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Introduction 

Component distribution problems arise frequently in computer science and 
combinatorics. In analyzing algorithms or enumerating combinatorial classes one 
often needs to compute the probability that a random structure will have certain 
properties having to do with size and number of components. Many results of this 
sort in the literature rely on estimating growth of coefficients in generating series. 
These include Darboux's method (see Bender [2]; examples include Hanlon [7], 
and Palmer and Schwenk [14] who use a special case of the method that they 
credit to P/51ya), the saddle point method in combination with Laplace's method 
for estimating integrals (as in Hayman [9]; see Bender [2] for applications), and 
the Lagrange Inversion Theorem, usually applied to classes of trees (see 

[6, 8, 131). 
We present simpler, more easily applicable methods for determining the 

probability that a random relational structure will have a given number of 
components, and for determining the expected number of components. A 
relational structure is a set together with some relations (such as edge relations, 
order relations, etc.) on the set. By random we mean that structures of the same 
size (i.e., eardinality of underlying set) are chosen from some set 5e of relational 
structures. We are concerned with the asymptotic probabilities of properties as 
the size of structures becomes unbounded. We consider both labeled structures 
(each structure on some fixed underlying set having equal weight) and unlabeled 

structures (each isomorphism type having equal weight). 
We require that ,9' be closed under disjoint unions and components. This means 

that structures in 5 ~ may be uniquely decomposed into disjoint unions of 
connected structures in ,9 0 . In [4] and [5] we investigated probabilities of general 
properties for such classes. We obtain stronger results here in the restricted 
domain of component distribution properties. 
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Let an be the number of labeled structures of size n in 9 o and cn the number of 
connected labeled structures of size n in St'. Then the exponential generating series 
a(x) = E,,~o (a,,/n!)x n and c(x)= E,,>~o (c,,/n!)x n are formally related by 

a(x) = e cO0 (1) 

(by convention, ao = 1, Co = 1). ff bn is the number of unlabeled structures of size 
n in 9O, dn the number of connected unlabeled structures of size n in 9O, then the 
ordinary generating series b(x)= E.~ob.x n and d(x)= E.~odnx n are formally 
related by 

b(x)= 1-[ (1-xi)-ai=exp ~ d(xi)/i 
i~>l i ~ l  

(2) 

(by convention b0 = 1, do = 0). 
We will not prove these and other familiar combinatorial facts (see Bender and 

Goldman [3], Goulden and Jackson [6], Harary and Palmer [8], or Compton [4] 
for terminology and proofs). Our main results proceed from (1) and (2) and may 
be viewed as findings about series satisfying these relationships. 

We briefly summarize our main results. 
Theorem 4 gives expressions for the probability that a random labeled structure 

has precisely m components, and for the expected number of components, in 
cases where these quantities exist and some higher derivative of a(x) diverges at 
its radius of convergence. 

Theorem 5 is the analogous theorem for unlabeled structures; there some 
higher order derivative of b(x) is required to diverge at its radius of convergence. 

Theorem 7 (for the labeled case) and 8 (for the unlabeled case) give sufficient 
conditions for the probability of having precisely m component and for the 
expected number of components to exist when the appropriate generating series 
(a(x) or b(x)) diverges at its radius of convergence. 

Theorems 10 and 11 give sufficient conditions (again in the labeled and 
unlabeled cases) for these quantities to exist when the appropriate generating 
series converges at its (positive) radius of convergence. 

O t h e r  investigators have considered related problems. 
Wright, in [19] and [20], takes (1) and (2) as his starting point to find conditions 

under which the probability of connectivity is 1. One of his results is that for the 
probability of connectivity to be 1 in labeled structures, a(x) must have radius of 
convergence 0, and in unlabeled structures, b(x) must have radius of convergence 
0. In [18] he extends these results to obtain asymptotic expansions. See also 
Bender [1] for sufficient conditions that the probability of connectivity be 1. Since 
our results concern only series with positive radii of convergence, they are, in 
some sense, complementary. 

Some classes to which our results apply are different species of labeled forests, 
investigated by Moon [13]; unlabeled forests, investigated by Palmer and 
Schwenk [14]; and unlabeled unit interval graphs, investigated by Hanlon [7]. 
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Both [7] and [14] rely on Darboux's method (see Bender [2]) or some variant to 
obtain asymptotic expressions for coefficients of generating series. Our methods 
are more general since they apply in every case where Darboux's method applies 
and many others. 

Katz [10] and Kruskal [11] consider component distribution problems for unary 
functions, and Shepp and Lloyd [17] for permutations. Our methods give only 
probabilities, not asymptotic expressions when probabilities are 0, so are not 
general enough to yield their results. 

M6hring [12] has studied similar issues concerning the probability of indecom- 
posability in relations. His techniques, however, do not seem to pertain here. 

In a subsequent paper we will present some applications of the ideas here to 
analysis of algorithms. 

1. Preliminaries 

• We shall use the falling factorial notation (n)i = n(n - 1). -- (n - i + 1). Thus, 
(n) = (n)i/i! and if tr(x) = En~>O a~nx n, then the formal rth derivative is tr(')(x) = 
En>~0 (n + r)ra~+,x ~ (sometimes also written D'[a~(x)]). 

Let b D be a class of relational structures closed under disjoint unions and 
components. (We assume throughout that all classes of structures considered are 
closed under isomorphism.) Suppose X__. 5e. Let c~ be the number labeled 
structures of size n (i.e., with domain some fixed set of size n) in X. Let d~ be the 
number of unlabeled structures of size n (i.e., the number of isomorphism types 
with domain of cardinality n) in X. The exponential generating series for X is 
~ o  (cn/n!)x~; the ordinary generating series for X is En~>o d~x n. Now we specify 
that 6e itself has exponential generating series E~>--0 (an~n!) x~ and ordinary 
generating series E,,>~ob,,x n. Define #n(X)= c,,/a~, vn(X)= d,,/b,,, and # ( X ) =  
lim~_+® #n(X), v(X) = lim~_..® v,,(X) whenever these limits exist. 

Suppose that X is a function from 6e to [~ = {0, 1 , . . .  }. (We assume always that 
functions are constant on isomorphism classes.) Define {X = m}, m e t~, to be 
the class of structures mapped to m by X and {X <~ m} to be the class of 
structures mapped to an integer not greater than m. When we apply #, ,  v~, #, or 
v to {X = m} or {X ~< m} we delete the braces: e.g. #,  (X = m). 

We define the expected value of X with respect to #,, to be 

E(X, #,,)= ~ m#n(X= m), 
m~>0 

and with respect to vn to be 

E(X, E , ,) .  
m ~ O  
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Also, put E(X, / , )  = lim,,__,® E(X,/z~) and E(X, v) = lim~__,® E(X, v~) whenever 
these limits exist. 

Henceforth, let C: 6e-o • be the map that takes a structure to the number of its 
components. It is well known (see the sources cited in the introduction) that if 
{17= 1} has exponential generating series c(x)= Xn>~o(C,~/n!)x", then {17=m} 
has exponential generating series c (x ) " /mL  Summing over all m gives (1). (By 
convention {17 = 0} has exponential generating series 1.) Suppose e~ = a~E(17, It). 
Then 

(e, ln!)x ~ = ~ mc(x)mlml  = c(x)a(x). 
n~>O m ~ O  

(3) 

To do the same sort of thing in the unlabeled case we require the Pblya cycle 
indicator function for S,,,, the symmetric g r o u p  on m elements. 
Z(S,n; xl ,  x2, • • •,  x,n) is a function of m variables; it satisfies the following formal 
relationship (see Harary and Palmer [8].) 

exp "~ x,y~/i = ~'~ Z(Sra;X1, X 2 , . . .  ,Xm)y ra 
i ~ l  m ~ O  

(4) 

(by convention Z(S0) = 1). The reader unfamiliar with the Pblya cycle indicator 
function may take this as a definition. 

If {C = 1} has ordinary generating series d ( x ) =  ~ o  d~x n, then {C = m} has 
ordinary generating series 

Z m ( x )  = z ( s m ;  a ( x ) ,  d ( x 2 ) ,  . . . , 

Substituting d(x ~) for x~ in (4) we have 

exp ~'~ d(x ' )y i / i=  ~_~ Z,,,(x)y m. 
i>~ l ra>~O 

(5) 

If we set y = 1 we have (2). If we differentiate (5) with respect to y and set 
coefficients of like powers of y equal we have 

mZm(x )=  ~ d(xi)Z,,,_i(x). (6) 
l ~ i ~ m  

If we differentiate (5) with respect to x and set coefficients of like powers of y 
equal we have 

Z'(x)= Z x i - l d ' ( x i ) Z m - i ( x )  • (7) 
l ~ i ~ m  

Let fn = bnE(C, v). Then 

n ~ O  

(8) 

by (2) and (6). 
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As we noted in the introduction, computations of l t ( C = m ) ,  v ( C = m ) ,  
E(C,/z),  and E(C, v) have relied on asymptotic methods such as Darboux's 
method (see Bender [2]) and Hayman's generalization of Stirling's formula (see 
Hayman [9]). Our simpler methods are partial converses to the following simple 
extension of Abel's theorem on the value o f  a power series at its radius of 
convergence. 

Proposition 1. Suppose a~(x) = E,,_>o trnX n, f l(x)= En~0flnX", 
r ( x )  = a(x) t~(x) .  I f  

(i) tr(x) has radius o f  convergence R, 0 < R <~ ~, 
(ii) limx--,R Ol(X) = ~, and 

(iii) limn__,® Yn / orn = L, 

then limx-,R fl(x) = L. 

~,(x) = En-_o ~,.x n, 

The proof is easy and will be omitted. Proposition 1 is the logical sum of 
Problems 1.85 and 1.94 in Pblya and Szeg6 [15]. They attribute Problem 1.85 to 
Ces~ro. 

We now state the partial converses to Proposition 1. They will be our main 
asymptotic techniques. 

Proposition 2. Suppose ~(x)  = E,,>_o tr,,x", trn >I O, 
~(x )  = E._>0 ~nX n = ~(X)13(X). If 

(i) limn__,~ ten_a/0r,, = R, 0 < R < 0% and 
(ii) fl(x) has radius o f  convergence greater than R, 

then limx__,® Yn / ten = fl (R). 

/~(x) = E n_-o #nX n, fin >~ O, 

Proposition 3. Suppose ol(x) = E,,>>-o OCnX n, Oln >I O, fl(X) = En~O flnX n, y(X) = 
E._>o ~.x" = ~(x)~(x). If 

(i) limn._,® an-1/tr, = R, 0 < R < 0% 
(ii) fl(x)/s absolutely convergent at x = R, and for  some real K > 0 we have for  

all large n and k <- n that trkR k <- Ktr, R n, 

then limn_,® y,, / ten = fl (R).  

Proposition 2 is Theorem 2 of Bender [2]. He remarks that his proof is 
"standard and uninteresting". The proof of Proposition 3 is nearly identical and 
the same remark applies. Proposition 2 appears as Problem 1.178 in P61ya and 
Szeg6 [15]. They attribute it to  Schur. 

2. Main Results  

Theorem 4, the first main result, tells us, under certain hypotheses, what 
tt(C = m) and E(C = it) must be, should they exist. Note that by the theorem, 
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whenever the hypotheses hold and It(C, m) is nonzero for each m >i 1, then 

E(C, I t )=  ~ mIt(C= m). 
m~0 

Thus, it is reasonable to refer to E(C, It) as the expected value of C with respect 
to It. If It(C = m) = 0 for all m I> 1, we can still make E(C, It) an expected value 
by taking It (C = ~) = 1. Thus 

E(C, I t )=  ~ mit (C=m).  
0 ~ m ~ < ~  

In the remainder of the paper an expression of the form y(R)/ol(R) will be 
interpreted as limx--,R y(x)/tr(X) when tr(x) diverges at R. 

T h e o r e m  4. Suppose that 6e has exponential generating series a(x)= exp c(x), 
where 

(i) a(x) has radius of convergence R, 0 < R <-% and 
(ii) for some nonnegative integer r limx__,R a(')(x) = ~. 

For every m >I 1, if It(C = m) exists, then It(C = m) = c ( R ) m - 1 / ( ( m  - 1)! a(R)). I f  
E(C, It) exists, then E(C, It) = 1 + c(R). 

Proof. Let r be the least integer satisfying hypothesis (ii). By Proposition 1, if 
/z(C = m) exists, then 

tz(C = m) = lim Dr[c(x)m/m[] 
~--,R a(')(X) 

If r = 0 the value of this expression is 0, which is the desired value. 
If r > 0, then 

and 

Or[c(x)m/ml] = or- l [c ' (x )c (x )m-1/ (m - 1)!] 

l<~i<~r i -  c(O(x)D'-i[c(x)m-1/(m- 1)[] 

a(r)(X)=Or-l[C'(X)a(x)] = Z (~: l )c ( i ) (x )a(r - i ) (x )  
l<~i<~r 1 

(9) 

(10) 

x--,R c(r)(x)a(x) (m - 1)! a(R) " 

c(r)(x)c(x)m-1/(m- 1)[ c(R) m-1 

Now if E(C, It) exists, then by (3) and Proposition 1 

E(C, I t )=  lim D'[c(x)a(x)] 
x--,R a(')(x) 

It(C = m) = lim 

In both these sums the only term that diverges as x approaches R occurs when 
i = r. Thus, eliminating all but the dominant terms we have 
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If r = 0 this is 0% the desired value. If r > 0, then 

D r [ c ( x ) a ( x ) ]  = Dr-l[c'(x)(1 + c(x))a(x)] 

= ~, c(O(x)Or-i[(1 + c(x))a(x)]. 
l<~i~r 

The dominant  term occurs when i = r so 

c(r)(x)(1 q- c(x))a(x) 
E(C, /z )  = lira = 1 + c(R). [] 

x--.R c(°(x)a(x) 

(11) 

The next theorem is the unlabeled analogue of Theorem 4. Once again note 
that the conclusion shows it is reasonable to refer to E(C, v) as the expected value 
of C with respect to v. 

Theorem 5. Suppose that 6/' has ordinary generating series b(x) = exp Ei>~l d(xi)/i, 
where 

(i) b(x) has radius of  convergence R, 0 < R <~ 1, and 
(ii) for some nonnegative integer r limx--.n b(O(x) = oo. 

For every m >I 1, if v(C = m) exists, then v(C = m) = Zm-I(R)/d(R). I f  E(C, v) 
exists, then E(C, v ) =  1 + Ej~>I d(R'). (Recall that Zm(X) is given by (5).) 

Proof.  Let r be the least integer satisfying hypothesis (ii). By Proposition 1 and 
the remarks in Section 1, if v(C = m) exists, then 

v(C = m) = lim b O(x) 

If r = 0 the value of this expression is 0, the desired value. 

If r > 0, then 0 < R < 1 and, from (7), 

r - -  
=l<~j , r (  j l)dq)(x,Z~2Jx)(x,+Dr-x[2<~i~xi-ld'(xi)Z,_i(x,]. (12, 

Now when i/> 2, xi-ld'(x i) has radius of convergence R 1/j > R. Thus if we apply 
Leibniz'  rule to the subexpression Dr-~[... ] of (12), all the resulting terms are 
bounded as x approaches R, examining the sum that forms the initial part  of (12) 
we see that  the only term that diverges as x approaches R occurs when j = r. 
Also, from (2), 

b(')(x) = D'-'[(i~lxi-Xd'(xi))b(x)] 

r - -  

(13) 
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i_ldrxi \  a It is easy to show that L,~2 x ~ ) is analytic for Ix l < R L so the same argument 
as above shows that the only part  of (13) that  diverges as x approaches r is the 
j = r term in the first sum. Hence,  by Proposition 1, 

gm ( C = m) = lira 
d(r)(x)Zm-x(x)  Zm_I(R) 

x---,R d(O(x)b(x) - b(R) 

If E(C,  v) exists, then by (8) and Proposition 1 

E(C, v ) =  lim D'[(Ei>~ d(x'))b(x)] 
~--.R b(O(x) 

If r = 0 this is ~,  the desired value. If r > 0, 

D r [ ( / ~  a d(xi))b(x)] = Dr-l[( i~lxi-Sd'(xi)( i+ ~L~l d(xn))) b(x)] 

l ~ j ~ r  j n ~ l  

,- i ~ 2  i ~ 2  n ~ X  

(14) 

Notice that Y',i~2ixid'(x i) and ~,i~2xi-ld'(x i) are analytic for Ixl <R½ and 
Y',i~ d(xi) = d(x) + Ei~2 d(x~). Therefore,  if we apply Leibniz' rule again to the 
second part  of (14) we see that  all the terms converge as x approaches R. In the 
first sum the only term that diverges as x approaches R occurs when j = r. 
Consequently,  

E(C, v ) =  lim d~O(x)(1 + X,-_~ d(x'))b(x) 
x-- ,R d(O(x)b(x) = 1 + i~  ~ d(Ri)" [] 

Theorems 4 and 5 tell us what  the probabili ty of having m components and the 
expected n u m b e r  of components  must be when the hypotheses are met  and these 
values are known to exist. The remainder  of the paper is devoted to establishing 
sui~cient conditions-for the existence of these values. 

First we examine conditions in the case where the appropriate generating series 
diverges at its radius of convergence. The following lemma is required. 

Lemma 6. Let tr(x) = ~.~,o tr.x", fl(x) = ~.~.o fl.x", 
~ . , o  ~.x" = a(x)#(x). If 

(i) lim~_.®a._x/a.=R, 0 < R ~  < ~ ,  
(ii) limx--.R re(X) = 0% and 

(iii) lira._.® # . - d # .  = s ~ R, 

then lira.__.= 7 , - 1 / 7 ,  = R. 

a., fl. >- O, and y(x)= 
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Proof. Since ),~ = Y',o~i<~ fliol~_i, 

R y n  - Y,~-I = ~ f l i ( R O l n _ i -  O{.n_i_l) "JI- Rfl,,Olo, (15) 
O<~i<~n--1 

Now if we can show that the right side is o(7~), then R7n - 7~-1 = o(Tn) and the 
conclusion follows. By (i), Ro¢~ - o¢n-1 = o(c~_1) so for e > 0 there is an N such 
that  [Roe , -  a¢,,-11 ~< earn-1 when n ~>N. Thus, (15) is bounded in absolute value 

by 

~" E ~i Ocn-i-1 + E ~n--i [ R o : i -  oli-ll + Rfl~Olo. 
O~i<~n--N l<~i<~N 

The first term of this expression is not greater than ey,,-1. 
The remainder  of the proof divides into two cases. First, suppose S = ~. By (i) 

there is an M >I N such that teM > 0. Let 

Ei<~i<N IRoli - ol~-xl + Rolo 
K =  

EIT M 

By (iii) for large enough n, 

~n--M--1 >i max(l ,  K). 
f i n  - M  

Thus,  for large n, 

E 
l<~i<N 

fl,, - i [ R te i - oli - l [ + R fl,#eo <~ f i n - N (  E I R ol i - ol i -  l [ + R olo ) . 
\ I ~ < i < N  

13,,-M(Ke, M) e ,,_M-leM 

E E elan--i--1 ~ Ern-l" 
o<~i<~n-1 

Therefore ,  (15) is, in absolute value, not greater than 2ey , ,_ l .  By making e small, 
we see that Ryn - Yn-1 = o(yn_~). Now suppose S < ~. Since lim~__.~ fl,,-i/fl,~ = S t, 

lim ( ~/~/< fl~_~ IR~/-c~-d + R/~0)/~n < ~ ,  
n-- -~  1 N 

l i m y ~ - l / f l n = l i m  ~ O[i f [~n--i-- l ~ = 00. 
n-~ n~o<~i<n_l "\ ~ ] 

The latter follows from (ii). We see then that for large n, 

f in- ,  IRoli - ol,_d + Rfl,,Olo <~ e~',,-1 
l<~i<N 

as in the first case. Again, Ryn = ~'~-1 = o(~'~-1). [] 

Remark. Lemma 6 holds if the hypotheses are modified so that ~,(x) = oc(x) f l (x i ) ,  

i I> 1. The proof requires only minor  modifications. 
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The next theorem combines two results: one says that when the exponential 
generating series a(x) = expxc(x) for 5" diverges at its radius of convergence then 
#(C = m) and E(C, #) exist if the ratio test applies to a(x); the other makes the 
same assertion for c(x). Often one of these series will be easier to test than the 
other. The existence of #(C = m) when the ratio test applies to a(x) follows from 
Theorem 6.1 of Compton [4], but we give a proof that does not require the 
machinery developed there. 

Notice that any series a(x) that is admissible in the sense of Hayman [9] 
satisfies hypotheses (i) and (ii) of Theorem 7. Asymptotic expressions for the 
coefficients of such series are obtained by saddle point integration and Laplace's 
method. Theorem 7 eliminates the need for these steps when computing 
component distributions. 

Theorem 7, Suppose that b D has exponential generating series a(x)=  
En~o (an/n!)x n = exp c(x), c(x)= E.>~o (c./n!)x". I f  

(i) either lira,,__,= na._l/a.  = R or lim=__,~ nCn--1/Cn = R for some R, 0 < R <- oo, 
and 

(ii) hmx--,n c(x) = c¢ (or equivalently, limx__,n a(x) = oo), 

then for all m >- 1, #(C = m) = O, and E(C, #) = oo. 

Proof. Suppose limn._,® na,_l/a,, = R and R < oo. Define Cr to be the function 
mapping a structure to the number of its components of size not greater than r. 
Thus, #,,(C = m) <- #,,(C <~ m) <- #,(Cr <- m). The exponential generating series 
for the class of connected structures in Se of cardinality not greater than r is 

~'~ Cn n 

C<~r(X) = 12"~ r ! X . 

The exponential generating series for {Cr <~ m } is 

(i~<~m C<~r(X)i[i!)exp(c(x) -- C<~r(X)). 

Dividing this by a(x) = exp c(x) gives 

(i<~m C<-,(x)i / i l ) /exp C<-r(X), 

which has radius of convergence oo. By Proposition 2 

#(Or <<- m) = 
Ei~m C~r(R)i/i! 

exp c~,(R ) 

Now by letting r approach oo we see that 0 ~< #(C = m) ~< #(Cr ~< m) = 0. 
Suppose that lim,,_®na,,_l/a, = R  and R =oo. The exponential generating 
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series for {C = m} is C(X)m/ml .  Let Cm, n be the coefficient of x n in this series; i.e., 

C(X)m/m[  X'~ Cm, n n = Z , ~ X  • 
n>~O n ! 

Since C(X)m+l / (m  + 1)l = ( c ( x ) / ( m  + 1) ) (c (x )m/ml) ,  we have 

Cm + l,n = E ( 7 )cicm'n-i 
O<~i~n m + 1 

(16) 

Pick r such that  cr > 0. Then 

an >I Cm+ l,n 
(7)CrCm,n-r 

m + l  

from which it follows that 

( (n )ran_r /an) - l (m + 1)r[ Cm,n_ r 
>I = # n _ , ( C = m ) .  

Cr an -r 

Taking the limit as n approaches ~ we have # (C  = m) = 0. 
Suppose now that lim,__,® nCn-1/Cn -" R. From (16) 

c,~+1,______~= ~ (ci/il)((n)iCm,,,--i/Cm,n) 

Cm,n O<--i<--,. m + 1 

Now by L e m m a  6 it follows easily that the ratio test applies to c (x )m/ml ;  i .e.,  
that limn__,® nCm, n--1/Cm,n = R. Hence,  limn__,® (n)iCm,n--/Cm, n = R i. Because 
Ei>~o(ci/i!)R ~ diverges, it follows from the equation displayed above that 

limn_.~o~Cm+l,n/Cm,n -'oo. But ]~n(C=m)--Cm,n/an<~(Cm+l.n/Cm,n) -1 SO #(C-- 
m) =0.  

If # (C  = m)  = 0 for all m t> 1, it is clear that E(C, #)  = ~. [:] 

The next theorem is the analogue for the unlabeled case. 

Theorem 8. Suppose  that 6e has ordinary generating series b ( x ) =  ~n>>,obnx n =  

exp a(x')/i, d(x)= r n oanX If 
(i) either limn_,~ bn- t /bn  = R or lim~_,® dn-1/dn = R for  some R, 0 < R <~ 1, 

and 
(ii) limx_.,R b(X) = Oo (or equivalently, either hmx._,R d(X) = ~ or R = 1), 

then for  all m >t 1, v (C = m )  = O, and E(C, v) = ~. 

Proof.  The proof  is nearly identical to that of Theorem 7. When 
limn-.,®bn-1/bn = R and R < ~  we show that { C , < . m }  has ordinary generating 
series 

(i~m Z(S i ;  d ' r ( X ) "  ° " d~r(Xi ) ) )exp  i~1 (d(xi )  - d'~'(xi))/i '  
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where d , , ( x ) =  ~o,i~,dix ~. This case proceeds as before. In the cases where 
lim~_,~ b~_~/bn = R and R < oo and lim,,__.~ d~_i/dn = R, we use the identity 

z,,,÷x(x)= Z d(x')Zm_,÷,(x) 
l~i~m+l m + 1 ' 

derived from (6), rather than the identity used to derive (16). The arguments go 
through as before if we observe that the coefficients of Zm+~(X) majorize those of 
d(x)Zm(x) and that, by the remark following Lemma 6 / t h e  ratio test applies to 
Zm+~(X) if it applies to d(x). [] 

Exuaples.  Let 5e be the class of functional diagraphs (see Goulden and Jackson 
[6]). The number an of labeled structures of size n is n n. It is easy to show by the 
ratio test that a(x )= ~n~o(nn/n!)x ~ (here 0 ° =  1) has radius of convergence 
R = 1/e. Also, limn__,R a(x) = ~. Therefore, by Theorem 7 , / t (C  = m) = 0 for each 
m/> 1, and E(C,/~) = ~. This example points out the deficiency of Theorem 7. 

We would like a result that gives asymptotic estimates for /~ (C=m)  and 
E(C,/~). In particular, for functional diagraphs Katz [10] shows that/ t , , (C = 1) 

1 ! --½ (~)2n  and Kruskal [11] shows that E(C,/t,~) ~ ½ log n. 
Let 5e be the class of acyclic diagraphs in which each vertex has outdegree and 

indegree at most one. There is precisely one unlabeled connected structure of 
each finite size, so the class has ordinary generating series 

= b(x) exPi~>l 

where d(x)= En>~lx ~= x / ( 1 -  x). Clearly the ratio test applies to d(x) to show 
that its radius of convergence is 1. Also, limx._,l d(x) = oo. Therefore, by Theorem 
5, v(C = m) = 0 for m >t 1 and E(C, v) = oo. To find a strengthening of Theorem 5 
that produces asymptotic estimates for /u(C= 1) may be a formidable task 
because it would give, in this example, the Hardy-Ramanujan estimate for the 
partition function. 

The final results of this section concern classes with generating series that 
converge at the radius of convergence. They use the following technical lemma. 

Lemma 9. Let a~(x)= ~n>>.OO~nX n, fl(X) = En>~0flnX", di(X)= En>~o6nX n, ten, ~n, 
6n >I O, and N > O. Suppose 

(i) lim,,._,~ 6n-1/6n = R, 0 < R <- 0% 
(ii) limx--,R 6(x) < 0% 

(iii) there are constants K~, K# such that for n >1 N, o:n <~ K~6,, fin <<- K#6n, and 
(iv) there is a nonnegative integer r < ¼N and real K > 0 such that if 

= 

n ~ O  

then, for n ~ N and all k <- n, 6r, k Rk ~ K6,,nR n. 
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I f  s, t > O, s + t <<- r, and y(x) = ~.~o yrX" = Ol(~)(X)fl(O(X), then y. = O(6n, r). 
I f  y(X)= E.>>_o y .X"= Ol(X)fl(X), lim.__,=a./6.= L~, and lim._~®fl./6.= Lt3, 

then y. <~ K(Kt~a(R ) + K~fl(R))3~6. for n >I N, and lira.__,® y . / 6 .  = L#a(R) + 
L fl(R ). 

Proof. Suppose y (x )=  o:(O(x)fl(O(x). Then 

y. = ~ (s + j)~ols+j(n + t -j)tfl.+t_j. 
O~j~n 

Divide both sides by 6~,. and break the summation into parts l<~j<½n, 
½n <~ j <~ n. After a few manipulations we have 

(s +j).  f l .+,- j&.+,-r- j  
(n --j)r_t6.+,_j (~r,. 

(t + j)t Ogn+s--j6r, n+s--r--j 
"~1 flt+j (n --j)r-s (~n+s-j ~rn 

+ 
O<~j~½n 

Now for n >~ N > 4s, j <~ ½n, 

(17) 

(s+j)~ s + j  j +  1 
<~ <~...<<_ <~2 ~. 

(n - j ) r -~  n - j  n j s + l  

Similarly, when n >i N > 4t, (t + j)ff(n - j)r_~ ~< 2 t. Also, fl.+t-ff6.+t-j < Ka, 
o:.+~_ff 6,,+~_j < Ko. 6r,.+,--r--ff6r,. < KR ~-t+j, 6r,.+~-~-ff 6r,,, < KR ~-s+j for large 
n. Thus, if we extend the ranges of summation in (17) to 0 ~<j < o0 by adding zero 
terms, the sums will be majorized by 

2SKt3Ktrs+jR ~-'+j, ~ 2'K~Kfl,+jR r-s+j, 
j~O j~O 

respectively. But a~(R) and fl(R) converge so these sums converge. We may apply 
the Dominated Convergence Theorem (see [16]) to eq. (17) to show that 
l im,_,=y,/b, ,r=O since for j fixed, ( s+j )~/ (n- j ) r_ t  and ( t+ j ) t / (n - j ) r_s  
approach 0 as n diverges to oo. 

Suppose now that y(x) = ol(x)fl(x). Then 

O~j~n 

Divide both sides by 6.  and again break the sum into two parts. After a few 
manipulations we have 

(n)r f l ,,- j~.,,-~-i (n),, O[n_jl~rn_r_ j 
6,, o-j<½. (n - 'J ) r  6n--j 6r, n--r O--j.½n 

Now for n ~ N > 4 r  and j~½n,  ( n ) r / ( n - j ) r < 3  r. Also, fl._ff6,,_j<Ki3, 
t~._j/di._j < K~, and 6r,._._ff6.,,,_r<KRj for n >~N. Again we extend the range 
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of summation to 0 <~j < ~; observe that the sums are majorized by 

3rKK#otjR j = 3rKKi3ot(R ), 

respectively. This gives the bound 

Y" < 3"K(Kaot(R) + K,~fl(R)), 
5n 

3rKK,~fljR j = 3"KK,~fl(R ), 

when n I> N, which was to be proved. Applying the Dominated Convergence 
Theorem as before shows that 

7, L~o:(R) + L,,fl(R). [] iim -~ = 
n- . .~O0 

Theorems 10 and 11, which follow, play the same role for classes with 
generating series convergent at the radius of convergence R as Theorems 7 and 8 
did for classes with generating series divergent at R. The hypotheses for 
Theorems 10 and 11 are somewhat stronger, but the theorems should be 
considered more powerful results because they give asymptotic estimates. 

Notice that any series a(x) that has a finite number of singularities, all 
algebraic, on its circle of convergence, and has the dominant singularity at the 
radius of convergence, satisfies conditions (i) and (ii) of Theorem 10. Asymptotic 
expressions for coefficients of such series are obtained by Darboux's method (see 
Bender [2]). Theorem 10 eliminates the need for this step when computing 
component distributions. 

Theorem 10. Suppose that 5" has exponential generating series a(x)= 
~,~o (a,/n!)x" = exp c(x), c(x) = ~,~o (c,/n!)x' .  I f  

(i) lim,,_.® na._ l /a .  = R, 0 < R <<- ~, 
(ii) for some nonnegative integer r and real K > 0 we have for large enough n 

and r <<- k <<- n that (ak/(k -- r)l)R k <~ K(a, / (n - r)l)R n, 

then l t ( C = m ) = c ( R ) m - 1 / ( ( m - 1 ) ! a ( R ) )  and E ( C , t ~ ) = I + c ( R ) .  I f  all 
coefficients a i are replaced by c i in hypotheses (i) and (ii), the conclusion still holds. 

Proof. If limx__.Ra(x)= ~, then the conclusion follows by Theorem 7. Thus, 
assume limx_-.R a(x) < ~. 

As in formulas (9) and (10) 

D'[c(x)m/m']= l ~  ( ~ -  ~)c(i)(x)Dr-i[c(x)m-X/(m - 1),], 
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Now in Lemma 9 put t r (x )=c(x) ,  fl(X)-'C(X)m-1/(m--1)!, 6(x )=a(x ) ,  s= i ,  
t = r - i ,  where i<r .  Then the coefficients of c(i)(x)D~-i[c(x)m-1/(m-1)!] 
become vanishingly small with respect to the corresponding coefficients of a(r)(x). 
Similarly, putting a~(x) = c(x), fl(x) = 6(x) = a(x), s = i, t = r - i, i < r, we have 
that the coefficients of c(°(x)a('-i)(x) become vanishingly small with respect to the 
coefficients of a(°(x). Therefore, in the sums displayed above only the i = r terms 
need be considered when we seek to show that the ratio of coefficients of 
Dr[c(x)m/m!] to corresponding coefficients of a(r)(x) approaches a nonzero limit. 
Now 

c ( r ) ( x ) C ( X ) m - 1 / ( m  - -  1)! C(I )  m-1 

c(°(x)a(x) ( m -  1)! 
e-C~) 

The series f o r  c ( x )  ra-1 e x p ( - c ( x ) ) / ( m -  1)! is majorized in absolute value by 
c ( x ) m - l e x p c ( x ) / ( m - ! ) !  which is absolutely convergent at x = R .  Hence, 
Proposition 3 shows that 

I z (C=m)  = 
c(R) m-1 

( m - 1 ) ! a ( R ) "  

To show that E(C,/~) exists and find its value, put t r (x)= c(x), f l (x)= a(x), 
6 ( x ) = a ( x )  so that ~,(x)=c(x)a(x),  K ~ = K a = I ,  L ~ = I / a ( R ) ,  L a = l .  Thus, 
from (3) 

E(C,/z)  = lim = 1 + c(R). 
/,1---}OO 

Suppose that hypotheses (i) and (ii) are true of coefficients cj rather than aj. 
Setting c(x)m/m! = ~>~o (Cm,~/n !)x ~ and N large enough to guarantee that N t> 5r 
and 

Cm R m <<- K (  ~c" , ~\ n 
( m - r ) !  (n r)!/R 

when n >I N, we have by induction, using Lemma 9, that 

Cm,n<(Kgrc(R)) m-1 

c. ( m -  1)! 

when n >1 N, and 

lim Cm,n/C n = c(R)m-1 
n--.oo ( / ~ -  1)! " 

But an/Cn=~m;~lCm,  n/Cn . This sum is majorized by the convergent sum 
E m i l  (K3rc(R))m-1/(m-1)!  = exp(K3"c(R)) when n >~N. The Dominated Con- 
vergence Theorem is called to service once more to establish that limn_** a,,/Cn = 
exp c (R)= a(R). Now from this it follows easily that the coefficients aj satisfy 
hypothesis (i) and (ii) so the conclusion follows from the earlier argument. D 
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Theorem U .  Suppose that 5 D has ordinary generating series b(x)= ~,>--o b,x ~ = 
exp E,>_.~ d(x')/i, d (x )= F.,,<_od,,x". I f  

(i) lim~__,= b,,_l/b,, = R, 0 < R <- oo, and 
(ii) for some nonnegative integer r and real K > 0 we have for large enough n 

and r <~ m <~ n that (m)rbm Rm <. K(n)rb~R n, 
then v(C = m) = Zm-I(R)/b(R),  for all m >I 1, and E(C, v) = 1 + Ei~l d(R'). If 
all coefficients bj are replaced by dj in hypotheses (i) and (ii), the conclusion still 
holds. (Zm(x) is given by eq. (5):) 

Proof. If lim~--,R b(x) = oo (which is always the case when R = 1), then the result 
follows from Theorem 8. Thus, assume limx--,R b(x) < oo and R < 1. 

The proof parallels that of Theorem 10. Rather  than formulas (9) and (10) it 
relies on formulas (11) and (12). The presence of sums like Ei<.2xi-ld'(x ~) in 
these formulas poses a difficulty not encountered in the proof of Theorem 10. 
However,  these sums are analytic for Ixl <R½ so they and all their derivatives 
have coefficients vanishingly small with respect to the coefficients of like powers 
of x in b(x), hence may be ignored (to see this, note that by (ii) b, >i K'n-rR -" 
for some K'  > 0 and large n while coefficients of a sum with radius of convergence 
greater than R must be o((R + e) -n) for some e > 0. The details in this first part  
of the proof are now easily checked. 

Suppose that hypotheses (i) and (ii) are true of coefficients dj rather than bj. 
We know 

b(x) = exp d(x)exp ~ d(xi)/i. 
i>~2 

Let En>~o enx ~= exp d(x), E n ~ O f n  x n - -  exp Ei~>2 d(xi)/i. Then, as in the proof of 
Theorem 10, e.<-Ked, for large n, where Ke=exp(K3"d(R) ) ,  and 
hmn_® e~/d, = exp d(R). Also, since exp Ei~2d(xi)/i has radius of convergence 
R½ > R, there is a constant Kf such that f~ <~ Kfd,, and lim~._,=fn/d, = 0. Thus,  by 
Lemma 9. 

lim b./d,, = exp d(R)exp ~ d(Ri)/i = b(R). 
n-... ao n ~ 2 

Now the coefficients bj can be seen to satisfy hypotheses (i) and (ii), and the 
conclusion follows. [] 

Examples.  Let 6e be the class of rooted forests, a(x) the exponential generating 
se res  for 6e, a(x)= exp c(x), where c(x) is the exponential  generating series for 
rooted trees. One of the oldest results in enumerative combinatorics is that 
c ( x ) = x a ( x ) = x e x p c ( x ) .  From this one can show that c,~=n "-1 so that 
lira,,_.,** nc,,_i/c,, = 1/e = R and 
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(k - 2)! (n - 2)! Rn 

for some A, all large n and k <~ n, by Stirling's formula. Also, c(x) is seen to be 
the functional inverse of xe -x so c(R) = 1. By Theorem 10 

/~(C = m) = 1/(e(m - 1)[), E(C, /u)  = 2. 

Let 5e be the class of unrooted forests, ~ ( x ) =  E ~ 0  (~ /n ! )x  ~ the exponential 
generating series for 5e, a(x)=expe(x) ,  where e(x)=E~.o(e~/n!)x n is the 
exponential generating series for unrooted trees. Clearly ca = n~n (c~ is as in the 
previous paragraph) so ~'(x) - c(x)/x  (c(x) is taken from the previous example).  
Differentiate both sides of the equation c(x) = x exp c(x) and substitute c(x)/x for 
exp c(x). We obtain c(x)/x = (1 - c(x))c'(x). Hence 

e ( x ) =  ( 1 -  c(t))c'(t) dt = c(x) - ½c(x) 2. 

From these facts it follows that l i m , , ~  ng,,_l/g,, = 1/e = R, that 

((k ~k C~ \ :'1).) Rk <~ a(( n , :1)!) R 

for some A, all large n and k ~ n ,  and that  c(R)= 1. By Theorem 10 
l~(C = m) = 1/(2m-l(m - 1)! e½), E(C, /~)  = -32. The latter was shown in Moon [13]. 

Let 5e be the class of unit interval graphs, b(x) the ordinary generating series 
for 6e, b(x) = exp Ei~l d(xi)/i. Hanlon [7] shows that 

2 x + l  
d ( x ) = a ( l _ 4 x 2 )  ½ I(1 - 4x)½. 

It follows that limn__,® dn_l/d~ = -~ and that 

(k)2dk <-A(n)2d~ 

for some A, all large n, and k ~< n. By Theorem 11, v(C = m ) -  Zm-l(¼)/b(~). 
(Hanlon shows this when m = 1) and E(C, v) = 1 + Ei~l d(1/4i). 

Palmer and Schwenk [14] derive the expressions for v(C = m) and E(C, v) in 
the cases of unrooted forests, rooted forests, and planted forests. Their methods 
are general enough to apply in all cases where b(x) has a finite number  of 
singularities, all algebraic, on its circle of convergence, with its dominant  
singularity at the radius of convergence (i.e., in those cases where Darboux's  
method works). In fact, the same generality can be obtained in the labeled case. 
However,  when Darboux's  method does not apply, another approach viz., 
Theorem 10 and l 1- -must  be used. 

Let 5e consist of forests of rooted trees with the restriction that the root may 
not occur at the centroid of a tree with 2 k + 1 vertices when k >I 1. (A centroid is 
a vertex for which the sum of distances to leaves is minimal; in trees with an odd 
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number of vertices, there is a unique centroid.) The fraction of rooted trees with 
n = 2 k + 1 vertices having their root at the centroid is 1/n. Thus 

c(x)= ~ (n"- l /n!)x  " -  ~, (nn-Z/n!)xn. • 
n~>O n = 2 k + l  

Now it is still no problem to estimate the growth of coefficients c,,min fact, 
c n -  nn- lmbut  Darboux's method no longer applies to a(x )= exp(c(x)) because, 
by the Hadamard Gap Theorem (see [16]), E~=2~÷1 (n"-2/n!)x " has the circle 
Iz l -  1/e as a natural boundary and E~>~0 (n"-l/n!)'x " has only one singularity on 
Izl = 1/e so no cancellation occurs. However, Theorem 10 does apply and from it 
/z(C = m) and E(C,/~) may be computed. 

3. Conclusion 

Proposition 2 is often used in combinatorial enumeration. Proposition 3 and 
Lemma 9, which are not much more difficult than Proposition 2, are not often 
used, even though they will work in many cases where more sophisticated 
techniques fail. They will frequently shorten and simplify arguments when 
generating series converge at their radius of convergence (this pertains not just to 
component distribution problems). 

We close with some related problems. 

(1) As noted, Wright [19] shows that i f /z(C = 1) = 1, then a(x) has radius of 
convergence 0. Is it true that when /~(C= 1) exists and a(x) has radius of 
convergence 0 that ~(C = 1) = 1? Is the analogous theorem true in the unlabeled 
case? 

(2) Can Theorems 7 and 8 be strengthened to give asymptotic expressions for 
/~(C = m), etc., in terms of a(x) and b(x)? 

(3) If /t(C = 1) exists, then does /~(C = m) exist for m > 1? Does E(C,/~)? 
What happens in the unlabeled case? 
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