claim that there exists an M >0 such that for all
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Xy X35 X, € E, ||x;] <1 and for all measurable disjoint sets A, .., 4, in

[0,1] we have

n

H

Y| e nTe)0 di< M. ()

j=1"4i

By the remark preceding the theorem and the assumption that F has the
metric approximation property, it is enough to prove (x) for operators
y=%_,yi®1g, yie F* and B, measurable in [0, 1]. One can take B, to
be disjoint of equal length and U,_, ;=1[0,1].

Let y=Y%_, yi® 1, B; disjoint in [0, 1] and m(B,)=1/k, y;e F*, for
i=1,.,k If x,,.,x,eE with |x/l<1l and if 4,,.., 4, are disjoint
measurable subsets in [0, 1], then

n

% |, # 0T dm(n

i=1

1) dm(1)

. ’
Nis g

-L[ 02

n

<Y Z ¢ 1{(Tx,,y; > |m(B,nA,) (since ¢ is subadditive)

i=1j=1

=

ZMT*VII ZmBﬂA)

HM>~I

¢ 17> y;| (since As are disjoint)
k
<i sup Y ¢ 1<y x> Im(B) (since T* € [TH(F*, E*))
lxe*<t j=4
el o

=7 sup j¢|yx*(n\dquy

lx*l <1

Since y is continuous, by the remark preceding the theorem we get
SUP vy <1 § @1yx*(1) dm(1) < M for some M >0, and () is proved.

It follows from (*) that the image of the unit ball of E under yT is
bounded in the lattice L?. If geL? such that yT(x)<g for all xeE,
ix|| <1, then the function 6(¢)=yTx(t)/g(t) if g(1)#0 and 6(0)=0, is an
element of L. Consequently, the linear map

S:E—> L™,
S(x)=yTx|g
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is continuous and }S|| < 1. Hence, by the lifting theorem, there exists
0: [0, 17— (L*)* such that the function {Q(?),f ) is m-measurable a.c.,
for all fe L™, and f(¢)= {Q(t),f ) a.c. Further |Q(¢)|=1forall te [0, 1].
Now, consider the function :[0,1]— E* defined by y(t)=g(1)-
S*(Q(1)). It is not difficult to see that ¥ is the function needed for 97 to be
#-decomposable, noting that ge L= < L?. Q.E.D.

Before we prove the next result, we need the following two lemmas:
LEMMA 25. Let T:L%—L? be a continuous linear operator. Then
ITAI< 4§ ¢ f(0)ldm(z) for all fe L? for which | ¢|f(1)| dm(t)=1|flis<1.

Proof. First we prove it for feL? ||f|l=1 1If the inequality
1Tl <Aliflls is not true, then we can find a sequence (f,) such that
ifull,=1 but {Tf, I >n|if,ll,- Then the sequence f,/n—0 in L% but
I T(f,/m})|| > 1, which contradicts the continuity of T.

Now, let felL?, flfllg<1. Then one can find an a>1 such that
lfoflll , = 1. Hence

1

1TF 1=~ I T |
7

<<l Il

a+1
<A——111h

<2 SN, Q.ED.

It should be remarked that for every r>0 there exists A>0 such that
ITF I <AlSN, for all fe L2, [l flll4 <.

LEmMa 2.6. Let T: L? — L? be p-summing operator. Then ST: L* - L is
p-summing for continuous operators S: L? — L.

Proof. Using Lemma 2.5 and the argument in the proof of Theorem
1.6, the result follows. Q.ED.

Now we prove:

THEOREM 2.7. Let ¢ be any modulus function. Then [1%(L* L*)<
(L% L?).

Proof. Let T:L>— L> be ¢-summing operator. By Theorem 2.4,

yT*: L > L?> > L? is ¢ decomposable for all continuous linear operators
y: L2 — L?. In particular, we can choose y(f)= [ f(t) dx, [2, 5], where (x,)

409/127/2-19
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is a symmetric stable process on ([0, 1], m) with exponent 2. This makes y
an isomorphic embedding of L? into L? and also into L° Hence
9T*: L? - L® is zero decomposable. Using Theorem 3 in [5], we get
T*: L> - L? is zero summing. By Lemma 2.6, yT*: L> — L° is zero decom-
posable. Another application of Theorem 3 in [5]: we get T: L* —» L? is
zero-summing. However, every zero-summing map is 2-summing, [5].
Hence Te[3(L% L?).

THEOREM 2.8.  For any modulus function ¢, T1*(L* L*)<TT%(L?% L?).

Proof. Let T:L>— L? be 2-summing operator. If y is the isomorphic
embedding of L? into L? as in Theorem 2.7, then using Theorem 3 in [5],
we get

vy L L2 LY

is ¢-decomposable. By Theorem 2.3, yT is ¢-summing. Using Lemma 2.5,
we get T2 L? — L is ¢-summing. Q.E.D.
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