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Working with the framework of a continuous-time overlapping-generations model, this paper 
examines equilibrium growth paths (consistent with perfect foresight). In particular, we develop a 
methodology for characterizing the adjustment paths converging to new stationary states follow- 
ing exogenous shocks. The solution technique yields sequences of derivatives approximating the 
true dynamic paths and bounds for the errors of approximation. In practice, aggregating behavior 
over discrete-time intervals can save a great deal of effort - considerably enhancing the set of 
models feasible for analysis; our error bounds enable us to aggregate without compromising our 
results to an unknown degree. 

1. Introduction 

This paper attempts to develop a methodology for investigating the dynamic 
behavior of continuous-time decentralized growth models composed of over- 
lapping generations of finite-lived families. The households differ from one 
another (at minimum) in terms of birth dates, and each engages in private 
life-cycle utility maximization. Numerous studies have employed the basic 
framework - see, for instance, Tobin (1967) on national wealth accumulation, 
Summers (1981) on taxation, Kotlikoff (1979) on social security, Laitner (1982) 
on portfolio implications of monopoly, and Arthur and McNicoll (1978) on 
population. 

Although the investigations of Tobin and others focus on stationary-state 
growth paths and on comparisons of the different stationary solutions corre- 
sponding to different parameter values, transition paths between such states 
are also potentially very important. In particular, since experience with models 
related to those listed above - see Laitner (1984) and Auerbach and Kotlikoff 
(1984)-  suggests that fairy long adjustment periods follow many types of 
exogenous shocks, a study of the effects of a natural or policy change over, 
say, the change's first decade will generally require a dynamic analysis. 

In turning our attention to dynamic time paths, we limit ourselves to those 
which represent sequences of equilibrium sta tes-  consistent with perfect 
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foresight on the part of all agents. Steady states represent, of course, a 
theoretically and empirically interesting subset of such paths. All of our 
analyses start from and (asymptotically) converge to stationary, solutions. 

Overlapping-generations models tend to be complicated to study, and 
difficulties increase as we depart from stationary solutions. For their dynamic 
analysis, therefore, Auerbach and Kotlikoff (1984) employ a numerical proce- 
dure: they choose a long time interval (following an exogenous shock) over 
which they assume the transition will fully run its course, they select a grid 
over the interval, and they use an analogue of Newton's method to find a 
vector consisting of state variables at each grid-point time and satisfying the 
equilibrium conditions of the model. Drawbacks are that such an approach 
reveals little about the saddlepoint nature of the dynamic system and related 
questions of uniqueness. Furthermore, although the interests of computational 
tractability favor a coarse grid, the Auerbach-Kotlikoff technique provides no 
information on the errors of approximation different choices might imply. 

Laitner (1984) suggests generating a sequence of derivatives, the sequences 
defining transitions following an infinitesimal shock)An  intermediate step 
computes an eigenvalue vector which fully characterizes the underlying phase 
diagram. On the other hand, since the approach is designed for discrete-time 
models, limitations are a lack of strict compatibility with papers employing 
continuous time and the seeming arbitrariness of any given choice of a period 
length. Also, dimensionality is again an issue: if households live a maximum of 
T years and our time unit is a year, Laitner's dynamic analysis involves a 
vector equation roughly of order 2T. If we want quarterly results, vector 
lengths increase fourfold; if we want to use time units longer than one year to 
reduce computational burdens (and, perhaps more critically, computer round 
off errors), approximation errors, which (again) are unknown, may be severe. 

This paper works directly with a continuous-time model. We characterize 
transition paths with time-dependent derivatives. Thus, although our model's 
equilibrium condition is highly non-linear, the dynamic analysis depends on a 
linear equation. Unfortunately, the latter is an integral equation. Sections 3 
and 4 below develop a method of coping with it. The procedure involves 
setting up a grid. After solving the resulting discrete-time system, however, we 
can easily compute dynamic 'multipliers' for interim times. We do obtain an 
eigenvalue characterization of our model's saddlepoint structure. Most im- 
portantly, our solution yields upper bounds for the approximation errors (for 
all multipliers) induced in our discretization steps. These bounds potentially 
allow us to work with coarser grids than we would otherwise trust - and this 
possibility is borne out in the numerical examples of section 6. The coarser 
grids, in turn, suggest that elaborations to the underlying economic model, 
such as incorporating multiple capital stocks, are feasible in practical prob- 
lems. 

1 The derivatives are analogous to familiar comparative stationary-state multipliers. 
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2. Dynamic multipliers 

This section first illustrates our method of presenting dynamic results, with 
multipliers which are functions of time, in the context of a very simple model. 
Then it sets up our life-cycle savings growth framework. Finally, it constructs 
our equation defining multipliers for the life-cycle system. 

2.1. A simple example 

To illustrate our procedure for investigating non-stationary growth paths, 
consider for a moment the familiar Solow (1956) model with a constant 
average propensity to save. If k t is the capital-to-'effective' labor ratio and 0 i s  
any parameter, the model has an equilibrium condition of the form 

k , =  ~(k , ,  0). (1) 
If the analysis begins at time 0, with k 0 given, the equation's solution, say, 
~(-), has the form 

k t = l~( t ,  ko ,  0 ) ,  all t > O. (2) 

Let there be a permanent change in 0 beginning at time 0. Let k~ = '/'(0) 
be a stationary solution [so that 0 = ~(k~, 0)]. To compare stationary growth 
paths before and after time 0, we often compute a comparative steady-state 
'multiplier' 

a k ~ l a o  = - [a~(k~, O ) l a O ] l [  a~( k~,  o ) / a k  ] . (3) 
Proceeding in the same fashion for transition-path multipliers, differentiate 

(1) with respect to 0. Referring to Coppel (1965, theorem 6, p. 22) to justify 
changing the order of differentiation on the left side and using (2), 

a[ a~(t, ko, o) /ae] /at  = [ a,/,(~ (t, ko, O), a)/ak] 

• [ a~b(t, ko, O)/aO] 
+ [ a ~ ( ~ ( t ,  ko, O) ,0) /00  ] . (4) 

This is a first-order differential equation in Ode(t, k o, 0 ) /00  = Okt/00. Using 

a~(0 ,  ko, 0 ) / a 0  = ako /a0  = 0, 

we should be able to solve (4) for a sequence of dynamic multipliers, 

Okt/00 = a~( t ,  ko, 0 ) /a0 ,  all t > O. 

Solow's model implies the economy will, in general, reside in a stationary 
state in the absence of a recent shock; hence, the case with k o = g'(0) is 
especially significant. [k o = ~/'(0) is implicit in the analysis of (3).] With such 
an initial condition, 

~b(t, ko, O ) = k o = k ~ ,  a l l t>O.  
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SO, (4) becomes  

t9 [ O~b( t, koo , O )/ooO ] / O t  = [ Oq~( k ~ ,  O ) / tgk  ] . [ Otl,( t, koo, 0 ) / ( t 0 ]  

+[O,(k=,O)/OO], 
a l inear  equa t ion  (in Okt/dO ) with cons tant  coefficients. In  this si tuation, for  a 
given time-O shock dO, ( O k J O O ) . d O  measures  the capi ta l - to- labor  rat io 's  
equi l ib r ium deviat ion,  af ter  t periods,  f rom its original s ta t ionary  value. 2,3 

2.2. Our life-cycle model 

T h e  under ly ing  economic  model  on which this pape r  focuses closely resem- 
bles  T o b i n ' s  (1967). This subsect ion reviews the f r amework  briefly. I t  also 
p repa res  the g roundwork  for the illustrative numerical  example  of  section 5. 

O u r  mode l  has  a single output  good,  net na t ional  product ,  and an aggregate  
p r o d u c t i o n  funct ion  F ( . ) :  if K t is the aggregate physical  capi ta l  stock, E, the 
aggregate  'effect ive '  labor  force, Y, the net  na t ional  product ,  and  0 is a 
cons tan t  - to be  thought  of  as 1 at  this point ,  

Y t = O ' F ( K , , E , ) .  

W e  assume  F ( . )  is increasing and  concave in each a rgument  and  exhibits  
cons t an t  re turns  to scale. Define 

k , - K J E  t and f ( k t ) = F ( k , , l  ). 

Uni t s  of  Yt are homogeneous ly  divisible into consumpt ion  and investment .  
Assuming  compet i t ive  factor  pricing and  (constant)  p ropor t iona l  tax rates zw 
and  % for  wage  and interest  earnings,  if w t is the t ime-t  net -of- tax wage rate  
and  r, the ne t -of - tax  interest  rate, 

w t=  (1 - ~ w ) ' 0 "  [ f ( k t ) -  k t . f ' ( k t )  ] =- W ( k t ,  O), 

r t = (1 - ~'r)" 0 " f ' ( k , )  -- R ( k ,  0) .  

In  our  numer ica l  examples  F ( - )  is CES. Labor ' s  share of  total  income  in the 
s t a t ionary  s tate  is 0.82, "r w = % = 0.3 in mos t  cases, and  the p roduc t ion  elastic- 
i ty of  subs t i tu t ion  is 0.5 in mos t  cases. 4 

2If koo = ~/'(0) is a 'stable' stationary solution, lim,_oo Ok,/O0 = Okoo/O0. 
3Notice that this subsection is similar to a special case of Aoki (1980). 
4Labor's share comes from the 1978 national accounts- with labor's share of proprietor's 

income set equal to labor's total share of national income. The tax proportions come from the 
1978 national accounts figures for federal, state, and local tax collections less all transfer payments 
other than social-security retirement benefits. Below we arbitrarily try a higher tax rate on the 
return to capital, ¢r = 0.40, with ~'w adjusted to keep total collections constant. Lucas (1969) 
estimates production elasticities. 
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Each household lives T years. As in Tobin (1967), a household includes two 
adults with uncertain life spans (although mortality tables are known and 
invariant) and children. Institutions provide actuarially fair life insurance. For 
simplicity, we omit population growth; thus, every household has two children. 
The offspring are born and leave home at prescribed times. 

Consider a household started at time t. Let its age now be u. As in Tobin, 
assign adult equivalency weights to children. The weights plus each adult's 
probability of dying after age u [see Tobin (1967) and Yaari (1965)] yield a 
schedule n(u),  u~[0 ,  T], of 'equivalent adults' for all families. For the 
household under consideration, let c(u, t) be (real) consumption per adult, let 
a(u,  t) be family asset holdings, let l(u) give the household's labor supply in 
natural units (an exogenous variable in this paper), and let l (u) .  e v(t+") give 
its 'effective' supply - the rate of labor-augmenting technical progress being "t- 
We posit a Bergson family utility funct ion-  allowing the existence of a 
stationary state for the economy even if , /~  0 [see Katzner (1970, theorem 
2.4-4)]. 5 The same Bergson parameter fl < 1, fl #: 0 applies for all households 
(although this last assumption is by no means crucial). A household (born 
at t) solves at age s 

max f r n ( u ) .  [ c ( u , t ) ~ / f l ]  du,  (7) 
e(u, t) Js 

subject to 

a a ( u ,  t ) / a u  = rt+ . • a (u ,  t) + wt+ . • e r(t+"), l (u )  - n ( u ) .  c(u,  t),  

a(s ,  t) given, a (r ,  t) = 0. 

There are neither bequests nor inheritances; so a(0, t) = 0. 
In our numerical examples, households start with an 18-year-old husband 

and wife, adults live a maximum of 70 additional years, survival probabilities 
for men and women (separately) come from a standard mortality table, minor 
children receive equivalent adult weights of 0.6, and teenagers receive 0.8. A 
family's first child is born when the parents are 22, the second when they are 
25. Each child leaves home at age 18. Many of our examples use fl = - 1. 6 

Our examples use labor supply schedules proportional to the (labor) earn- 
ings figures in U.S. Department of Health and Human Services (1983, table 
25, p. 83). We use data from 1978, the most recent year for which final 
numbers are available. We keep track of men and women separately, cor- 
recting the supply figures using our survival probabilities and average par- 
ticipation rates (for 1978) form U.S. Department of Labor (1980, table 4, 

5If "t ffi 0, we do not  need Bergson functions. The analysis of sections 3 -6  and, indeed, the basic 
course of this paper  are largely unrelated to the special properties of this class of functions. 

6The weights for children and teenagers come from Tobin (1967). Weber (1975) provides some 
estimates of ft. (Tobin uses fl = 0.) 



336 J, Laitner, Continuous-time life-cycle savings growth models 

p. 160). We also correct for social-security retirement income - see below. As 
in Summers (1981) and Kotlikoff (1979), we set "t = 0.02. 

The Euler equation [note that second-order conditions hold for problem (7)] 
implies 

Define 

c(u,t)=c(s,t)'exp([1/(1-fl)]" f~ u } rt+xdx , 

c(s,t)={a(s,t)+ fsrl(o)'wt+v'eVtt+°)'exp(- ffrt+xdx}dv ) 

(8) 

(9) 

m(u-t)=max(u-t ,O),  

M ( u - t ) - I  if u-t>O, 
-= 0 otherwise. 

Then for a household aged u and born at time t - u, 

a(u , t -u)= fu l(v)'wt-.,+vertt-u+°)'exp rt_u+xdx do 
"m(u--t) 

-Sm~u_t,n(o)'c(o,t-u)'exp(foUrt-u+xdx} dO 

(: I + M(u- t) .a(u- t , t -  u) .exp u_ rt_~+~dx . 

(lO) 

The equilibrium condition for the model equates capital used in production 
with capital owned by households. Noting that 

Et=e't. forl(u)du, (11) 

we have 

k t = foTa(u, t-- u)du/e t. (12) 

For simplicity we omit government debt. Tax revenues finance government 
spending-  which does not influence family consumption choices. We do, 
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Table 1 

Stationary Solutions. 

337 

Example  Parameters a 

Stationary values for 

k r / Q  

p = 1.0, fl = - 1.0, "r w = 0.30, 'r r = 0.30 
p = 1.0, fl = 0.0 'r w = 0.30, 'r r = 0.30 
p = 1.0, fl = - 1.0, 'r w = 0.28, 'r, = 0.40 
P = 1.0, fl = 0.0, "rw = 0.28, "r, = 0.40 

1.78 1.56 
5.56 3.04 
1.54 1.40 
4.55 2.76 

aSee text. p is the CES exponent [the elasticity of  substitution being 1 / (1  + 0)]. 

however, add social-security retirement benefits back into household budgets 
(to replace the social-security portion of "r w - see note 4) by augmenting the 
labor-supply figures of households of age 68 and oyer. 7 

To determine a stationary solution, set s = 0 in (8)-(9) and m = M = 0 in 
(10). Choose a prospective stationary k. Use it to calculate a time-independent 
r and w from (5)-(6). Substitute into (8)-(10) and then (12). Call the 
right-hand side of (12) k*. Use Newton's method to adjust k until k * - - k .  
Table 1 gives examples. Parameter values not explicitly given equal those 
explained above in the text. Notice that the units on k depend on our choice 
of a labor-supply variable, but that the units on the capital-to-net national 
product  ratio are years. 8 

2.3. Transition paths 

Many parameter changes, leading to adjustment paths and new stationary 
states, are possible. For the sake of simplicity and concreteness we focus on 
the following single one. Prior to time 0, let the parameter 0 multiplying F( . )  
equal 1. At  time 0, suppose an exogenous shock changes 0 by d0. The 
variation is unanticipated. As it occurs, all agents realize that it is 
permanent  - corresponding, for example, to a permanent change in domestic 
productivity. 9 We now derive an equation determining Okt/O0 all t > 0 for 
our life-cycle model. 

7We compute  social-security retirement payments  for 1978 from U.S. Depar tment  of  Health 
and  H u m a n  Services (1983, table 98, pp. 172-173). Benefits are assigned on the basis of  survival 
probabilities. We assume all families are in the social-security system. 

8Musgrave 's  (1982, tables 4 and 8, pp. 172-173) constant-dollar non-residential and residential 
private-capital figures for 1978 plus national-accounts data  on inventories suggest an  empirical 
K/Q ratio of  1.95. 

9Our  methodology could be extended to deal with changes anticipated N years ahead of time o r  

with changes known to be temporary. 
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Differentiating (12), 

Okt /O0  = for[ a a ( u ,  t -  u ) / O 0 ]  d u / E  r (13) 

(Notice that E, is not a function of 0.) The problem is to characterize 
Oa(u,  t - u ) / O 0 .  We proceed from (10). 

As in the case of a comparative steady-state multiplier, assume that prior to 
time 0 the economy had reached a stationary equilibrium k~o. Thus, the effect 
of d0 is a perturbation about the path k, = koo all t _> 0. Let 

,*=-R(~oo,O), 
w* - W ( k ~ ,  O), 

Ow,/Oo = (1 - ~). [f(goo) - koo ./'(k=)] 

- ( 1  - %) .  k~ . f " ( k ~ ) .  ( O k / a 0 )  

- w x + w 2. ( 0 k , / 0 0 ) ,  

Or,/Oo = (1 -,,)./ '(/coo) + (1 - , , ) . f " ( k ~ ) .  (0k, /00)  

= r 1 + r 2. ( O k t / O 0 ) .  

Differentiating (10) about the stationary growth path, 

Oa(u,t-u)/OO=f_ u l(v). [wl+w2.(Okt_,+JOO)] 
re(u--t) 

• eV( t - v+o) ,  er(u - o) dv 

+ __f~t"-t)l(v)" w*. e v(t-u+°), e r(u-v) 

• fou[ r 1 + r 2. ( 0 k ,_ .+x/00  )] dx do 

"4" ( l ) )  C ( [ ) , t - - u )  e r(u-O) 
f u tl • • re(u--t) 

• foU[r ̀ + r 2. (Okt_.+Jo0)l dxdv 

+ f "  n(v).(Oc(v,t-u)/OO).er("-")do 
re(u--t) 

+ M ( u - t ) . a ( u - t , t - u ) . e  rt 

• f ~ t [ r  1 + r 2. ( O k , _ . + J O 0 ) ]  dx .  (14) 
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Notice that a(u - t, t - u), all u ~ [0, T], are fixed at time 0 - in other words, 
they do not vary with 0. F_x I. (8) yields 

Oc(o, t -  u) /aO = [ a c ( m ( u  - t), t -  u)/aO] . e r (v-m(u- t>) / (1- f l )  

+ c ( m ( u -  t), t -  u) . [ 1 / ( 1 - f l ) ]  

.er(V--m(u--t))/(1--~) 

• J; (u_t)[r l+r2"(Okt_u+x/OO)]dx.  (15) 

Defining 

5 T1 = n ( v ) .  e#'r(°-~O'-t))/O-~)dv, 
(u-t) 

Eq. (9) implies 

a~(m(u  - l), t -  u)/Oo 

=--c(m(u--t),t--u)" fT n(v)  
"re(u--t) 

• e ' 8"r (v -m(u- t ) ) / (1 - f l ) .  [fl /(1 - fl)] 

T 
.f_v [ r t + r 2 . ( O k t _ u + x / O O ) l d x d v / T l +  fm(u_t)l(v ) 

re ( t -u )  

• [ w  x + w =. ( a k , _ . + j a e ) ] .  e ~ ' ( ' - " + ° )  • e -r(O-m(u-t))  dv/TI  

-- fT l ( v ) . w , . e ) , ( t _ u + O ) . e _ r ( o _ m ( u _ t ) )  
"re(u-t) 

• f ;(u_t)[r  x + r 2. (akt_u+JdO)] d x d v / r l .  (16) 

Changing the order of integration where necessary, the derivation of Oa(u, 
t - u)/OO yields functions G(.) and H(-) such that (14) can be rewritten as 

Okt/00 = f t + r  G ( t , s ) . ( O k , / O O ) d s +  H( t ) .  (17) 
"re(u--t) 

G(-) and H( . )  depend on k~, which has been suppressed as an argument 
because it is constant. Eq. (17) gives the linear integral equation mentioned in 
the introduction. Setting 

G ( t , x ) = O ,  a l l x ~ [ t - T , t + T ] ,  a U x < 0 ,  
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we can rewrite (17) as 

ak,/ao = fo~G( t, s) . ( ak , /ao )  ds + H( t). (18) 

Notice that factor prices ,at the extreme beginning and ending of the lives of 
the oldest and youngest' families existing at any time t have a negligible 
influence on aggregate capital holdings. So, 

G ( s , s - T ) = O  and G ( s , s + T ) = O ,  al ls>O. (19) 

Our assumptions of homotheticity of preferences, linear homogeneity for 
F(.  ), and labor-augmenting technical progress imply 

G ( t , s ) = G ( t + x , s + x )  and H ( t ) = H ( t + x ) ,  

all x > 0 ,  t >  T, s. (20) 

For each t ~ (0, T), there will be some households in the current population 
born before time 0. The asset holdings of such families at time 0 will reflect 
their prior behavior (in an economy in which k t = koo and 0 = 1 were thought 
to be permanent). The 'special' nature of these peoples' asset holdings pre- 
vents (20) from being valid before time t-- T. After time T, all households 
initiated prior to t = 0 are deceased. 

Notice the flexibility inherent in the way our framework is set up: if 
different segments of the cohort born at t have different parameters t ,  family 
compositions n (-), and/or  labor supplies/(. ), provided the fraction of fami- 
lies in each subgroup is constant across times t, we can simply develop 
(14)-(16) for each class and then form G(.) [in (17)] from a weighted average. 

3. An approximate solution 

To develop a practical method of solving (18), this section modifies argu- 
ments in Kantorovich and Krylov (1958, ch. II) - the latter being limited, in 
particular, to problems with t contained in a bounded interval. Our procedure 
generates approximations, zj, all j -- 0, . . . ,  for Okt/O0 at the points of a grid, 
and, subsequently, approximations Z(t), all t > O. Section 5 considers the 
existence and uniqueness of an exact solution; section 4 bounds our errors of 
approximation. 

The first step is to replace the integral in (17)-(18) with a summation. 
Define 

~(t) =- akt/O0. 

We use Simpson's r u l e -  see, for example, David and Rabinowitz (1975, 



J. Laitner, Continuous-time life-cycle savings growth models 341 

p. 45). Select an even integer n and a grid size h with 

h = 2T/n .  

Define 

Xo(t ) = t - T, 

x i ( t ) = X o ( t ) + i . h ,  all i =  1 . . . .  , n ,  

A o = A,  = h/3, 

A i = 4 h / 3  for i E { 1 , 3 , 5  . . . .  , n - l } ,  

= 2 h / 3  for i ~ { 2 , 4  . . . .  , n - 2 } .  

Then [see (19)] 1° 

n 

f o ~ G ( t , x ) ' ~ ( x )  dx-" E G(t,  x i ( t ) ) ' ~ ( x i ( t ) ) ' A i  
i=O 

(21) 
n - 1  

= ~_~ G(t,  x i ( t ) ) ' ~ ( x i ( t ) ) ' A i .  

Let 

t j = h . j ,  all j = 0 , 1  . . . . .  

Let zj be our approximation of ~(t) at t = tj. Looking at (18) and (21), we 
require that zj obey 

n--1 

zj= ~.~ G(tj,  xi( t j)) .Ai.z~, ,( , j)+H(tj) ,  all j>O.  (22) 
i--1 

Because history fixes k0, 

z0 = o .  (23)  

Eqs. (22)-(23) define an infinite-dimensional system of linear (algebraic) 
equations, from which we ultimately hope to determine zj all j .  Rearranging 
the system so that all z terms axe on the left, we can think of a matrix Q times 

1°If we know G(t, s) = O, all s < xi( t  ), some 1 < i - and this will be true for many t < T - we 
will want to use Simpson's rule on the largest possible even numbered block of [xj( t ) ,x j+l( t )]  
intervals and the trapezoidal rule elsewhere. For notational simplicity we omit this detail in the 
text. Our  error calculations below will be affected very slightly - see Davis and Rabinowitz (1975) 
for trapezoidal-method error limits. 
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a vector equaling a vector: 

H(t°) ) (:o) 
Q" = H(t2) (24) 

An examination of (20) and (22)-(24) indicates that the non-zero elements 
of Q form a band of maximum width n - 1 about the principal diagonal. Eq. 
(19) reveals that the band replicates itself beginning with row (n /2)  + 1 - in 
the sense that Qq -- Qi+l,j+l, all i > (n /2 )  + 1 - and that I-I(ti) is constant, 
all i > (n /2) .  Thus, from row (n/2) + 1 onward, (24) defines a constant-coeffi- 
cient linear difference equation, of order n - 2, for z i- 

For the moment, let us focus our attention on the latter equation. It has the 
form, defining q7 and q* from (24), 

q~'.zi+ . . .  +q*_E.Zi+n_2--q*, alli> l. 

Let 

q j -  - q T / q L 2 ,  all j = 0  . . . . .  n - 3 ,  

q - q*/q*-2. 
Then 

Zi+n-2----%'Zi+''" +qn-3"Z i+n -3+q ,  a l l i > l .  (25) 

Converting to a system of first-order equations, if 

p -  
0 1 0 . . .  0 I 

0 0 0 . . .  1 ) ' 
qo qx q2 "'" qn-3 

(zi) p.  • + 

Zi+'n_ 3 
( / 
~Zi+n-2 

all i >  1. (26) 

Experience indicates that P may have a mixture of explosive and stable 
eigenvalues. For instance, Stiglitz's (1974) model with physical capital and a 
natural-resource stock, the models with more than one type of physical capital 
of Hahn (1966) and Shell and Stiglitz (1967), and the model with capital and 
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money of Shell et al. (i969) all exhibit saddlepoint phase diagrams. The same 
is true for the overlapping-generations models in Laltner (1981, 1984) with one 
asset but with households which live two or more periods. 

In each paper above, the mixture of eigenvalues is related to the nature of 
the given model's initial conditions. Although history should determine stocks 
of physical assets at the start of an analysis, the same is not true for the initial 
relative prices of the stocks, which depend on present market conditions and 
on anticipated capital gains - variables which can ' jump' immediately after an 
unanticipated shock. If, therefore, a multi-asset model's stationary solution 
were a 'sink' point, the shortage of exogenous initial conditions would imply 
an indeterminacy problem - the model would not be able to tell us which of 
many convergent paths (consistent with the restricted set of fixed initial 
conditions) the economy would follow after a shock. On the other hand, with a 
saddlepoint phase diagram, if we limit our attention to stable paths - believ- 
ing the actual economy does always return to a stationary state (at least after 
modest shocks) i x -  there may be enough exogenous initial conditions to 
determine fully behavior within the diagram's stable arm. This typically is the 
case in the papers listed above - more stable eigenvalues would imply inde- 
terrninacy, but fewer would generally preclude cor/vergence altogether. On 
the other hand, it is not difficult to find models having stationary solutions 
with the wrong constellation of eigenvalues for both determinacy and conver- 
g e n c e -  see, for instance, Calvo (1978)-  so we must be careful to examine 
characteristic roots in individual cases [see condition (34) below]. 12 

In a one-good overlapping-generations model in which households have 
perfect foresight, history will fix each family's initial-period wealth. This 
wealth plus anticipated future wage and interest rates will determine the 
family's present saving. The aggregate present savings of all households 
governs the current evolution of the economy. The future wage and interest 
rates needed in an analysis of each family's initial-period savings behavior are 
strictly analogous to the starting relative stock prices in models with many 
physical assets, however. In other words, anticipations of future prices, or 
anticipations of the future capital-to-labor ratios which will generate them, can 
' jump'  after a current surprise. Again, ideally there will be enough stable 
eigenvalues for convergence from the exogenous initial conditions, but, to 
escape indeterminacy, not more. 

UIdeally, we would be able to perform a global analysis showing that all unstable paths in a 
model's saddlepoint lead to eventual inconsistencies with our assumption of perfect foresight. 
With low-dimensional models this is sometimes possible - see, for instance, Shell and Stightz 
(1967). The present paper is limited to a local analysis. 

12There are, of course, many 'optimal' growth models exhibiting saddlepoint phase diagrams 
for state and costate variables. Determinacy and convergence to a (possible) stationary state are 
important issues in such cases. However, we limit our discussion to decentralized models here. 
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Returning to eq. (26), let J be a diagonal matrix of the eigenvalues of P 
arranged with roots of smallest modulus first. Let E be a matrix of the 
corresponding eigenvectors, with 

E-  P -- J . E .  (27) 

Define new vectors y(i) ,  i = 1, 2 , . . . ,  with 

Define 

Then (26) implies [multiplying through by E and using (27)] 

yt(i) yt(i+ 1) 

J .  + ~ =  

Yn-2(i) Y,-2(i + 1) 

Let 

(28) 

(29) 

(30) 

j0), 
with J* a submatrix of the eigenvalues in J of modulus less than one. Define 

~** ' Y(i)=~y**(i)/  E** ' 

where q*, y*(i),  and E* have the same number of rows as J*. Let that 
number be n s. Let the number of rows in J** be n e. 

For  our model to proceed along the stable arm of its saddlepoint, y**(i) 
must follow its forward solution. In other words, we need 

y * * ( i ) = - ( J * * ) - t ' [ l - ( J * * ) - t ] - t ' ~  *', al l i>l ,  (31) 

where I is the n e X n~ identity matrix. 
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Returning to (24), the equations for rows 1 to (n /2)  have so far been 
ignored. These equations define an (n /2)  X (n - 1)-dimensional matrix Q such 
that 

Iz!) 0." = 

Zn 2 

H(to) 
H( t l )  

(32) 

This system follows from (22)-(23). It reflects information stemming from our 
knowledge of the behavior of the economy before time 0 -  and locked in 
time-0 family asset holdings; thus, it embodies the initial conditions given by 
history for our model. 13 Combining (31) and (32), if 0 is a column vector of 
zeros, and if 

o:(° ) 
0 E** 

then 

(z° t D ° ° 

Zn-2 

H(to) 
H( t l )  

H( t(~/2)-t) 
- ( j * * ) - t . [ i _ ( j * * ) - l ] - I  

(33) 

If 
( n / 2 )  + n e = n - 1, (34) 

and assuming the matrix D is non-singular, (33) uniquely determines 
(z 0 . . . .  , z ,_2) r. Subsequent z i values follow (uniquely) from (26). If (n /2)  + 
n e < n - 1, there are too few eigenvalues of modulus greater than or equal to 1 
for an assumption that the economy avoids explosive paths to determine a 
unique set of approximate multipliers. If (n /2 )  + ne > n - 1, the stationary 
solution about which our linearizations are taken will not be stable (even with 
respect to our limited set of exogenous initial conditions); in such a case no 
bounded set of dynamic multipliers will exist in general. Fortunately, in each 
of our examples below (34) holds (and D is invertible). 

We can now fully characterize our practical solution Z(t)  for Okt/O0, all 
t > 0 .  For t with t j < t < t j + t ,  define 

~( t, j ) = ( t -  t j ) / (  tj+l - tj). 

taNote:  In  the period t < 0, anticipations of % and r, for s > 0 were, as it turns out, incorrect. 
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Similarly, for tj < t < tj+ x define 

x*(t , j )=---xi( t j ) ,  all i =  0 . . . . .  n, 

x * + x ( t , j ) = t j +  T + h ,  

A * = A i ,  a l l i=O . . . . .  n - l ,  

A* = h /3  + h/2 ,  

* = h / 2 ,  An+l  

x~*( t ,  j )  = tj+ x -  r -  h, 

x**( t ,  j )  =xi_l(t j+x),  all i= 1 , . . . ,  n + 1, 

A~* = h/2 ,  

A~* = h /3  + h/E, 

A * * = A i _ l ,  all i =  2 . . . . .  n + l .  

Then given z i, i > O, as generated above, set 

n + l  

Z(t)- [1 -~ ( t ,  j)] • • G(t , x* ( t , j ) ) 'A* ' zx~( t , j  ) 
i = 0  

n + l  

+~(t,  j ) "  E G(t,  x**(t ,  j ) )  "A** "zx..(t,y ) + H( t ) ,  
i~O 

(35) 

Note  that 

zi= Z(  ti), aU j > O, 

all tj < t < tj+l. 

4. Errors of approximation 

Let ~(t), all t > 0, be a solution to (18), and let Z ( . )  be as in (35). Then this 
section introduces a procedure for bounding the errors of approximation 

[recall the zero conditions for G(.)] and that Z ( . )  is defined in such a way that 
it will be a continuous function of t (the latter point becoming important in 
section 5). 
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I Z ( t )  - ~'(t)l , all t. We will assume G ( . )  and H ( - )  are four  times cont inuously  
differentiable. 14 

Given  any  ~': [0, oo) ~ R 1 for which the left-hand side of  (21) exists, let 0 ( . )  
be  the error  in (21) of  replacing an integral with a summat ion:  

o ( t ,  ~'(-)) 

=- fo°°G(t, x ) .  ~ ( x )  d x  - [1 - ~( t ,  j ) ]  

n + l  

Y'~ G(t,  x*( t ,  j ) ) . a * .  ~(x*(t ,  j ) )  
i = 0  

n + l  

- ~ ( t , j ) .  E G ( t , x * * ( t , j ) ) . A * * . ~ ( x * * ( t , j ) )  
i=O 

= [ 1 -  ~(t, j)] 

n+l } 
Y'~ G ( t , x * ( t , j ) ) . A * . ~ ( x * ( t , j ) )  

i = 0  

.+x ) 
- ~_~ G ( t , x * * ( t , j ) ) . A * * . ~ ( x * * ( t , j ) )  . 

i = 0  

Davis  and  Rabinowi tz  (1975, p. 46) provide an upper  limit for  0( . ) :  15 if 
b*(i, t, ~(.))  bounds  the fourth derivative of  the integrand on the left side of  

(21) for  x ~ [xi_2(t ), xi(t)], 

b(i,  t, ~(')) = h 5" b*(i, t, ~(" ) ) / 1 8 0  (36) 

14If this were not true, provided G(-) and H(.) are at least continuous, we can approximate 
them with C 4 functions to any degree of accuracy on the compact set ~ defined in section 5 - see, 
for instance, Lorentz (1966, theorem 6, p. 10). We could then perform our analysis on the 
approximations, with errors proportional to the approximation accuracies- see the analysis 
below. 

lSOur a(-) is really a weighted average of two approximations, but the weights sum to 1. As 
indicated in note 10, for simplicity we omit the (single interval) trapezoidal-approximation error in 
each case with t ~ tj. 

J.E.D.C.-- C 
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bounds the error of Simpson's approximation for the same interval. Hence, 

(n//2) + 1 

[o( t ,~( . ) ) [<_B( t ,~( . ) ) -  ~ hS.b*(Ei, t ,~( . )) /180.  
i = 1  

Differentiating both sides of (18) i times with respect to t, 

oo i 
~(/ ) ( / )=f0  [ a G ( t , x ) / ~ t i ] ' ~ ( x ) d x + H ( i ) ( t ) ,  (37) 

[where ~(i)(t) = Oi~(t)/at i and H(O(t) - OiH(t)/ati]. Thus, ~(.) is four times 
continuously differentiable [if G(. ) and H(.)  are]. We have 

max [ a 4 G ( t , x ) / a x  4] b*(i, t, ~'(')) --- xi-2(t)<-x<-x,(t) " ~(X) 

+ 4. [a3G( t , x ) /Ox  a] .~O)(x) 

+6 .  [ a 2 G ( t , x ) / a x  2] • ~(2)(x) 

+ 4. [aG(t ,  x ) / O x ] .  ~°)(x) 

< max {la'G(t,x)/ax'l.l~(x)l 
Xi-2(t)'< X<--xi(t ) 

+ " .  + [ a ( t , x ) l ' l g < ' ) ( x ) l } .  (38) 

As explained in section 3, we are interested in non-explosive adjustment 
paths. That is, we care about sequences of multipliers which are bounded, say, 
by ~* < oo: 

sup I~(/)  I = ~* < oo. (39) 
t > 0  

Eq. (37) then yields 

I~°)(/) I _< ~*. f0~l O'G(t, x)/Otil  • dx + In(i)(t)I- (40) 

Thus, (38) implies there exist non-negative functions "ro(t ) and ~'t(t), depen- 
dent only on the properties of G(.) and H(.), with, for all ~(.) satisfying (39), 

Define 
Io(t, £(')) 1-< B(t, £(.)) <_ ~o(t)" £* + 'rl(t), 

~'o*--'ro(t./2) and ~;-'rl(tn/2). 

all t > 0. (41) 
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Property (19) and eq. (17) imply 

¢o(ti) --- ~'o* and ¢l(ti) = ¢~', all i > n/2.  

Define 

a ( / j ,  -- - z j .  

(42) 

Subtracting each side of (22) from each side of (18), we have 

n--1 

A( t j ,~ ( . ) )  = o ( t j , ~ ( . ) )  + ~., G(tj ,  x i ( t j ) )  
i = l  

• A , . A ( x , ( t j ) , ~ ( . ) ) ,  all j>O.  (43) 

Since ~(0) = z o = 0, A(0, ~(.)) = 0. Eq. (43) has almost exactly the same form 
as (22) and can be solved in virtually the same way. 

Provided (34) holds and D is invertible [see (33)], section 3 shows how to 
generate a unique bounded sequence z i. If (39) holds for some ~* < oo and 
some solution ~(t) for (18), e ( t ,~( . ) )  is bounded. Condition (34) and D 
non-singular then yield a unique solution, via (43), for A(tj, ~(.)), all j > 0 [in 
terms of o(t, ~'(.))]. Letting E*, E**, J*, J**, and K be as in section 3, if 

0 

~- __ __ ( j**)- l .  E**- 0 
o ( t , / 2 , ~ ( ' ) )  

then 

So, if 

-- (J**)-2" E** [ 0 

o(/(n/2)+1, ~'(')) 

+ . . .  , 

D .  

0 

°( t ( , /2) -1 ,~( ' ) )  
¢t 

H~lJ**-a l  • [ / - I J**- t l ]  -x "IE**I" "(¢0"~* +¢7) ,  

(44)  
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where for M = [mij], [MI--- [Imij[], 

l a ( o , ~ ( , ) ) l  0 

< D -1. O(tl,~'( ')) 

_<ID-11 • 

[ a ( / . - = ,  ~'(.)) [ 

0 
$o(tx). ~'* + "rx(q) 

~'o(t(n/2)_l) "~* + l"l(I(n/2)_l) 
1-I 

(45) 

Let the vector on the right-hand side of [D-I[ be 

/ / . .  ~-* + / / * *  

(where each element of H* and H** is non-negative). Then, since ~(ti)= 
A i +  Z i, 

I:(to)l [ IZol 
_< [D-l[ • n * .  ~* + ID-1[ •/I** + / " (46) 

[~(t._2) [ Iz._21 

We can use (45) and IP I to bound [A(t;, ~('))1, all i > n - 1, and, hence, [~'(ti)[, 
all i>_n-1. 

For t with tj < t < tj+ 1, 

I~'(t) I-< Iz ( t ) I  + I~'(t) - z ( / ) I -<  Iz ( t ) I  + Iv(t, ~'(.)) [ 

+ [ 1 -  f ( t ,  j ) ] .  ~ l G ( t , x * ( t ,  j ) ) .A* .A(x* ( t ,  j ) ,~( .))  
i = 0  

n + l  

+~(t, j ) .  i~=o G(t, x**(t,  j))  .A**. A(x**(t,  j) ,  :(.)) 

(47) 

On the right-hand side of (47), Z(t) is known [see (35)], la(-)l is bounded in 
(41), and each A(.) is bounded in the preceding paragraph. 
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Ultimately, each inequality for I~(t)l has the form 

If(/)  I_< c(t). ~* + d(t), (48) 

with c( . )  and d ( . )  > 0 and independent of ~'(.). Suppose, for some e > 0, 

Define 

c ( t ) < l - e ,  allt>O. (49) 

~**-  supld(t)/[1-c(t)] I. (50) 
t > 0  

Notice that we can hope to communicate ~**, which is independent of ~*. 
Fortunately, ~'** is an upper bound for ~*. 

Proposition 1. Suppose (18) has a solution ~(t) which is bounded as in (39). 
Suppose for some grid and some e > O, (34) holds, D is inoertible, and (49) 
holds. Then ~** from (50) bounds ~* in (39). 

Proof. Let (49) hold for some e > 0. Define 

or(t)-d(t) /[1 - c(t)] .  

From (48) and (39), 

sup (c( t ) '~* + d( t )}  >__~*. 
t>__O 

So 

0 >_ sup (~ '* -  c ( t ) . ~ * -  d(t))  
t~o  

= sup ( [ 1 - c ( t ) ] .  [~'* - a ( t ) ]  ) 
t > 0  

>_ e" sup ( ~ * -  a(t)) ,  
t~O 

o r  

sup {~* - a ( t )}  _< O. 
t~O 

In the former case, because e > O, 

sup { ~ * -  a ( t )}  --0.  
t ~ 0  

Thus, 

~** = s u p a ( t )  >_~*. • 
t_>O 
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In summary, if the first suppositions of Proposition 1 are valid, we can solve 
for z i and Z( t ) .  Employing the matrices used to generate z;, a finite number of 
steps may verify (49) and yield ~'**. Provided ~'** < oo, using ~** in place of 
~* in (45), we can bound the approximation errors I~(ti)-  zi[, all i =  0 . . . . .  
n -  2. As indicated, the analysis can easily be extended beyond tn_ 2. Using 
the terms other than IZ(t)l on the right side of (47), we can also bound 
[~(t) - Z ( t )  I. 

5. Exact solutions 

Sections 3-4 study approximations - assuming that a bounded solution ~(. ) 
for (17)-(18) exists. This section shows that the existence and uniqueness of 
~(-) follow from the suppositions employed in section 4 if ~** < oo in (50). 

Condition (19) indicates that we need only worry about the properties of 
G(.)  and H(. )  on the set 

12--- {(t, x):  O< t<  T; O < x  < t +  T } .  

Our result is: 

Proposition 2. Let G(. ) and H(.  ) ~ C 4 and obey (19) - (20) .  Suppose ~** < oo 
in (50),  (34)  holds, D is invertible, and (49)  holds for some e > O. Then (18)  
has a bounded solution. 

Proof. Let the suppositions above hold. Let z D i > 0, and Z(t), t > 0, be as 
in section 3. 

Step 1. Replace o(tj, ~(.)) in (43) with o(tj, ~ ( . ) )+  H(tj) .  Replace IZ(t)l on 
the right-hand side of (47) with IH(t)l . Then we must replace d( t )  in (48) 
with, say, d(t). Define 

g= supld(t)/[1-c(t)] I. 
t>O 

Then (49) and ~** < oo imply ~ < oo. 

Step 2. Define a set 

~---- (~: [0, o o ) ~  [ -~ ,~ ] l ,  ~(.) continuous}. 

For each ~ ' ( . ) ~ ' ,  o(t,~'(.)), all t, is well defined. For any ~ ' ( - ) ~ ' ,  let 



J. Laitner, Continuous-time life-cycle savings growth models 353 

z(0, ~(.)) = 0 and let z(tj, ~(.)), j >  1, satisfy 

~(t,, ~.(.))= o(t,, ~-(.))+ n(t,) 
n--I 

+ ~_, G(tj, x,(tj)).A,.z(x,(tj),~(.)). 
i=1 

(51) 

Compar ing  (51) with (43), the analysis following the latter shows (51) has a 
unique solution. For tj < t < t j+ x, let 

n + l  

Z ( t , ~ ( . ) ) = [ 1 - ~ ( t , j ) ]  • • G ( t , x * ( t , j ) ) . A * . z ( x * ( t , j ) , ~ ( . ) )  
i~O 

n + l  

+~( t , j ) "  E G ( t , x * * ( t , j ) ) ' A * *  
i = 0  

• z (x**( t ,  j ) ,  ~(.)) + o(t, ~(.)) + H(t) .  

The analysis following (43) shows 

Iz(t, ~(-))I_< g, aU t > 0 .  (52) 

Step 3. Fix any t > 0 ,  any ~( .)~o~' ,  and any 8 > 0 .  G(.)  and H( . )  are 
cont inuous on I2, hence uniformly continuous and bounded above by, say, 
G and H. So, there exists @(8) > 0, such that t, t' > 0 and It' - tl < @(8) 
implies IG(t', x) - G(t, x)l < 8 and IH(t') - H(t)l  < 8, all x E [t - T, t + T]. 
Thus It' - tl < @(8) implies 

Io ( t ' ,  ~(. )) - o (t ,  ~(. )) I < 2T8~ + (n + 2) 84h~/3 

+ (n + 2 ) ~ ( 8 ) -  G.4h~/(3h), 

[note that the last term follows from the definition of ~(.)]. Similarly, since 
(52) shows Iz(tj, ~('))1 < ~, 

IZ(t ' ,  ~(.)) - z ( t ,  ~(.))  I < @ ( 8 ) - ( n  + 2) .  G.4h~/(3h) 

+ (n + 2) .  84h~/3 

+ I o(t',  ~ ( - ) ) - , , ( t ,  ~'(.)) I + 8. 



354 J. Laitner, Continuous-time life-cycle savings growth models 

Thus, for any ~(.) ~ ' ,  Z(t, ~(.)) is a continuous function of t. In fact, for 
any , /> 0 we can find some ~*(~ )>0  with I t ' -  t l<O*(~) and t , t ' >  0 
implying 

Let 

Define 

Iz(t',t(.))-z(t,t(.))l<~, a n t ( . ) ~ .  

~-* = (~ ( . )  ~ - :  t, t '>  0 and I t ' -  tl < q'*(n) 

imply Ig(t') - g(t)  I < n) .  

¢ ( ~ ( - ) ) = ~ * ( . )  with ~*( t ) -Z ( t ,~ ( . ) ) ,  a l l t>O.  

Then we have shown 

~(~-) ~ - , .  

~-* is clearly convex and equicontinuous [see Munkres (1975, p. 276)]. 
Hence, its closure is compact in the topology induced by the uniform norm 
[see Munkres (1975, p. 290)]. In fact, we can see that closure ( ~ ' * ) = ~ *  in 
our case. 

Step 4. Define 

I1~(-)-  ~'*(.) II = sup I~(t) - ~*(t) I. 
t > O  

Then 

Iv(t, ~'(-)) - o(t,  ~'*(.)) I_< (2TG'+ (n + 2)G4h/3} "11~'(') - ~'*(') H 

= c o ' l l ~ ( ' ) - ~ ' * ( ' ) l l ,  an t > 0 .  

The analysis of (43)-(48) shows 

I z ( t , ~ ( . ) ) - z ( t , ~ * ( . ) ) l < c ( t ) . c o . l l ~ ( . ) -  ~*(')11, ~ t > 0 .  

Thus, ~( . )  is continuous on ~-. 

Step 5. The preceding steps and Schauder's fixed point theorem [see Berge 
(1963, p. 252)] guarantee the existence of ~ ' ( . ) ~ ' *  c ~ "  with ~'(.)= 
• (~'(.)) - in other words, of a bounded solution to (18). • 
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Table 2 

Dynamic multipliers (multipliers w.r.t. 0 for k and errors of approximation). 

355 

Time 

Example I Example 2 Example 3 Example 4 
(p  = 1.0, f l =  - 1 . 0 ,  (p = 1.0, f l=O.O,  (p  = 1.0, f l  = - 1 . 0 ,  (p = 1.0, f l  = 0.0 

%, = 0.30, r, = 0.30) a ~'w = 0.3, r, = 0.3) %, = 0.28, ~-, = 0.40) ~-,¢ = 0.28, %, = 0.40) 

Mult. Error Mult. Error Mult. Error Mult. Error 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.1960 0.0019 0.4898 0.0022 0 . 1 7 6 8  0.0019 0 . 4 1 2 3  0.0020 
2 0.3605 0 . 0 1 2 3  0.9219 0 . 0 1 4 5  0.3237 0 . 0 1 2 1  0.7742 0.0128 
3 0.5200 0.0154 1 . 3 3 0 7  0.0180 0 . 4 6 6 1  0.0152 1 . 1 1 5 8  0.0160 
4 0.6456 0.0146 1 . 6 7 9 7  0 . 0 1 8 1  0 . 5 7 6 8  0.0144 1 . 4 0 5 6  0.0160 
5 0.7607 0.0244 2 . 0 0 0 3  0 . 0 2 9 5  0 . 6 7 7 8  0.0238 1 . 6 7 0 8  0.0260 
6 0.8389 0.0232 2 . 2 5 9 0  0 . 0 3 0 5  0 . 7 4 4 3  0 . 0 2 2 5  1 . 8 8 2 4  0.0269 
7 0.9443 0.0334 2 . 5 4 2 1  0.0407 0.8369 0.0326 2 . 1 1 5 7  0.0360 
8 1.0122 0.0284 2 . 7 6 2 4  0.0354 0.8946 0 . 0 2 7 8  2 . 2 9 4 7  0.0312 
9 1.0804 0.0452 2 . 9 7 2 0  0 . 0 5 3 8  0.9528 0.0440 2.4649 0.0474 
10 1.1087 0.0460 3 . 1 1 7 0  0 . 0 6 2 3  0.9742 0.0440 2.5796 0.0544 
11 1.1825 0 . 0 5 7 5  3 . 3 1 7 2  0.0708 1 . 0 3 8 2  0 . 0 5 5 6  2 . 7 4 2 3  0.0621 
12 1.2169 0 . 0 4 4 6  3 . 4 5 2 6  0.0558 1 . 0 6 5 9  0 . 0 4 3 1  2.8494 0.0489 
13 1.2575 0.0667 3 . 5 8 8 8  0.0806 1 . 0 9 9 7  0 . 0 6 4 3  2.9576 0.0705 
14 1.2568 0 . 0 6 2 3  3 . 6 5 8 7  0 . 0 8 5 3  1 . 0 9 5 4  0.0592 3 . 0 0 9 3  0.0740 
15 1.3116 0.0747 3 . 8 0 3 3  0.0932 1 . 1 4 2 7  0 . 0 7 1 7  3 . 1 2 5 4  0.0812 
16 1.3260 0.0567 3.8820 0.0716 1 . 1 5 3 0  0.0545 3 . 1 8 5 3  0.0624 
17 1.3500 0.0814 3 . 9 6 8 8  0.1004 1 . 1 7 2 4  0 . 0 7 8 1  3 . 2 5 2 5  0.0873 
18 1.3320 0.0737 3 . 9 8 8 7  0.1020 1 . 1 5 3 3  0.0696 3.2629 0.0880 
19 1.3748 0.0862 4 . 0 9 5 3  0 . 1 0 9 3  1 . 1 9 0 3  0 . 0 8 2 3  3 . 3 4 7 6  0.0947 
20 1.3770 0.0652 4 . 1 3 5 7  0.0832 1 . 1 9 0 1  0 . 0 6 2 3  3 . 3 7 6 1  0.0721 
50 1.2597 0 . 0 8 6 5  4.1749 0 . 1 2 7 6  1 . 0 6 8 6  0.0802 3 . 3 4 9 7  0.1075 

oo 1.285 4.202 1.091 3.374 

aSee text. p is the CES production function exponent [the elasticity of substitution being 
1 / (1  + P)]. 

Uniqueness  follows more easily. 

Proposition 3. I f  the suppositions of Proposition 1 hold and if in (50) ~** < oo, 
any bounded solution ~(. ) of (18) is unique (among bounded solutions). 

Proof. Let ~1(') and ~2(') be bounded solutions for (18). Then for any )~, 
~3(') --- ~'" ~ t ( ' )  + (1 - ~,). ~2(') satisfies (18) and is bounded.  However, if 
~l(t) 4= ~'2(t), any t > 0, we can choose ?~ with [~3(t)] > ~** - a violation of 
Proposi t ion 1. Hence, ~ l ( t ) =  ~'2(t), all t > 0. • 

6. Examples 

Section 2 outlines a specific model. We now subject that model to the 
procedures discussed in sections 3-5. Table 2 presents the resulting transition 
paths. In all cases we choose a numerical grid width of two years (see, 
however, section 7). 
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Our procedure is to evaluate G(.) and H( . )  at the grid points in the set ~2; 
to use the evaluations to generate matrices P and Q; to find the eigenvalues 
and eigenvectors of P; to check (34) and the non-singularity of D; to calculate 
zi, all i > 0 ;  to calculate Z(t) ,  all t = 0 , 1 , 2  . . . .  ; to derive T0(. ) and ~'1(') for 
t = 0 , 1 , . . ,  using numerical derivatives; to check (49) and ~'** < oo; and to 
calculate bounds for [~'(t) - Z(t)[, all t = 0,1 . . . . .  We then use 

1~(/) 1_< 1~(/)- Z(t)l+lz(t)[ 
to develop year-by-year upper bounds for ~(.). These, in turn, yield sharper 
values for To(-) and ~'a(') - see (37), (38), and (40). On the basis of the latter, 
we can recalculate bounds for [~( t ) -  Z(t)[ and then ~'(-). Table 2 displays 
figures obtained after five iterations. 

The table presents four sample calculations, using yearly figures from 
formula (35). For the type of shock we consider, a permanent change in the 
constant multiplying the aggregate production function, half-lives for conver- 
gence to the new stationary state fall in the range of 3-6 years. In every 
example, all of our checks [i.e., eq. (34), the invertibility of D, (49) for some 
e > 0, and ~'** < oo] were satisfied. 

Since the maximum errors of approximation are all under 10 percent (and in 
early years under 5 percent), a finer grid does not seem to be required. Notice 
that our grid points fall at even numbered years and that multipliers evaluated 
there tend to be the most accurate. 

Computation times on an Amdahl 5860 computer averaged about 20 
seconds per example. 

7. Conclusions 

We have presented a way of analyzing the dynamic behavior of a continu- 
ous-time overlapping-generations model. The examples in section 6 illustrate 
that the procedure can be successfully implemented in practice and that its 
computer-time demands are fairly modest. 

Because the errors of approximation derived from our examples are related 
to a relatively high power of the chosen grid width [see (36)], although the 
tables in section 6 indicate two-year intervals perform quite well, further 
widening would seem inadvisable if we continue to employ Simpson's rule. 
Most more sophisticated quadrature rules will be less satisfactory on our 
coarse grid. One exception, however, is the trapezoidal rule with endpoint 
correct ions-  see David and Rabinowitz (1975, p. 105). This rule would be 
more elaborate to program and would require more attention to the differen- 
tiability (with respect to t) of G(.). However, if it were employed, it seems 
likely that we could increase our grid width to 3-4 years. In special applica- 
tions involving elaborations of our economic model, the corresponding reduc- 
tion in the dimensions of the matrices D and P might be worthwhile. 
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