φ-Summing Operators in Banach Spaces

R. KHALIL*

University of Michigan, Department of Mathematics, Ann Arbor, Michigan

AND

W. DEER

Kuwait University, Department of Mathematics, Kuwait, Kuwait

Submitted by V. Lakshmikantham

Received November 20, 1985

Let $\phi: [0, \infty) \to [0, \infty)$ be a continuous subadditive strictly increasing function and $\phi(0) = 0$. Let E and F be Banach spaces. A bounded linear operator $A: E \to F$ will be called ϕ -summing operator if there exists $\lambda > 0$ such that $\sum_{i=1}^{n} \phi \|Ax_i\| \le \lambda \sup_{\|X^*\| \le 1} \sum_{i=1}^{n} \phi |\langle x_i, x^* \rangle|$, for all sequences $\{x_1, ..., x_n\} \subseteq E$. We set $\prod^{\phi}(E, F)$ to denote the space of all ϕ -summing operators from E to F. We study the basic properties of the space $\prod^{\phi}(E, F)$. In particular, we prove that $\prod^{\phi}(H, H) = \prod^{p}(H, H)$ for $0 \le p < 1$, where H is a Banach space with the metric approximation property.

0. Introduction

Let $\phi: [0, \infty) \to [0, \infty)$ be a continuous function. The function ϕ is called a modulus function if

- (i) $\phi(x+y) \leq \phi(x) + \phi(y)$
- (ii) $\phi(0) = 0$
- (iii) ϕ is strictly increasing.

The functions $\phi(x) = x^p$, $0 and <math>\phi(x) = \ln(1+x)$ are examples of modulus functions.

For Banach spaces E and F, a bounded linear operator $A: E \to F$ is called p-summing, $0 , if there exists <math>\lambda > 0$ such that

$$\sum_{i=1}^{n} \|Ax_i\|^p \leqslant \lambda \sup_{\|x^*\| \leqslant 1} \sum_{i=1}^{n} |\langle x_i, x^* \rangle|^p,$$

for all sequences $\{x_1, ..., x_n\} \subseteq E$. For p = 1, this definition is due to

^{*} Current address: Kuwait University, Department of Mathematics, Kuwait.

Grothendieck [3], and for $p \ne 1$, the definition was given by Pietsch [6]. If $\prod^p(E, F)$ is the space of all p-summing operators from E to F, then it is well known [3, p. 293] that $\prod^p(E, F) = \prod^q(E, F)$ for $0 < p, q \le 1$. If E and F are Hilbert spaces then $\prod^p(E, F) = \prod^q(E, F)$ for 0 [6, p. 302].

The object is to introduce ϕ -summing operators for modulus functions ϕ . The basic properties of these operators are studied. We, further, prove that ϕ -summing operators are p-summing for 0 , for Banach spaces having the metric approximation property.

Throughout this paper, L(E, F) denotes the space of all bounded linear operators from E to F. The dual of E is E^* . The compact elements in L(E, F) will be denoted by K(E, F). The unit sphere of a Banach space E is denoted by S(E). The set of complex numbers is denoted by \mathbb{C} .

1.
$$\prod^{\phi}(E,F)$$

Let E and F be two Banach spaces and ϕ be a modulus function on $[0, \infty)$. Consider the following two spaces:

(i)
$$l^{\phi}\langle E \rangle = \{(x_n): \sup_{\|x^*\| \le 1} \sum_n \phi |\langle x_n, x^* \rangle| < \infty, x_n \in E\}.$$

(ii)
$$l^{\phi}(F) = \{(x_n): \sum_n \phi ||x_n|| < \infty, x_n \in E\}.$$

For $x = (x_n) \in l^{\phi} \langle E \rangle$, we define

$$||x||_{\varepsilon} = \sup_{\|x^*\| \leq 1} \sum_{n} \phi |\langle x_n, x^* \rangle|,$$

and for $y = (y_n) \in l^{\phi}(F)$ we define

$$||y||_{\pi} = \sum_{n} \phi ||y_{n}||.$$

It is a routine matter to verify the following result:

THEOREM 1.1. The spaces $(l^{\phi} \langle E \rangle, \| \|_{\epsilon})$ and $(l^{\phi}(F), \| \|_{\pi})$ are complete metric linear spaces.

Remark 1.2. The spaces $l^{\phi}\langle E \rangle$ and $l^{\phi}(E)$ are generalizations of the spaces $l^{p}\langle E \rangle$ and $l^{p}(E)$ for 0 . We refer to [6, Chap. 16; 1] for a discussion of such spaces.

A linear operator $T: l^{\phi}\langle E \rangle \to l^{\phi}(F)$ will be called *metrically bounded* if there is a $\lambda > 0$ such that

$$||Tx||_{\pi} \leq \lambda ||x||_{\varepsilon}$$

for all $x = (x_n) \in l^{\phi} \langle E \rangle$. Clearly every metrically bounded operator is continuous. We let $L^{\phi}(E, F)$ denote the space of all metrically bounded operator from $l^{\phi} \langle E \rangle$ into $l^{\phi}(F)$. For $T \in L^{\phi}(E, F)$, we set $||T||_{\phi} = \inf \{ \lambda : ||Tx||_{\pi} \leq \lambda ||x||_{\varepsilon}, x \in l^{\phi} \langle E \rangle \}$. The proof of the following result is similar to the proof in case of Banach spaces, [7, p. 185], and it will be omitted.

Theorem 1.3. The space $(L^{\phi}(E, F), \| \|_{\phi})$ is a complete metric linear space.

DEFINITION 1.4. Let E and F be two Banach spaces. Then, a bounded linear operator $T: E \to F$ is called ϕ -summing if there is $\lambda > 0$ such that

$$\sum_{1}^{N} \phi \| Tx_n \| \leq \lambda \sup_{\|x^*\| \leq 1} \sum_{1}^{N} \phi |\langle x_n, x^* \rangle| \tag{*}$$

for all sequences $\{x_1,...,x_n\}\subseteq E$.

The definition is a generalization of the definition of p-summing operators for $0 \le p \le 1$. We refer to [6] for a full study of p-summing operators 0 .

Let $\prod^{\phi}(E, F)$ be the set of all ϕ -summing operators from E to F. Every $T \in \prod^{\phi}(E, F)$ defines an element $\hat{T} \in L^{\phi}(E, F)$ via:

$$\hat{T}: l^{\phi} \langle E \rangle \to l^{\phi}(E)$$

$$\hat{T}((x_n)) = ((Tx_n)).$$

For $T \in \prod^{\phi}(E, F)$ we define the ϕ -summing metric of T as: $||T||_{\phi} = ||\hat{T}||_{\phi}$. Hence $||T||_{\phi} = \inf\{\lambda: * \text{ holds}\}$. The definition of ϕ -summing operators together with Theorem 1.2 implies:

THEOREM 1.5. $(\prod^{\phi}(E, F), \| \|_{\phi})$ is a complete metric linear space.

THEOREM 1.6. Let $A \in \Pi^{\phi}(E, F)$, $B \in L(G, E)$, and $D \in L(F, H)$. Then $AB \in \prod^{\phi}(G, E)$ and $DA \in \prod^{\phi}(E, H)$. Further, $\|AB\|_{\phi} \leq (\|B\| + 1) \|A\|_{\phi}$ and $\|DA\|_{\phi} \leq (\|D\| + 1) \|A\|_{\phi}$.

Proof. The proof follows from the fact that for all a>0, $\phi(at) \le (a+1) \phi(t)$ which is a consequence of the monotonocity and subaddivity of ϕ .

Q.E.D.

Let $B_1(E^*)$ be the unit ball of E^* equibbed with the w^* -topology, and M be the space of all regular Borel measures on $B_1(E^*)$. The unit sphere of M is denoted by S(M).

THEOREM 1.6. Let $A \in L(E, F)$. The followings are equivalent:

- (i) $A \in \prod^{\phi}(E, F)$.
- (ii) There exists $\lambda > 0$ and $\nu \in S(M)$ such that

$$\phi \|Ax\| \leqslant \lambda \int_{B_1(E^*)} \phi |\langle x, x^* \rangle| dv(x^*).$$

Proof. (ii) \rightarrow (i) This is evident.

(i) \rightarrow (ii) Let $A \in \prod^{\phi}(E, F)$ and $\hat{\lambda} = ||A||_{\phi}$. For every finite sequence $\{x_1, ..., x_N\} \subseteq E$, define the map:

$$Q: S(M) \to \mathbb{C}$$

$$Q(\mu) = \sum_{n=1}^{N} \phi \|Ax_n\| - \lambda \sum_{1}^{N} \int_{B_1(E^*)} \phi |x_n, x^*\rangle |d\mu \cdots$$

$$(**)$$

Clearly, the function Q is convex. Further, there is a point $\mu_0 \in S(M)$ such that $Q(\mu_0) < 0$. Indeed choose μ_0 = the dirac measure at x_0^* , where

$$\sum_{1}^{N} \phi \mid \langle x_n, x_0^* \rangle \mid = \sup_{\|x^*\| \leq 1} \sum_{1}^{N} \phi \mid \langle x_n, x^* \rangle \mid.$$

Further, if $\{Q_1,...,Q_r\}$ is a collection of such functions defined by (**), then for any $a_1,...,a_r,\sum_1^r a_k=1$, there is Q defined in a similar way, such that $\sum_1^r a_k Q_k(\mu) \leqslant Q(\mu)$ for all $\mu \in S(M)$. Hence the collection of functions on S(M) defined by (**) satisfies Fan's lemma [6, p. 40]. Consequently there is a measure v in S(M) such that $Q(v) \leqslant 0$ for all Q defined by (**). In particular if Q is defined by (**) with associated sequence $\{x\}$, $x \in E$, we get

$$\phi \|Ax\| \le \lambda \int_{B_1(E^*)} \phi |\langle x, x^* \rangle| dv.$$
 Q.E.D.

Remark 1.7. The proof of Theorem 1.6 is similar to the proof of Theorem 17.3.2. in [6], where $\phi(t) = t^p$, 0 . We included the detailed proof here for completeness and to include modulus functions.

2.
$$\prod^{\phi}(H, H) = \prod^{p}(H, H), 0 \le p \le 1$$

Let m be the Lebesgue measure on I = [0, 1]. For the modulus function ϕ , set L^{ϕ} to denote the space of all measurable functions f on [0, 1] for which $\int_0^1 \phi \mid f(t) \mid dm(t) < \infty$. For $f \in L^{\phi}$ we define $\|f\|_{\phi} = \phi^{-1} \int_0^1 \phi \mid f(t) \mid dm(t)$. The function $\|\cdot\|_{\phi}$ is not a metric on L^{ϕ} . However, we can define a topology via: $f_n \to f$ in L^{ϕ} if

 $\phi^{-1} \int \phi \mid f_n - f \mid dm(t) \to 0$. It is not difficult to prove that such a topology makes L^{ϕ} a topological vector space. In case $\phi(t) = t^p$, $0 , <math>L^{\phi}$ is a quasi-normed space [4, p. 159]. If $\phi(t) = t/(1+t)$, we write L^0 for L^{ϕ} .

The concept of ϕ -summing operators is still valid for operators $T: E \to L^{\phi}$, where E is a Banach space.

DEFINITION 2.1. Let E be a Banach space. A linear map $T: E \to L^{\phi}$ is called ϕ -decomposable if there is a function $\psi: [0, 1] \to E^*$ such that

(i) The function $\langle x, \psi(t) \rangle$ is m-measurable and

$$(Tx)(t) = \langle x, \psi(t) \rangle$$
 a.e.m. for all $x \in E$.

(ii) There exists $f \in L^1$ such that $||\psi(t)|| \le f(t)$ a.e.m.

This definition is due to Kwapien [5] for $\phi(t) = t^p$. In [5], the function f in (ii) is assumed to belong to L^p . Since $L^{\phi} \subseteq L^0$ for all modulus functions ϕ , the following lemma is immediate:

Lemma 2.2. Every ϕ -decomposable map $T: E \to L^{\phi}$ is 0-decomposable.

Theorem 2.3. Let E be any Banach space. If a linear map $T: E \to L^{\phi}$ is ϕ -decomposable, then T is ϕ -summing.

Proof. Let ψ : $[0, 1] \rightarrow E^*$ be as in Definition 2.1 and $\{x_1, ..., x_N\} \subseteq E$. Then

$$\sum_{1}^{N} \phi \| Tx_{n} \|_{\phi} = \sum_{1}^{N} \phi \left[\phi^{-1} \int_{0}^{1} \phi |\langle x_{n}, \psi(t) \rangle| dm(t) \right]$$

$$\leq \sum_{1}^{N} \int_{0}^{1} (\| \psi(t) \| + 1) \phi \left| \left\langle x_{n}, \frac{\psi(t)}{\| \psi(t) \|} \right\rangle \right| dm(t)$$

$$\leq (\| f \|_{1} + 1) \sup_{\| x^{*} \|_{\leq 1}} \sum_{1}^{N} \phi |x_{n}, x^{*} \rangle|. \qquad Q.E.D.$$

Before we state the next theorem, we should remark that the topology on L^{ϕ} generated by the gauget $||f||_{\phi} = \phi^{-1} \int \phi |f| dm$, is equivalent to the topology generated by the metric $|||f||_{\phi} = \int \phi |f| dm$. Consequently, the bounded sets in both topologies coincide.

Theorem 2.4. Let $T \in L(E, F)$ such that $T^* \in \prod^{\phi}(F^*, E^*)$. If F has the metric approximation property, then for any continuous linear map $\gamma: F \to L^{\phi}$, the map γT is ϕ -decomposable.

Proof. First, we claim that there exists an M>0 such that for all

 $x_1, x_2, ..., x_n \in E, ||x_i|| \le 1$ and for all measurable disjoint sets $A_1, ..., A_n$ in [0, 1] we have

$$\sum_{i=1}^{n} \int_{A_i} \phi |\gamma T(x_i)(t)| dt \leq M. \tag{*}$$

By the remark preceding the theorem and the assumption that F has the metric approximation property, it is enough to prove (*) for operators $\gamma = \sum_{i=1}^{k} y_i' \otimes 1_{B_i}, \ y_i' \in F^*$ and B_i measurable in [0, 1]. One can take B_i to be disjoint of equal length and $\bigcup_{i=1}^{k} B_i = [0, 1]$.

Let $\gamma = \sum_{j=1}^{k} y_i' \otimes 1_{B_i}$, B_i disjoint in [0, 1] and $m(B_i) = 1/k$, $y_i' \in F^*$, for i = 1, ..., k. If $x_1, ..., x_n \in E$, with $||x_i|| \le 1$ and if $A_1, ..., A_n$ are disjoint measurable subsets in [0, 1], then

$$\sum_{i=1}^{n} \int_{A_{i}} \phi |\gamma T(x_{i})(t)| dm(t)$$

$$= \sum_{i=1}^{n} \int_{A_{i}} \phi \left| \sum_{j=1}^{k} \langle Tx_{i}, y_{j} \rangle 1_{B_{j}}(t) \right| dm(t)$$

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{k} \phi |\langle Tx_{i}, y_{j}' \rangle| m(B_{j} \cap A_{i}) \qquad \text{(since } \phi \text{ is subadditive)}$$

$$\leq \sum_{j=1}^{k} \phi ||T^{*}y_{j}'|| \cdot \sum_{i} m(B_{j} \cap A_{i})$$

$$\leq \sum_{j=1}^{k} \frac{1}{k} \phi ||T^{*}y_{j}'|| \qquad \text{(since } A_{i}' \text{s are disjoint)}$$

$$\leq \lambda \sup_{\|x_{i}^{*}\| \leq 1} \sum_{j=1}^{k} \phi |\langle y_{j}', x^{*} \rangle| m(B_{j}) \qquad \text{(since } T^{*} \in \prod^{\phi} (F^{*}, E^{*}))$$

$$= \lambda \sup_{\|x^{*}\| \leq 1} \int_{0}^{\infty} \phi |\gamma x^{*}(t)| dm(t).$$

Since γ is continuous, by the remark preceding the theorem we get $\sup_{\|x^*\| \le 1} \int \phi |\gamma x^*(t)| dm(t) \le M$ for some M > 0, and (*) is proved.

It follows from (*) that the image of the unit ball of E under γT is bounded in the lattice L^{ϕ} . If $g \in L^{\phi}$ such that $\gamma T(x) \leq g$ for all $x \in E$, $||x|| \leq 1$, then the function $\theta(t) = \gamma Tx(t)/g(t)$ if $g(t) \neq 0$ and $\theta(0) = 0$, is an element of L^{∞} . Consequently, the linear map

$$S: E \to L^{\infty},$$
$$S(x) = \gamma T x \mid g$$

is continuous and $||S|| \le 1$. Hence, by the lifting theorem, there exists $Q: [0,1] \to (L^{\infty})^*$ such that the function $\langle Q(t),f \rangle$ is *m*-measurable a.e., for all $f \in L^{\infty}$, and $f(t) = \langle Q(t),f \rangle$ a.e. Further ||Q(t)|| = 1 for all $t \in [0,1]$. Now, consider the function $\psi: [0,1] \to E^*$ defined by $\psi(t) = g(t) \cdot S^*(Q(t))$. It is not difficult to see that ψ is the function needed for γT to be ϕ -decomposable, noting that $g \in L^{\infty} \subseteq L^{\phi}$. Q.E.D.

Before we prove the next result, we need the following two lemmas:

LEMMA 2.5. Let $T: L^{\phi} \to L^2$ be a continuous linear operator. Then $||Tf|| \leq \lambda \int \phi |f(t)| dm(t)$ for all $f \in L^{\phi}$ for which $\int \phi |f(t)| dm(t) = |||f|||_{\phi} \leq 1$.

Proof. First we prove it for $f \in L^{\phi}$, |||f||| = 1. If the inequality $||Tf|| \le \lambda |||f|||_{\phi}$ is not true, then we can find a sequence (f_n) such that $|||f_n|||_{\phi} = 1$ but $|||Tf_n|| > n |||f_n|||_{\phi}$. Then the sequence $f_n/n \to 0$ in L^{ϕ} , but $||T(f_n/n)|| > 1$, which contradicts the continuity of T.

Now, let $f \in L^{\phi}$, $|||f|||_{\phi} < 1$. Then one can find an $\alpha > 1$ such that $|||\alpha f|||_{\phi} = 1$. Hence

$$||Tf|| = \frac{1}{\alpha} ||T\alpha f||$$

$$\leq \frac{\lambda}{\alpha} |||\alpha f|||_{\phi}$$

$$\leq \lambda \frac{\alpha + 1}{\alpha} |||f|||_{\phi}$$

$$\leq 2\lambda |||f|||_{\phi}.$$
Q.E.D.

It should be remarked that for every r > 0 there exists $\lambda > 0$ such that $||Tf|| \le \lambda |||f|||_{\phi}$ for all $f \in L^{\phi}$, $|||f|||_{\phi} \le r$.

LEMMA 2.6. Let $T: L^2 \to L^{\phi}$ be p-summing operator. Then $ST: L^2 \to L^2$ is p-summing for continuous operators $S: L^{\phi} \to L^2$.

Proof. Using Lemma 2.5 and the argument in the proof of Theorem 1.6, the result follows. Q.E.D.

Now we prove:

Theorem 2.7. Let ϕ be any modulus function. Then $\prod^{\phi}(L^2, L^2) \subseteq \prod^2(L^2, L^2)$.

Proof. Let $T: L^2 \to L^2$ be ϕ -summing operator. By Theorem 2.4, $\gamma T^*: L^2 \to L^2 \to L^{\phi}$ is ϕ decomposable for all continuous linear operators $\gamma: L^2 \to L^{\phi}$. In particular, we can choose $\gamma(f) = \{f(t) dx, [2, 5], \text{ where } (x_t)\}$

is a symmetric stable process on ([0, 1], m) with exponent 2. This makes γ an isomorphic embedding of L^2 into L^{ϕ} and also into L^0 . Hence $\gamma T^*: L^2 \to L^0$ is zero decomposable. Using Theorem 3 in [5], we get $T^*: L^2 \to L^2$ is zero summing. By Lemma 2.6, $\gamma T^*: L^2 \to L^0$ is zero decomposable. Another application of Theorem 3 in [5]: we get $T: L^2 \to L^2$ is zero-summing. However, every zero-summing map is 2-summing, [5]. Hence $T \in \prod^2 (L^2, L^2)$.

THEOREM 2.8. For any modulus function ϕ , $\prod^2 (L^2, L^2) \subseteq \prod^{\phi} (L^2, L^2)$.

Proof. Let $T: L^2 \to L^2$ be 2-summing operator. If γ is the isomorphic embedding of L^2 into L^{ϕ} as in Theorem 2.7, then using Theorem 3 in [5], we get

$$\gamma T: L^2 \to L^2 \to L^{\phi}$$

is ϕ -decomposable. By Theorem 2.3, γT is ϕ -summing. Using Lemma 2.5, we get $T: L^2 \to L^2$ is ϕ -summing. Q.E.D.

ACKNOWLEDGMENT

The first author thanks Professor J. Jacod for helpful discussions.

REFERENCES

- 1. H. Apiola, Duality between spaces of p-summable sequences, (p, q) summing operators, and characterization of nuclearity, Math. Ann. 219 (1976), 53-64.
- 2. J. L. Doob, "Stochastic Processes," Wiley-Interscience, New York, 1953.
- A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- 4. G. KÖTHE, "Topological Vector Spaces," Springer-Verlag, Berlin/New York, 1969.
- S. KWAPIEN, On a theorem of L. Schwartz and its applications to absolutely summing operators, Studia Math. 38 (1970), 193-201.
- 6. A. Pietsch, "Operator Ideals," North-Holland, Amsterdam, 1980.
- 7. J. L. ROYDEN, "Real Analysis," Macmillan Co., New York/Toronto, 1968.