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Let s be a separable, complex Hilbert space of (finite or infinite) dimen-
sion larger than one, and let #(#) denote the algebra of all bounded
linear operators on #. If Te L(#), let o7, (resp. #7) denote the smallest
subalgebra of # () that contains T and 1, and is closed in the ultraweak
(resp. weak operator (WOT)) topology. The algebra .oZ; is called the dual
algebra generated by T. An operator T in & (5#) is said to be reflexive if
Alg Lat(#7)= #7. For several years, the question of which operators are
reflexive has been studied (cf. [2, 4, 9, 11, 12]), and, of course, one is
always searching for conditions on an operator T that will be equivalent to
reflexivity. Recently, in [9] some progress was made in this direction by
using properties (B,,,) and (B,,,) (to be defined below) associated with
the dual algebra o,. In particular, the main theorem of [9] states that if
Te #(#) and o/, is WOT-closed and has property (B;,) then T is
reflexive. Easy examples show that there exist operators T with property
(B, ) that are not reflexive, so, as noted in [8], the question remains open
whether the conclusion still holds if (B5,) is replaced by (B,,) or (B, ;).
Related to this problem is also the question whether a dual algebra .o/
with property (B,,,) necessarily has property (B,..)-

On the other hand, necessary and sufficient conditions that an algebraic
operator be reflexive are known (cf. [11, 12]), so a natural test question
arises: Given an algebraic operator 7, which of the properties (B,,,) does
o have?
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In this note we completely answer this question, and thereby discover
that at least for algebraic operators, ./ having property (B,,) is sufficient
to imply reflexivity (Corollary 6). We also give an example to show that
having property (B,,) does not, in general, imply the possession of the
property (B} ,), thereby settling the second question posed above.

Recall that the ultraweak topology on Z () is the weak* topology
inherited by #(5#) as the dual space of the Banach space €,(s#) of trace-
less operators on #, and the bilinear functional associated with this
duality is given by

{A,Ly=tr(AL), Ae L(H#), Le€,(H).
If Te#(H) then o/ is the dual space of the quotient space Q=

,(AH)/* oy, where ‘.of, is the preannihilator of <7, in %,(#), and the
duality between o/ and Q; is given by the pairing

{4, [L]1)=tr(AL), Aesdy, [L]eQq,
where [L] is the image in Q; of the operator L in 4,(o#) (cf. [10] for
more details). If x and y are vectors in #, then we write x® y for the
rank-one operator in %, () defined by (x® y)(u) = (u y)x, ue #. We are
now ready to introduce the properties (B,, ) and (B,,,) which are defined
and used in [9, 8]. We remark that these properties are natural analogs of

some properties (A,) which recently have been studied extensively (cf. [2,
5,6, 8]).

DEerFINITION 1. Let Te #£(#) and let p and ¢ be cardinal numbers
satisfying 1< p, g<X,. We say that ./ has property (B,,) if for every
p X g system

{[L;1€eQr:0<i<p,0<j<gq},
where the L s are finite rank operators, there exist sequences
{x10<i< p} and {y:0<j<q}
of vectors in J# such that

[L1=[x®y], 0<i<p0< <q

Furthermore, if p and ¢ are positive integers, we say that ./, has property
(Bp o) if for every £ >0 there exists 6 = §(¢) > 0 such that whenever

{[L;]eQ;:0<i<p,0<j<q}
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is a system as above and
{[xI®y/1:0<i<p,0<j<q}
is a system satisfying the inequalities
L ]-[x;®y/1l<d,  0<i<p0<j<g,

there exist sequences

{x;:0<i<p} and {r:0<j<q}
in # such that

[L;]=[x®y]) 0<i<p0</<g
and

lxi—xill<e  ly—yli<e 0<i<p0<j<q

We will often make use of the fact (cf. [8, Proposition 2.09]) that if T,
T,eZ(A) and T, is similar to T,, then o/ has property (B,,) if and
only if ./, has property (B, ). If Te £(#) and n is a positive integer,
then # " denotes the direct sum of n copies of #, and T denotes a
direct sum of n copies of T acting on #". If Te #(H#) then xe # is a
separating vector for o/ if Ae o/ and Ax=0 imply that 4 =0.

LEMMA 2. Assume that Te L (H#') and that x € H# is a separating vector
for oy such that sfrx is a closed subspace of #. Then <y has property
(B, x,) for every positive integer n.

Proof. Since x is separating for /. and .o/.x is closed, from [12,
Theorem 5.17 it follows that every element [L]eQ, can be written as
[L]=[x® y] for some ye#. The map &: & — . defined by
®(A)= A" induces an isometric isomorphism ¢: Q,wm — Q, with range
Q,, and such that ¢*=¢& (cf. [8, Proposition2.5]). Given a system
{[L,;]: 1<i<n, 1<j<R} in Qrm, we define [L,]=¢(L;]1)e Q. Let
y{"e # be such that

[L=[x®y"],  1<isn 1</<R,

Let #, =0@ --- ®x® --- @0 be the vector in " such that x lies in the
ith slot, and let 7, = yV'® --- @ p", 1 < j<N,. Since

$([% D7) =[x®yP]=8([L,]),
we conclude that

[L1=[%®7,] 1<is<nm 1<j<R,. 1
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LEMMA 3. Let Te L () be a nilpotent operator of order n. Let m be a
positive integer, and assume that rank T" '>m. Then there exist an inver-
tible operator Se€ ¥ (H) and a subspace M <= H such that M is invariant
under S7'TS and S7'TS| M =T, ® --- ®J, (m copies of J,), where J, is
an operator acting on a Hilbert space of dimension n whose matrix with
respect to some orthonormal basis for the space is a nilpotent Jordan block of
size n.

Proof. We begin by introducting the Jordan block operators. For a
Hilbert space #" and k >2 we define on # ) the Jordan block operator
J.[A] of order k by

J LA N, @ - ®x)=x%,® - ®x, DO, X @ - @xkEI(k).

It is easy to see that J,[ '] is unitarily equivalent to a direct sum of s
copies of J,, where s is the dimension of .#". By definition, the zero
operator on 4" is a Jordan operator of order one. Tt is known (cf. [1, 14])
that the given nilpotent operator T is quasisimilar to a Jordan operator
J=J,[4]1® - ®J,[#,] acting on X" =4{""D --- @ A7, where
ny,.., n, are distinct positive integers, and J¢},.., %, are Hilbert spaces.
In particular, there exists a bounded linear transformation X: # — #
such that 7X=XJ and ker X=ker X*=(0). Since T/X=XJ' for
any nonnegative integer j, J is a nilpotent operator of order n Hence
n=max{n;: 1<i< p}, and by reordering the Jordan blocks in J we may
assume that n=n,. Then

JTI =LA T @0 - @0
and
(LA A =A@ - D (0).
Therefore
dim #, =rank J"~ ' =rank XJ" !
=rank 7" 'X=rank T" ' > m,

and consequently there exists a subspace .# < (", which is invariant for
J,[#;] and satisfies

JJ]) | M=T,D - ®J, (mcopiesofJ,).

Since .# has finite dimension, there exists a bounded invertible linear
transformation S: X" — # such that Sx=Xx for all xe.#. Since .# is
invariant for J, for xe.# we have TSx=TXx=XJx=SJx=S8J"x.
Hence S™'TS | .4 =J. |}
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THEOREM 4. Let Te L (H) be an algebraic operator with minimal
polynomial

mp(z)=(z—A4)"z=4)" (2 = 4)™,

and set # =ker(T—A4,)" 1<i<k. If m is any positive integer, then the
following are equivalent:

(1) rank[(T—A)""| #]>m, 1 <i<k,
(2) o has property (B, x,),
(3) o has property (B,,..)

Proof. From the Riesz functional calculus it follows that
(Ve #)H,=(0) for 1 < j<k and # + -~ + H#; = #. Furthermore, if
E, is the projection on 4 along ., #,, then E, € o/;.

Now we begin the proof that (1) implies (2). Replacing T by an operator
similar to it, we may assume that the subspaces J,.., 5#, are pairwise
orthogonal. Let T, =T | #. Then T; — 4, is nilpotent of order #;, and by
assumption rank(7; — 4,)% ' >m. Thus by Lemma 3, there exist an inver-
tible operator S; € #(#) and a subspace .#; = #, such that .#, is invariant
under S7 (7, - 4,)S; and
ST, —A)Si | l;=T,,® - DJ, (m copies of J,,).

1

let S=8,® @S, e LH) and 4 = M @ & M, Then
ST'TS| M, = J¢ + 4. Therefore, S'TS|.# = A", where A4 =
(o +4)® - @, +A) e L(My) and M, = 4. Clearly the minimal
polynomial of 4 is equal to m, and its degree N=n, + -+ + n, is equal to
the dimension of .#,. Therefore, 4 has a cyclic vector, which is also
necessarily separating for .«/,. Thus, from Lemma 2, we conclude that .o/,
has property (B, «,)- Let T, =S~ 'TSand let {[L,]: 1 <i<m, 1 <j<Ro}
be a system in Q. Since ./,m and ./ have dimension N, there exist
[L;]€Q 4msuch that

<(Am)(”’ [L:/]>: <T0y’ [Llj]>’ 1 SSéN, 1 <l<ma 1 <]<NO

Since ./, has property (B,,x,). there exist sequences {x;}7 ,, {y/}7Z,
from .#§™ satisfying [L;]1=[x;® y;], 1<i<m, 1< j<&,. Now the two
sequences in # defined by x, =x/®0, y,=y;®0, 1 <i<m, 1<j<N,,
will satisfy [L;]=[x,® y;], 1<i<m, 1<j<®,. We have proved that
T, = S 'TS has property (B,, x,), and hence the same is true for 7.

For the proof that (3) implies (1) we recall from the first paragraph
that E,es/y, 1<i<k Let p be a fixed positive integer such that
1<p<k We have (T—41,)" '"E,esy. Let [L]eQ; such that
UT—4,)" “E,,[L]1>=1. We define a system {[L,]: 1<i, j<m}in Q7
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by setting [L,]=[L], 1<i<m, and [L,]=0 for i# j Since o/ has
property (B,,,.), there exist sequences {x,}7_,, {y,}7_, in # satisfying
[L)=[x;®y] 1<ij<m Let u;= (T—4,)" 'E,x;, 1<i<m, and
assume that 37, o;u; =0 for some complex numbers a,,... a,,. Then for
I<j<m,

0= < z oy, yj> =a,((T— )vp)n'ﬁl E, [L])=a,
i=1

Hence the vectors u,,..., u,, are linearly independent, and since they belong
to the range of (T—2,)” 'E,, rank [(T—24,)" "|#,]1>m, as was
required. |

COROLLARY 5. If in Theorem 4 we further assume that the Hilbert space
H has finite dimension, then (2) and (3) are equivalent to the following
statement:

(1) In the Jordan canonical form of T, corresponding to each eigen-
value 4,, 1 <i<k, there are at least m Jordan blocks of size n,.

Proof. By consideration of the Jordan canonical form of 7, it is easy to
see that rank[(T— 4,)" ' | 5] is equal to the number of Jordan blocks of
size n; corresponding to the eigenvalue A,. Hence the corollary follows
immediately from the theorem. ||

COROLLARY 6. If Te L(#) is an algebraic operator and if sty has
property (B,,) then T is reflexive.

Proof. This is an immediate consequence of Theorem4 and the
description from [12, Theorem 5.11] of the algebraic operators that are
reflexive. 1

Remark 7. We note that the converse of Corollary 6 is false. For
instance, the operator

010
01
= 1
T 00 @(0 0)
0 00

is reflexive, but by Corollary 5, it does not have property (B,,). On the
other hand we know that property (B, ;) is not sufficient for reflexivity
since, by Theorem 4 or [12], every algebraic operator has property (B, ).

PROPOSITION 8. Let T=(3 }) be acting on C*. Then </ has property
(B,.x,), but <y does not have property (B1>).
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Proof. That o/, has property (B, y,) follows from Corollary 5. Checking
against the basis {I, T} of /., we see that [(¥ 2)]=[(**"* )] in
L(C?) [ “alyp. Let Ly=(}9) and L,=(9 ). For 0<d<1 we define
W=v'=1@®5eC> Then v ®v'=(} &) and therefore

. 06 320

iee-teosai= | (5 )| =116 o))

5% 0

<

o0

Since u’ is cyclic for o/, from Lemma 2 there exists v” € C? such that
[L,]=[«'®v"]. Hence the system {[«’'®v'], [« ®v"]} is an
approximate solution of the system {[L,], [L,]}. Since o/ has property

(B, x,), there exist u, v,, v, € C? such that [L,]=[u®uv,] and [L,]=
[u®uv,]. Let {e,,e,} be the canonical basis for C*. Then

<. /2.

1

(Tu, ;) =<T, [u®v,]) = (T, [L,])> =tr(TL;) =1

imply that (, e,) #0. This, and

(Tu, v,)=<T, [u®uv,1>=<(T,[L,]>=tr(TL,)=0

imply that {v,, ¢,)=0. Hence ||v' — v, | = {(¢v' —v,, €,)| = 1. This completes
the proof that .oz does not have property (B{,). |

Concluding Remarks. Recall that the class C, is defined to be the set of
all completely nonunitary contractions T in Z(#) (with dim # =RK,)
such that there exists some nonzero H®-function f satisfying f(T)=0.
(Here the H*-funtional calculus /' — f(T) is that discussed by Sz.-Nagy
and Foias in [13].) It is obvious that (up to a scalar multiple) all aigebraic
operators belong to Cy, and there is a (fairly satisfactory) necessary and
sufficient condition known [4] in order that an operator in C, be reflexive.
Therefore, it would be interesting to know exactly which operators in C,
have which properties (A,) (cf. [8] for the definition of the properties),
since this would then generalize Theorem 4 above, and, moreover, likely
give necessary and sufficient conditions in terms of the properties (A,) that
an operator in C, be reflexive. The authors conjecture that a necessary and
sufficient condition that the dual algebra <7, generated by an operator T in
C, have property (A,) is that the Jordan model @ =, S(6;) of T (cf. [13])
satisfy 8, = --- =0,. Consequently we conjecture that an operator T in C,
such that 7 has property (A,) is reflexive.

The authors are grateful to Hari Bercovici for several conversations
concerning the subject matter of this note.
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