On Reflexivity of Operators

JOSE BARRIA

Departamento de Matematicas, IVIC, Caracas 1010-A, Venezuela

H. W. Кім

Mathematics Department, Bucknell University, Lewisburg, Pennsylvania 17837

AND

CARL PEARCY

Mathematics Department, University of Michigan, Ann Arbor, Michigan 48109

Submitted by Charles L. Dolph

Received January 22, 1986

Let \mathcal{H} be a separable, complex Hilbert space of (finite or infinite) dimension larger than one, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . If $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_T (resp. \mathcal{W}_T) denote the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that contains T and $1_{\mathcal{H}}$ and is closed in the ultraweak (resp. weak operator (WOT)) topology. The algebra \mathcal{A}_T is called the dual algebra generated by T. An operator T in $\mathcal{L}(\mathcal{H})$ is said to be reflexive if Alg Lat(\mathcal{W}_T) = \mathcal{W}_T . For several years, the question of which operators are reflexive has been studied (cf. [2, 4, 9, 11, 12]), and, of course, one is always searching for conditions on an operator T that will be equivalent to reflexivity. Recently, in [9] some progress was made in this direction by using properties (\mathbf{B}_{mn}) and (\mathbf{B}_{mn}) (to be defined below) associated with the dual algebra \mathcal{A}_T . In particular, the main theorem of [9] states that if $T \in \mathcal{L}(\mathcal{H})$ and \mathcal{A}_T is WOT-closed and has property $(\mathbf{B}_{2,3}^{\sim})$ then T is reflexive. Easy examples show that there exist operators T with property (\mathbf{B}_{12}) that are not reflexive, so, as noted in [8], the question remains open whether the conclusion still holds if $(\mathbf{B}_{2,3}^{\sim})$ is replaced by $(\mathbf{B}_{2,2})$ or $(\mathbf{B}_{2,3})$. Related to this problem is also the question whether a dual algebra \mathcal{A}_T with property $(\mathbf{B}_{m,n})$ necessarily has property $(\mathbf{B}_{m,n})$.

On the other hand, necessary and sufficient conditions that an algebraic operator be reflexive are known (cf. [11, 12]), so a natural test question arises: Given an algebraic operator T, which of the properties ($\mathbf{B}_{m,n}$) does \mathcal{A}_T have?

In this note we completely answer this question, and thereby discover that at least for algebraic operators, \mathcal{A}_T having property $(\mathbf{B}_{2,2})$ is sufficient to imply reflexivity (Corollary 6). We also give an example to show that having property $(\mathbf{B}_{1,2})$ does not, in general, imply the possession of the property $(\mathbf{B}_{1,2})$, thereby settling the second question posed above.

Recall that the ultraweak topology on $\mathcal{L}(\mathcal{H})$ is the weak* topology inherited by $\mathcal{L}(\mathcal{H})$ as the dual space of the Banach space $\mathcal{C}_1(\mathcal{H})$ of traceless operators on \mathcal{H} , and the bilinear functional associated with this duality is given by

$$\langle A, L \rangle = \operatorname{tr}(AL), \qquad A \in \mathcal{L}(\mathcal{H}), L \in \mathcal{C}_1(\mathcal{H}).$$

If $T \in \mathcal{L}(\mathcal{H})$ then \mathcal{A}_T is the dual space of the quotient space $Q_T = \mathcal{C}_1(\mathcal{H})/^{\perp}\mathcal{A}_T$, where $^{\perp}\mathcal{A}_T$ is the preannihilator of \mathcal{A}_T in $\mathcal{C}_1(\mathcal{H})$, and the duality between \mathcal{A}_T and Q_T is given by the pairing

$$\langle A, \lceil L \rceil \rangle = \operatorname{tr}(AL), \quad A \in \mathcal{A}_T, \quad \lceil L \rceil \in Q_T,$$

where [L] is the image in Q_T of the operator L in $\mathscr{C}_1(\mathscr{H})$ (cf. [10] for more details). If x and y are vectors in \mathscr{H} , then we write $x \otimes y$ for the rank-one operator in $\mathscr{C}_1(\mathscr{H})$ defined by $(x \otimes y)(u) = (u, y)x$, $u \in \mathscr{H}$. We are now ready to introduce the properties $(\mathbf{B}_{m,n})$ and $(\mathbf{B}_{m,n}^{\infty})$ which are defined and used in [9, 8]. We remark that these properties are natural analogs of some properties (\mathbf{A}_n) which recently have been studied extensively (cf. [2, 5, 6, 8]).

DEFINITION 1. Let $T \in \mathcal{L}(\mathcal{H})$ and let p and q be cardinal numbers satisfying $1 \leq p, q \leq \aleph_0$. We say that \mathcal{A}_T has property $(\mathbf{B}_{p,q})$ if for every $p \times q$ system

$$\{[L_{ij}] \in Q_T: 0 \le i < p, 0 \le j < q\},\$$

where the L_{ii} 's are finite rank operators, there exist sequences

$$\{x_i: 0 \le i < p\}$$
 and $\{y_i: 0 \le j < q\}$

of vectors in \(\mathscr{H} \) such that

$$[L_{ij}] = [x_i \otimes y_i], \qquad 0 \le i < p, 0 \le j < q.$$

Furthermore, if p and q are positive integers, we say that \mathcal{A}_T has property $(\mathbf{B}_{p,q}^{\sim})$ if for every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that whenever

$$\{ [L_{ij}] \in Q_T : 0 \leq i < p, 0 \leq j < q \}$$

is a system as above and

$$\{ [x_i' \otimes y_i'] : 0 \le i < p, 0 \le j < q \}$$

is a system satisfying the inequalities

$$||[L_{ii}] - [x_i' \otimes y_i']|| < \delta, \quad 0 \le i < p, 0 \le j < q,$$

there exist sequences

$$\{x_i: 0 \le i < p\}$$
 and $\{y_j: 0 \le j < q\}$

in \mathcal{H} such that

$$[L_{ij}] = [x_i \otimes y_j], \qquad 0 \leq i < p, 0 \leq j < q,$$

and

$$||x_i' - x_i|| < \varepsilon$$
, $||y_j' - y_j|| < \varepsilon$, $0 \le i < p$, $0 \le j < q$.

We will often make use of the fact (cf. [8, Proposition 2.09]) that if T_1 , $T_2 \in \mathcal{L}(\mathcal{H})$ and T_1 is similar to T_2 , then \mathcal{A}_{T_1} has property $(\mathbf{B}_{p,q})$ if and only if \mathcal{A}_{T_2} has property $(\mathbf{B}_{p,q})$. If $T \in \mathcal{L}(\mathcal{H})$ and n is a positive integer, then $\mathcal{H}^{(n)}$ denotes the direct sum of n copies of \mathcal{H} , and $T^{(n)}$ denotes a direct sum of n copies of T acting on $\mathcal{H}^{(n)}$. If $T \in \mathcal{L}(\mathcal{H})$ then $x \in \mathcal{H}$ is a separating vector for \mathcal{A}_T if $A \in \mathcal{A}_T$ and Ax = 0 imply that A = 0.

LEMMA 2. Assume that $T \in \mathcal{L}(\mathcal{H})$ and that $x \in \mathcal{H}$ is a separating vector for \mathcal{A}_T such that $\mathcal{A}_T x$ is a closed subspace of \mathcal{H} . Then $\mathcal{A}_{T^{(n)}}$ has property $(\mathbf{B}_{n,\mathbf{x}_n})$ for every positive integer n.

Proof. Since x is separating for \mathscr{A}_T and $\mathscr{A}_T x$ is closed, from [12, Theorem 5.1] it follows that every element $[L] \in Q_T$ can be written as $[L] = [x \otimes y]$ for some $y \in \mathscr{H}$. The map $\Phi \colon \mathscr{A}_T \to \mathscr{A}_{T^{(n)}}$ defined by $\Phi(A) = A^{(n)}$ induces an isometric isomorphism $\phi \colon Q_{T^{(n)}} \to Q_T$ with range Q_T , and such that $\phi^* = \Phi$ (cf. [8, Proposition 2.5]). Given a system $\{[\tilde{L}_{ij}]: 1 \leq i \leq n, \ 1 \leq j < \aleph_0\}$ in $Q_{T^{(n)}}$, we define $[L_{ij}] = \phi(\tilde{L}_{ij}]) \in Q_T$. Let $y_i^{(i)} \in \mathscr{H}$ be such that

$$[L_{ii}] = [x \otimes y_i^{(i)}], \quad 1 \le i \le n, 1 \le j < \aleph_0.$$

Let $\tilde{x}_i = 0 \oplus \cdots \oplus x \oplus \cdots \oplus 0$ be the vector in $\mathcal{H}^{(n)}$ such that x lies in the ith slot, and let $\tilde{y}_i = y_i^{(1)} \oplus \cdots \oplus y_j^{(n)}$, $1 \le j < \aleph_0$. Since

$$\phi([\tilde{x}_i \oplus \tilde{y}_i]) = [x \oplus y_i^{(i)}] = \phi([\tilde{L}_{ii}]),$$

we conclude that

$$[\tilde{L}_{ij}] = [\tilde{x}_i \otimes \tilde{y}_j], \qquad 1 \leq i \leq n, \ 1 \leq j < \aleph_0. \quad \blacksquare$$

LEMMA 3. Let $T \in \mathcal{L}(\mathcal{H})$ be a nilpotent operator of order n. Let m be a positive integer, and assume that rank $T^{n-1} \geqslant m$. Then there exist an invertible operator $S \in \mathcal{L}(\mathcal{H})$ and a subspace $\mathcal{M} \subset \mathcal{H}$ such that \mathcal{M} is invariant under $S^{-1}TS$ and $S^{-1}TS \mid \mathcal{M} = J_n \oplus \cdots \oplus J_n$ (m copies of J_n), where J_n is an operator acting on a Hilbert space of dimension n whose matrix with respect to some orthonormal basis for the space is a nilpotent Jordan block of size n.

Proof. We begin by introducting the Jordan block operators. For a Hilbert space \mathcal{K} and $k \ge 2$ we define on $\mathcal{K}^{(k)}$ the *Jordan block* operator $J_k[\mathcal{K}]$ of order k by

$$J_k[\mathscr{K}](x_1 \oplus \cdots \oplus x_k) = x_2 \oplus \cdots \oplus x_k \oplus 0, \qquad x_1 \oplus \cdots \oplus x_k \in \mathscr{K}^{(k)}.$$

It is easy to see that $J_k[\mathcal{K}]$ is unitarily equivalent to a direct sum of s copies of J_k , where s is the dimension of \mathcal{K} . By definition, the zero operator on \mathcal{K} is a Jordan operator of order one. It is known (cf. [1, 14]) that the given nilpotent operator T is quasisimilar to a Jordan operator $J = J_{n_1}[\mathcal{K}_1] \oplus \cdots \oplus J_{n_p}[\mathcal{K}_p]$ acting on $\mathcal{K} = \mathcal{K}_1^{(n_1)} \oplus \cdots \oplus \mathcal{K}_p^{(n_p)}$, where n_1, \ldots, n_p are distinct positive integers, and $\mathcal{K}_1, \ldots, \mathcal{K}_p$ are Hilbert spaces. In particular, there exists a bounded linear transformation $X: \mathcal{K} \to \mathcal{H}$ such that TX = XJ and $\ker X = \ker X^* = (0)$. Since $T^jX = XJ^j$ for any nonnegative integer j, J is a nilpotent operator of order n. Hence $n = \max\{n_i: 1 \le i \le p\}$, and by reordering the Jordan blocks in J we may assume that $n = n_1$. Then

$$J^{n-1} = (J_n[\mathscr{K}_1])^{n-1} \oplus 0 \oplus \cdots \oplus 0$$

and

$$(J_n[\mathcal{K}_1])^{n-1}(\mathcal{K}_1^{(n)}) = \mathcal{K}_1 \oplus \cdots \oplus (0).$$

Therefore

$$\dim \mathcal{X}_1 = \operatorname{rank} J^{n-1} = \operatorname{rank} XJ^{n-1}$$
$$= \operatorname{rank} T^{n-1}X = \operatorname{rank} T^{n-1} \geqslant m,$$

and consequently there exists a subspace $\mathcal{M} \subset \mathcal{K}_1^{(n)}$, which is invariant for $J_n[\mathcal{K}_1]$ and satisfies

$$J_n[\mathcal{K}_1] \mid \mathcal{M} = J_n \oplus \cdots \oplus J_n$$
 (*m* copies of J_n).

Since \mathcal{M} has finite dimension, there exists a bounded invertible linear transformation $S: \mathcal{K} \to \mathcal{H}$ such that Sx = Xx for all $x \in \mathcal{M}$. Since \mathcal{M} is invariant for J, for $x \in \mathcal{M}$ we have $TSx = TXx = XJx = SJx = SJ_n^{(m)}x$. Hence $S^{-1}TS \mid \mathcal{M} = J_n^{(m)}$.

Theorem 4. Let $T \in \mathcal{L}(\mathcal{H})$ be an algebraic operator with minimal polynomial

$$m_T(z) = (z - \lambda_1)^{n_1} (z - \lambda_2)^{n_2} \cdots (z - \lambda_k)^{n_k},$$

and set $\mathcal{H}_i = \ker(T - \lambda_i)^{n_i}$, $1 \le i \le k$. If m is any positive integer, then the following are equivalent:

- (1) $\operatorname{rank}[(T-\lambda_i)^{n_i-1} \mid \mathcal{H}_i] \geqslant m, \ 1 \leqslant i \leqslant k,$
- (2) \mathscr{A}_T has property $(\mathbf{B}_{m,\aleph_0})$,
- (3) \mathcal{A}_T has property $(\mathbf{B}_{m,m})$.

Proof. From the Riesz functional calculus it follows that $(\bigvee_{i \neq j} \mathcal{H}_i) \cap \mathcal{H}_j = (0)$ for $1 \leq j \leq k$ and $\mathcal{H}_1 \dotplus \cdots \dotplus \mathcal{H}_k = \mathcal{H}$. Furthermore, if E_i is the projection on \mathcal{H}_i along $\sum_{i \neq j} \mathcal{H}_i$, then $E_i \in \mathcal{A}_T$.

Now we begin the proof that (1) implies (2). Replacing T by an operator similar to it, we may assume that the subspaces $\mathcal{H}_1,...,\mathcal{H}_k$ are pairwise orthogonal. Let $T_i = T \mid \mathcal{H}_i$. Then $T_i - \lambda_i$ is nilpotent of order n_i , and by assumption rank $(T_i - \lambda_i)^{n_i - 1} \ge m$. Thus by Lemma 3, there exist an invertible operator $S_i \in \mathcal{L}(\mathcal{H}_i)$ and a subspace $\mathcal{M}_i \subset \mathcal{H}_i$ such that \mathcal{M}_i is invariant under $S_i^{-1}(T_i - \lambda_i)S_i$ and

$$S_i^{-1}(T_i - \lambda_i)S_i \mid \mathcal{M}_i = J_{n_i} \oplus \cdots \oplus J_{n_i}$$
 (*m* copies of J_{n_i}).

Let $S = S_1 \oplus \cdots \oplus S_k \in \mathcal{L}(\mathcal{H})$ and $\mathcal{M} = \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_k$. Then $S^{-1}TS \mid \mathcal{M}_i = J_{n_i}^{(m)} + \lambda_i$. Therefore, $S^{-1}TS \mid \mathcal{M} = A^{(m)}$, where $A = (J_{n_1} + \lambda_1) \oplus \cdots \oplus (J_{n_k} + \lambda_k) \in \mathcal{L}(\mathcal{M}_0)$ and $\mathcal{M}_0 \subset \mathcal{M}$. Clearly the minimal polynomial of A is equal to m_T , and its degree $N = n_1 + \cdots + n_k$ is equal to the dimension of \mathcal{M}_0 . Therefore, A has a cyclic vector, which is also necessarily separating for \mathcal{A}_A . Thus, from Lemma 2, we conclude that $\mathcal{A}_{A^{(m)}}$ has property $(\mathbf{B}_{m,\mathbf{R}_0})$. Let $T_0 = S^{-1}TS$ and let $\{[L_{ij}]: 1 \leq i \leq m, 1 \leq j < \mathbf{R}_0\}$ be a system in Q_{T_0} . Since $\mathcal{A}_{A^{(m)}}$ and \mathcal{A}_{T_0} have dimension N, there exist $[L'_{ij}] \in Q_{A^{(m)}}$ such that

$$\langle (A^m)^{(s)}, [L'_{ij}] \rangle = \langle T_0^s, [L_{ij}] \rangle, \qquad 1 \leqslant s \leqslant N, \ 1 \leqslant i \leqslant m, \ 1 \leqslant j < \aleph_0.$$

Since $\mathscr{A}_{A^{(m)}}$ has property $(\mathbf{B}_{m,\aleph_0})$, there exist sequences $\{x_i'\}_{i=1}^m$, $\{y_j'\}_{j=1}^\infty$ from $\mathscr{M}_0^{(m)}$ satisfying $[L_{ij}'] = [x_i' \otimes y_j']$, $1 \le i \le m$, $1 \le j < \aleph_0$. Now the two sequences in \mathscr{H} defined by $x_i = x_i' \oplus 0$, $y_j = y_j' \oplus 0$, $1 \le i \le m$, $1 \le j < \aleph_0$, will satisfy $[L_{ij}] = [x_i \otimes y_j]$, $1 \le i \le m$, $1 \le j < \aleph_0$. We have proved that $T_0 = S^{-1}TS$ has property $(\mathbf{B}_{m,\aleph_0})$, and hence the same is true for T.

For the proof that (3) implies (1) we recall from the first paragraph that $E_i \in \mathscr{A}_T$, $1 \le i \le k$. Let p be a fixed positive integer such that $1 \le p \le k$. We have $(T - \lambda_p)^{n_p - 1} E_p \in \mathscr{A}_T$. Let $[L] \in Q_T$ such that $\langle (T - \lambda_p)^{n_p - 1} E_p, [L] \rangle = 1$. We define a system $\{[L_{ij}]: 1 \le i, j \le m\}$ in Q_T

by setting $[L_{ii}] = [L]$, $1 \le i \le m$, and $[L_{ij}] = 0$ for $i \ne j$. Since \mathscr{A}_T has property $(\mathbf{B}_{m,m})$, there exist sequences $\{x_i\}_{i=1}^m$, $\{y_j\}_{j=1}^m$ in \mathscr{H} satisfying $[L_{ij}] = [x_i \otimes y_j]$, $1 \le i, j \le m$. Let $u_i = (T - \lambda_p)^{n_p - 1} E_p x_i$, $1 \le i \le m$, and assume that $\sum_{i=1}^m \alpha_i u_i = 0$ for some complex numbers $\alpha_1, ..., \alpha_m$. Then for $1 \le j \le m$,

$$0 = \left(\sum_{i=1}^{m} \alpha_i u_i, y_j\right) = \alpha_j \langle (T - \lambda_p)^{n_p - 1} E_p, [L] \rangle = \alpha_j.$$

Hence the vectors $u_1, ..., u_m$ are linearly independent, and since they belong to the range of $(T - \lambda_p)^{n_p - 1} E_p$, rank $[(T - \lambda_p)^{n_p - 1} | \mathcal{H}_p] \ge m$, as was required.

COROLLARY 5. If in Theorem 4 we further assume that the Hilbert space \mathcal{H} has finite dimension, then (2) and (3) are equivalent to the following statement:

(1') In the Jordan canonical form of T, corresponding to each eigenvalue λ_i , $1 \le i \le k$, there are at least m Jordan blocks of size n_i .

Proof. By consideration of the Jordan canonical form of T, it is easy to see that $\operatorname{rank}[(T-\lambda_i)^{n_i-1} \mid \mathscr{K}_i]$ is equal to the number of Jordan blocks of size n_i corresponding to the eigenvalue λ_i . Hence the corollary follows immediately from the theorem.

COROLLARY 6. If $T \in \mathcal{L}(\mathcal{H})$ is an algebraic operator and if \mathcal{A}_T has property $(\mathbf{B}_{2,2})$ then T is reflexive.

Proof. This is an immediate consequence of Theorem 4 and the description from [12, Theorem 5.11] of the algebraic operators that are reflexive.

Remark 7. We note that the converse of Corollary 6 is false. For instance, the operator

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

is reflexive, but by Corollary 5, it does not have property $(\mathbf{B}_{2,2})$. On the other hand we know that property $(\mathbf{B}_{1,1})$ is not sufficient for reflexivity since, by Theorem 4 or [12], every algebraic operator has property $(\mathbf{B}_{1,1})$.

PROPOSITION 8. Let $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ be acting on \mathbb{C}^2 . Then \mathcal{A}_T has property $(\mathbf{B}_{1,\mathbf{x}_0})$, but \mathcal{A}_T does not have property $(\mathbf{B}_{1,2}^{\mathbf{x}})$.

Proof. That \mathscr{A}_T has property $(\mathbf{B}_{1,\mathbf{R}_0})$ follows from Corollary 5. Checking against the basis $\{I,T\}$ of \mathscr{A}_T , we see that $\left[\left(\begin{smallmatrix} x & y \\ z & w \end{smallmatrix}\right)\right] = \left[\left(\begin{smallmatrix} x+w & 0 \\ z & w \end{smallmatrix}\right)\right]$ in $\mathscr{L}(\mathbf{C}^2) / {}^{\perp}\mathscr{A}_T$. Let $L_1 = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right)$ and $L_2 = \left(\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix}\right)$. For $0 < \delta < 1$ we define $u' = v' = 1 \oplus \delta \in \mathbf{C}^2$. Then $u' \otimes v' = \left(\begin{smallmatrix} 1 & \delta \\ 1 & \delta \end{smallmatrix}\right)$ and therefore

$$\begin{aligned} \| \left[L_1 \right] - \left[u' \otimes v' \right] \| &= \left\| \left[\begin{pmatrix} 0 & \delta \\ \delta & \delta^2 \end{pmatrix} \right] \right\| = \left\| \left[\begin{pmatrix} \delta^2 & 0 \\ \delta & 0 \end{pmatrix} \right] \right\| \\ &\leq \left\| \begin{pmatrix} \delta^2 & 0 \\ \delta & 0 \end{pmatrix} \right\|_1 < \sqrt{2} \ \delta. \end{aligned}$$

Since u' is cyclic for \mathscr{A}_T , from Lemma 2 there exists $v'' \in \mathbb{C}^2$ such that $[L_2] = [u' \otimes v'']$. Hence the system $\{[u' \otimes v'], [u' \otimes v'']\}$ is an approximate solution of the system $\{[L_1], [L_2]\}$. Since \mathscr{A}_T has property $(\mathbf{B}_{1,\mathbf{R}_0})$, there exist $u, v_1, v_2 \in \mathbb{C}^2$ such that $[L_1] = [u \otimes v_1]$ and $[L_2] = [u \otimes v_2]$. Let $\{e_1, e_2\}$ be the canonical basis for \mathbb{C}^2 . Then

$$(Tu, v_2) = \langle T, [u \otimes v_2] \rangle = \langle T, [L_2] \rangle = \operatorname{tr}(TL_2) = 1$$

imply that $(u, e_2) \neq 0$. This, and

$$(Tu, v_1) = \langle T, \lceil u \otimes v_1 \rceil \rangle = \langle T, \lceil L_1 \rceil \rangle = \operatorname{tr}(TL_1) = 0$$

imply that $(v_1, e_1) = 0$. Hence $||v' - v_1|| \ge |(v' - v_1, e_1)| = 1$. This completes the proof that \mathcal{A}_T does not have property $(\mathbf{B}_{1,2}^{\sim})$.

Concluding Remarks. Recall that the class C_0 is defined to be the set of all completely nonunitary contractions T in $\mathcal{L}(\mathcal{H})$ (with dim $\mathcal{H} = \aleph_0$) such that there exists some nonzero H^{∞} -function f satisfying f(T) = 0. (Here the H^{∞} -funtional calculus $f \to f(T)$ is that discussed by Sz.-Nagy and Foias in [13].) It is obvious that (up to a scalar multiple) all algebraic operators belong to C_0 , and there is a (fairly satisfactory) necessary and sufficient condition known [4] in order that an operator in C_0 be reflexive. Therefore, it would be interesting to know exactly which operators in C_0 have which properties (A_n) (cf. [8] for the definition of the properties), since this would then generalize Theorem 4 above, and, moreover, likely give necessary and sufficient conditions in terms of the properties (A_n) that an operator in C_0 be reflexive. The authors conjecture that a necessary and sufficient condition that the dual algebra \mathcal{A}_T generated by an operator T in C_0 have property (\mathbf{A}_n) is that the Jordan model $\bigoplus_{i=0}^{\infty} S(\theta_i)$ of T (cf. [13]) satisfy $\theta_1 = \cdots = \theta_n$. Consequently we conjecture that an operator T in C_0 such that \mathcal{A}_T has property (\mathbf{A}_2) is reflexive.

The authors are grateful to Hari Bercovici for several conversations concerning the subject matter of this note.

REFERENCES

- 1. C. Apostol, R. G. Douglas, and C. Foias, Quasisimilar models for nilpotent operators, *Trans. Amer. Math. Soc.* **224** (1976), 407-415.
- H. BERCOVICI, B. CHEVREAU, C. FOIAS, AND C. PEARCY, Dilation theory and systems of simultaneous equations in the predual of an operator algebra, II, Math. Z. 187 (1984), 97-103.
- 3. H. BERCOVICI, C. FOIAS, J. LANGSAM, AND C. PEARCY, (BCP)-operators are reflexive, *Michigan Math. J.* 29 (1982), 371-379.
- H. BERCOVICI, C. FOIAS, AND B. SZ.-NAGY, Reflexive and hyperreflexive operators of class C₀, Acta Sci. Math. (Szeged) 43 (1981), 5-13.
- 5. H. Bercovici, C. Foias, and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra, I, Michigan Math. J. 30 (1983), 335–354.
- H. BERCOVICI, C. FOIAS, AND C. PEARCY, Factoring trace-class operator-valued functions with applications to the class A_{No.} J. Operator Theory 14 (1985), 351–389.
- 7. H. Bercovici, C. Foias, C. Pearcy, and B. Sz.-Nagy, Factoring compact operator-valued functions, *Acta. Sci. Math.* (Szeged) 48 (1985), 25-36.
- 8. H. BERCOVICI, C. FOIAS, AND C. PEARCY, Dual Algebras, invariant subspaces, and dilation theory, CBMS Regional Conf. Ser. Vol. 56, Amer. Math. Soc., Providence, R.I., 1985.
- 9. H. BERCOVICI, C. FOIAS, AND C. PEARCY, On the reflexivity of algebras and linear spaces of operators, *Michigan Math. J.* 33 (1986), 119-126.
- 10. S. Brown, B. Chevreau, and C. Pearcy, Contractions with rich spectrum have invariant subspace, J. Operator Theory 1 (1979), 123-136.
- 11. J. A. DEDDENS AND P. A. FILLMORE, Reflexive linear transformations, *Linear Algebra Appl.* 10 (1975), 89-93.
- 12. D. Hadwin and E. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), 3-23.
- 13. B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
- 14. L. R. WILLIAMS, A quasisimilarity model for algebraic operators, *Acta. Sci. Math.* (Szeged) 40 (1978), 185–188.