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Abstract: The extended quark model study of the NN interaction, in which the (q~) excitations inherent 
in the quark-gluon interaction are explicitly incorporated into the model space, is completed with 
the inclusion of  the (qf=l)(q?=l) excitations generated by RPA-type terms of  the color Breit interaction. 
The new coupling kernels connecting the dominant (3q)-(3q) components of the NN system to 
the (3q)-(3q)(q~)(q~l) components lead to potentials with the characteristics of  conventional o 
and ~ meson exchange potentials and furnish the additional medium-range attraction needed to 
bind the deuteron. The full model is subjected to a quantitative test through a solution of  the RGM 
equations in a coupled channel formalism. With one improvement of  the model, to yield an N~ 
tensor force with OPEP strength and long-range characteristics, this model leads to a prediction 
of the low-energy NN scattering data and deuteron bound state characteristics which is in semiquan- 
titative agreement with the experimental data and is free of  parameter adjustments. 

1. Introduction 

In the simplest quark models the nucleon is assumed to be a pure three-quark 
(3q) system. Since studies of  the NN interaction based on simple (3q)-(3q) models 1) 
could elucidate only the extreme short range parts of  this interaction, an extended 
quark model has recently been built 2) in which the (q?:l) excitations inherent in the 
quark-gluon interaction lagrangian are explicitly incorporated into the model space. 
By studying the NN interaction within the framework of  the resonating group 
method very explicit coordinate space results can be attained. These make it possible 
to isolate the interaction arising from the exchange of  a (q~) pair between two 
nucleons, thus leading to a unified picture in which baryons and meson fields are 
treated on an equal footing in terms of a pure quark model. 

In ref. 3) it was shown that this model makes good contact with the conventional 
meson exchange potentials by isolating from the many more complicated exchange 
terms those contributions to the exchange kernels which correspond to an exchange 
between two nucleons of  a (qcl) pair with the color singlet character of  a real 
pseudoscalar or vector meson. The effective potentials arising from these simple 
(qcl) exchanges are in remarkably good agreement with the corresponding OBEP's 
for r ~ 1.2 fm and have the same qualitative radial features over an even wider range. 
The simple (q?:l) exchange potentials also have all the characteristics of  conventional 
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OBEP's in their dependence on nucleon (trl • ~2) and ('tl • a'2) factors and the relative 
importance and signs of  the spin-spin, spin-independent central, LS, and tensor 
terms. The major quantitative failure of the simple (qcl) exchange potential involves 
the pion tensor term which is too weak by a factor of - 3  in agreement with the 
predicted 2) pion-nucleon coupling constant, g~N~. Since a simple (qcl) cluster with 
the quantum numbers of  a pion cannot be expected to give a realistic picture of 
the pseudoscalar meson with the mass of  a real pion, a quantitative fit of  the OPEP 
(including its long-range Yukawa tail) was not expected. However, we consider it 
an advantage of the model that it can pinpoint such specific components of  the NN 
interaction in terms of the corresponding pieces of the quark-exchange kernel. These 
can therefore be isolated and improved to give a realistic picture of the NN 
interaction. It was shown in ref. 4) that, with such an adjustment of the pion tensor 
term, both tensor and L S  forces of the extended quark model are in remarkably 
good agreement with the experimental facts. 

In refs. 2-4) the quark exchange kernels for the two-nucleon system are calculated 
with improved nucleon wave functions in which the (3q) components of  the single- 
nucleon wave functions are augmented by the (3q)(qcl) components generated by 
the off-shell terms of the Fermi-Breit  quark-gluon interaction. The coupling kernels 
which connect the (3q)-(3q) components to the (3q)-(3q)(q?:l) components of the 
two-nucleon system lead to a medium range attractive part in the effective NN 
potential and a greatly reduced repulsive core with a strong energy dependence. 
However, the attractive part was too weak 2) to bind the deuteron or fit the low-energy 
phase shifts. Since the (qcl) excitations inherent in the quark-gluon interaction 
lagrangian cannot carry the quantum numbers of a scalar tr or ~ meson, the 
counterparts of  the tr or ~ exchange potentials of conventional meson theory 
treatments of the NN interaction were missing from the quark models of  refs. 2-4). 
However, it was pointed out 3.5) that excitations with the quantum numbers of a t r  
or 8 meson can be incorporated into the extended quark model of  the NN interaction 
through the (qcl)(qq) excitations generated by RPA-type off-shell terms which are 
also a natural part of  the full Fermi-Breit  quark-gluon interaction. In ref. 5) it was 
shown that the inclusion of such excitations in the improved single-nucleon wave 
functions leads to coupling kernels which give a satisfying semiquantitative fit of 
the experimental NN scattering data. It is the purpose of the present contribution 
to show how the (qcl)(qcl) excitations are incorporated into the extended quark 
model of  the NN system and how the associated RGM formalism is developed to 
lead to the phase-shift calculations including the important effects of channel 

coupling. 
Sect. 2 shows how the improved single-nucleon wave functions are modified by 

the inclusion of  (3q)(q~l)(q~) components of or or ~ type. These lead to only minimal 
changes in the (3q)(q~) amplitudes and themselves have amplitudes which are small 
enough so that the full quark-exchange kernels are given to good approximation 
by the inclusion of the new coupling kernels connecting the dominant (3q)-(3q) 
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components of the two-nucleon system to the (3q)-(3q)(q~l)(q~l) components. The 
construction of these coupling kernels is described in sect. 3. As for the earlier 
kernels, it is achieved by a transformation from complex GCM to standard RGM 
form which is simple so that the Wigner transforms of these coupling kernels can 
again be given in complete analytic form. The single channel S-wave equivalent 
local potentials are discussed in sect. 4, where it is shown that the coupling kernels 
of (3q)-(3q)(q~l)(qfl) type are vital to gain sufficient medium-range attraction, 
whereas the strong energy dependence of the short-range parts of the potential 
arises mainly through the coupling kernels of (3q)-(3q)(q~l) type. The addition of 
both contributions, however, lead to potentials in odd partial waves with central 
terms which are too repulsive. Since channel-coupling effects are vital for the binding 
and low-energy phase shift analysis of the 3S1 channel, a full RGM analysis is vital 
for a detailed comparison with experiment. The partial wave decomposition of the 
RGM kernels and the calculation of the RGM matrix elements is given in sect. 5, 
(with some of the details given in appendices). The analysis of the experimental 
NN scattering data in terms of the extended quark model is given in sect. 6. The 
model gives a satisfying semi-quantitative fit of the experimental facts in terms of 
a unified picture which not only leads to an understanding of the extreme short-range 
part of the NN interaction in terms of quark exchanges, but, through the exchange 
of (qcl) pairs between nucleons, also contains the main features of the conventional 
meson exchange description. 

2. Improved single nucleon wave functions 

The extended quark model of refs. 2-4) uses  a quark interaction in which a 
phenomenological quark-confining potential is combined with a gluon exchange 
interaction of the general form of a one-gluon exchange potential through the color 
analog of the Fermi-Breit approximation. Since the quark-gluon interaction 
lagrangian includes qcl creation and annihilation terms the full Breit interaction 
includes the five types of terms shown in fig. 1. The detailed form of the off-shell 
(q?:t)-pair creation interaction, (4a), was given in ref. 2), together with the Breit qq 
interaction and the annihilation diagram contribution, (3b). Off-shell contributions 
of type (5) can lead to additional interactions in a multi-quark system through the 

(t) (2)  (3o) (3b) (40) (4b) (5 )  

(anrO Hint = Hqq + H~I ~ + (Hq~t+Hqr:l) +(Hq.qq~)+(HFl..~q?:l)+(H..(q~l 2) 
" + C . C . ' - -  + C . C . "  " +C.C. " 

Fig. 1. The full Breit interaction hamiltonian. 
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quark exchange mechanism. Using the methods and notations of ref. ‘) terms of 

type (5) lead to a (qq)*-creation interaction, which in coordinate representation has 

the form 

with 

U+(&(x1x3; x*x4) = -cw,hc4&S(x,-x,)8(x*-x,) 

x F(xr- xz)[ v W)(l, 3) x pwy2,4)]oo(W ) (lb) 

where the VSTChpL)( i, j) are spin, isospin, color-coupled (qq)-pair spin, isospin, color 

functions which carry the color octet, (hp.) = (ll), ST = 10 quantum numbers of a 

gluon [see eq. (8) of ref. ‘)I. The spatial function has the form 

F(r)=-;;$+T 2 
( > 

2 

S(r), r=x,-x2, (2) 

where, following the philosophy of ref. *), only terms to second order have been 

retained in the h/ mc expansion. In this interaction the four-particle functions appear 

naturally in a (qq)’ basis 

5?$(12; 34) = [ V~&F’)(l, 3) X V~&W’)(2,4)]=-~00~, (34 

with 

a=S;T;S;T;(h’A’), (3b) 

and where the (qQ2-creation interaction singles out the term with 

uo= 1010(11) and ST=OO. (3c) 

Since the antisymmetrized form of these (qq)’ functions do not lead to an orthonor- 

ma1 set, it is more convenient to make a transformation to a q2q2 basis 

t;$;,(12; 34)=[VZFJ”“‘(l,2)x V;?=+*)(3,4)]S=(W) 

with 

b=S1TlS2T2(hp). 

Properly antisymmetric functions are restricted to the set b’ with 

I 

SlT,(S2T2)=100r01 onlyfor(Ap)=(20) 
b’ 

SlT,(S2T2)=110r000nlyfor(A~)=(01). 

The transformation coefficients from the (qq)’ to the q2q2 basis 

b 

are given by simple recoupling coefficients 

(44 

(4b) 

(4c) 

(5) 

(6) 
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where the coefficients in square brackets are the unitary form of the 9 - j ( S U 2 )  o r  

9-(A/z)(SU3) recoupling coefficients. Since the (q?:t)2-creation interaction preserves 
antisymmetry among quarks and among antiquarks, only terms of type b' survive 
in the transformation to the preferred q2cI2 fornl of the s c%'°° which are created 
within the interaction of eqs. (la) and (lb). 

As in ref. 2) the first step in the construction of the quark-exchange kernels involves 
the calculation of improved single-nucleon wave functions in which the dominant 
(3q) component is now augmented not only by the (3q)(qcl) components generated 
by the (q~l)-pair creation interaction (4a) of fig. 1 but also by the (3q)(q2~ 2) 
components generated by the (q~l)2-creation interaction, part (5) of fig. 1. The 
improved single-nucleon wave function then has the form 

24 

aFN= co(K) ei~X3~b0(3q)+ ~ c~,(K) e'K'Xs~b~((3q)(q~)) 
c t = l  

6 

+ E c~(K) e~rxTga~ ((3q)(q2~12)). (7) 
8=1 

The ~b,, with the 24 possible spin, isospin, color combinations, including 15 hidden 
color states, are defined through cluster RGM wave functions by eqs. (10)-(12) of 
ref. 2). The additional ~b~ are expressed in a ( 3 q ) ( q 2 c l  2) cluster basis through 

qb# : N ~ / E ~ ' X o s ( r ,  xr , s l r l (oo )z123~  d b'S23723(O0)[ . . . . .  $IST(00) "~)tt~(3q) I, ] X tlS(q2~12 ) I"~J, O / } l M s M r  , (8 )  

where the spin, isospin color function of the (3q) cluster with S1TI(00) is coupled 
to a q2C:12 spin, isospin, color function, ~ b''s2~ 7-23, of type (4a) with b = $2 T2 $3 T3 (A/~) 
restricted to the antisymmetric combinations b' of eq. (4c), and fl is specified by 
S1T~b'S23 T23; ST. The orbital factors of ~b<3q) and ~b<q~), are assumed to be 0s 
oscillator functions in the internal variables with a common oscillator length para- 
meter, b. The cluster relative motion function, x(r, y), is also taken to be a 0s 
oscillator function with this same b, y = (p~/2b 2) with reduced mass factor/.e = ~,  
and r = X4-X3, where the X~ are n-particle c.m. vectors. The antisymmetrizer, M', 
which antisymmetrizes between the 3- and 2-quark clusters can be given in terms 
of a double-coset generator expansion in a cluster-function matrix element, 

M'--- M;2 = (1 -6P34+3P~4P25) =-X~l~ CpP. (9) 
P 

The ~ba form a nonorthogonal set, a property shared with the ~b,,. However, the ~b,, 
because of their required intrinsic p-wave excitation, are nearly orthogonal 2) with 
very small overlaps (~b~ I ~b~,), with a # a ' .  Since the ~b,, with their 0s-wave relative- 
motion functions, span a smaller space, a smaller fl-basis has been selected to avoid 
problems of overcompleteness. Hidden color components have been excluded; that 
is, the (3q) and (qEcI2) components are restricted to color singlet, (00), type. In 
addition the (q2~2) components have been restricted to carry the quantum numbers 
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of scalar mesons only, with $23=0, (T23=0 for cr and T23 = 1 for 8-type); and 
axial-vector terms with $23 = 1 have been omitted from the basis. The single-nucleon 
basis of ref. 2) is thus to be expanded by the inclusion of six ~b a's, with the b' values 
listed in table 1. It should be noted that these fully antisymmetrized ~b a of scalar 
(tr, 8) meson type effectively do carry some axial-vector meson contributions because 
of the fairly strong nonorthogonality of 0s cluster functions of type ~b a. 

TABLE 1 

Single nucleon (3q)-(q2q 2) components 

b I 
X(14)(25) ¢~ 13 $2 7.2 $3 T3(A/z ) $23 7"23 N ~  X~34) ~ H¢o(MeV) 

1 1 
N~, 0000(01) 00 1 24x/2 12~,/2 0 -0.004 

9 1 1 
N~ 2 1111(01) 00 ~ 24v~ 108x/2 555 -0.100 

N~ 3 0101(20) 00 2 48 0 806 -0.195 

1 
N~ 4 1010(20) 00 2 48x/'3 0 -269 0.043 

3 1 1 
Nr~ 1111(01) 01 - - -  - -  179 -0.053 

2 72 108 / -  
3 1 

~/~ 0 329 -0.138 N82 0101(20) 01 2 7-2 V2 

To solve the improved single-nucleon problem and evaluate the Co, c~, %, new 
coupling matrix elements of type Hgo and H~a,have to be evaluated. Matrix elements 
of type Har,~ would make only negligible contributions to the c~ and c a and are 
therefore set equal to zero. The simple coupling matrix elements of type Hgo are 
given through the analog of eq. (9) of ref. 2) by 

ngo  = - vq-O(e i~'x74~a I U(~qq)2(x4x6 ; xsx7)] eiWX3~bo) • (10) 

These separate into space and spin, isospin, color parts through 

H~o = as hcax/-6N~/2 E K o C p I e X p  , (11) 
P 

where the weighting coefficients, Cp, are given in eq. (9). The spin, isospin, color 
factors are given by 

X~p =__ x }  r~b's23 r23;sr 

= MOOao (P~.~qs~(q:q:) (1,  , ,  sn,;oo; s t ,  . . . ,  7)  l~(3q)(q2q 2) [ l , . . . ,  7 ) ) ,  (12) 

where the 4-particle spin, isospin, color function of the (qq)2-creation interaction 
with ao, $23 T23 = 00, (see eq. (3)), has been transformed to q2q2/3'-form when acting 
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on the (3q) ket with S1 T1 = ST. Since b ' -  $2 T2S3 T3 (A/z) in the bra function, and 
since P is independent of  the particle numbers 6 and 7 of the antisymmetric CI 2 

function, the Cl 2 overlap together with the ket value 523 T23 = 00 restricts the b~ value 
in the summation of the transformation (5) to the single value b~ = $3 T3 $3 T3 (A/z). 
The overlaps are evaluated by the recoupling techniques of  ref. 2). The X~p are 

enumerated in table 1. 
The spatial integrals I~  of eq. (11) are given by 

• (3q) (q2q2) IKp=(e'KX7PXos(r, 3~)~bos (123)~bos (45; 67)[8(x4-x6) 

X t~ (X 5 --  x 7 ) F ( x  4 - xs) [ e'X'X3~b~o3q)(123)). (13) 

With X3 = X7-4r,  the center-of-mass integral, (over the assumed unit volume, with 
value 1), is carried out first. Since the product of  0s oscillator functions in the bra 
is totally symmetric in the x l , . . . ,  XT, and hence independent of  P, it can be evaluated 
for P = 1. The internal and r integrals can then be carried out through an expansion 
of  F(r) in terms of gaussian functions, using the techniques of refs. 2-4), to yield 

IKP-- b l (~) 3/4[1-½x l-~2~]eXp[-2(bK)2]" (14) 

with x = h/mcb. Only the exchange terms, (with P =  (34) and P =  (14)(25)), are 
retained. Although there would be a direct term for coupling to states fl with 
523 = T23 .~-O, this direct term, arising through a disconnected diagram, would give 
a contribution even at large separation of the (3q) and (q2~2) clusters. The contribu- 
tions of such disconnected diagrams should in principle involve a renormalization 
of  the vacuum expectation value, and should also yield self-energy contributions 
to the constituent-quark mass in quark exchange diagrams, particularly in simple 
(q?:l)2-exchange diagrams for the NN system. Since we do not expect to be able to 
predict absolute values of  baryon or meson masses with our model and our aim 
instead is to investigate the NN interaction through the quark-exchange kernels, 
only the exchange terms will be retained. These lead to the coupling matrix elements 

K --1/2 1 1 H,o= asx2mc 2 Nt3t3 [ 1 - s x  ~#T-~] 
7r 

/3 /3 
)< [ 2 X ( 3 4 ) -  X(14)(25) ] exp [ - 2 ( b K ) 2 ] .  (15) 

As in ref. 2) the secular problem for the Co, c~, c~ is solved for K = 0, since the 
interest is in low-energy NN scattering so that the c(K) can be replaced by c(0). 
Thus the rest frame K = 0 values for the single-nucleon matrix elements are sufficient. 
The numerical values for these new coupling matrix elements are shown in table 1. 

Single-nucleon matrix elements diagonal in the (3q)(q2C:l 2) space can be expressed 
through 

K | m |  1 1 / _ /  h2K2\  - - ~J + l~r-l/2l~r-1/2t~r (16) H,~,~'--\7mc2+2(7m)/Nt3J2Nt3,~2~'t3~' ~,t3~ l'~'t~' --~3'- 
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The / ~ ,  gain contributions from the kinetic energy (motion relative to the c.m.) 
and the quark interactions of  types (1), (2), (3a) and (3b) of fig. 1, 

7 5 
tQ/3/3,=~ Cp(q~/3l ~, t i -Tc .m.+ ~ Uqq(/J) 

P i=1 i<j 

5 7 
+ U ~ ( 6 7 ) +  E E [Uqn((/)+ . . . . . .  ^ Uq~ (Ij)]lP~b~,), (17) 

i=l j=6 

where ~ are defined through eq. (8) by 

4~ = N~]/2~' ~b~. (18) 

In terms of  the four parameters of  our interaction a~, m, b, a~ (with x = h/mcb), 
the/~o~, can be reduced to spin, isospin, color matrix elements; and with/¢ = O, yield 

l~.r-1/2 ~r-l /2 ~,r [ Hoe' = ~- t3~ ~ , ~'~' ~-S0' 56a~ b2 

+mc2{7+9x2+~oqx[-!C+x2(7-XFSo~,+lF~o~,)]}] , (19) 

where the norm, spin-color (SC), and annihilation diagram (ann.) spin, isospin, 
color factors are given by 

11 Nm3, F~ ,  

 ;;nj l 1 1 7 

i=l j=6 \ "2 ] \ T , ]  

(20) 

The diagonal terms ( f l '=  fl), in particular, can be given by 
H ~  = ES~rl(3q) + ES2g,T23(q2g12 ) 

+ mc2{3x2+ ~/~ asx3[½-2S,(S, + l) 

l r~sc sc;s T 1 . . . . . . .  ,s r~3)] } --~t--mJ--fb'b' ~3 23)+~(Fm3 - ~ ' v  =3 (21) 

with fl = $1 T1 b'$23 T23; ST and b '=  $2 T2 $3 7"3 (a/z) following the restrictions of  eq. 
(4c). The color singlet (3q) internal energy ESlr'(3q) can be read from eq. (17) of 
ref. 2), (with (aa)  = (00)), while the q2gl2 internal energy is given by 

Es~,(q2C:t2) = 32a~b2 + mc214 + 9 x2 + ~ asX(-s + 2 x2) ] 

~ -  3 2 1 SC" ST 1 ann "ST +~[-~a~x mc ( - ~ f v d  + ~ f b , d '  )- (22) 
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The q2~12 spin, isospin, color factors are given by 

f s c ; s r  _ 6b,b,,[S2(S2 + 1) + S3 (53 + 1) - 3][(A 2)(x~) - ~ ]  b ' b "  - -  

+ 4 X Mb,aSr Mb,,~[SlST ~ ($1" + 1) -3 ]  [(A 2)(~,x % - ~ ] ,  (23) 
a 

f . . . .  ;ST X" LiST A~src~tc~ .a_ l ) [2_T~(T~+l)] (h2) (xoxo)  (24) 
b ' b "  = / ,  z r l  b ' a  I r a  b " a  ~"71 I, O l  ~ 

a 

where 

2 4 2 (A)(~,) =~(A + A~ +/z2+3A +3 tz ) ,  (25) 

and the ST M b ,  a a r e  the transformation coefficients from the q2~12 basis with b'; S T (  = 

S 2 T 2 S  3 T3 (,~]L); 523 T23), tO the (q?:l)(q~l) basis specified by a; S T =  
S~T';S~T~(A%~a);  ST, (cf. eqs. (3)-(5)). The N ~sc .. . .  t3t3"--mv, Nmv Fmr  have been evalu- 
ated by the recoupling techniques used in ref. 2). 

With the Hao and Hmr of  eqs. (15) and (19), diagonalization in the full 31- 
dimensional space of the single-nucleon wave function of eq. (7) leads to a new set 
of  amplitudes Co, c,,  c~. Since the ~ba do not contribute directly to the single-nucleon 
electromagnetic properties or the nucleon-vector meson coupling constants, two of 
the properties used in fixing the parameters of  the model, no reevaluation of these 
parameters was undertaken. The values of  ref. 2) were retained for as, m, b, and ac. 
Although the new improved single-nucleon wave functions no longer give an exact 
fit to the N and A masses, it was shown in ref. 2) that the NN interation was given 
by the strengths of the c's but was not sensitive to the details of the parameter fits. 
In particular, it was shown to be very insensitive to the value of  ac, (confinement 
potential constant) which was chosen to fit the N mass in the previous calculation 
of  refs. 2,3). The new ca and co are almost identical to those quoted in table 1 of 
ref. 2). (The new Co is 0.849 compared with 0.857 of ref. 2); CNp3/2, e.g., is changed 
to -0.239 from -0.255). The final values of  the six additional ct3 are listed in table 
1. It can be seen that some of  these have strengths comparable to those of the 
important c,~, but still smaller than the biggest value cap3/2-- -0.241. 

3. The (3qXq~i) z coupling kernels 

The improved single-nucleon functions of  sect. 2 are used to evaluate the quark- 
exchange kernels for the two-nucleon system 

24 6 

G( R, R ' )  = 4 , CoGo(R,R')+c  X 
a = l  / 3 = 1  

where the symmetrized form of  the coupling kernels, e.g., 

G f ( R ,  R ' )  = Gt3(R , R ' ) +  Gt~(R' , R)* 

R')+.- - ,  

(26a) 

(26b) 
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are needed since the (3q)(qe~l 2) admixtures in the single-nucleon internal wave 
functions appear symmetrically in both bra and ket. As in refs. 2-4) terms of second 
and higher order in the ca, c~ are neglected. The new coupling kernels G~ connecting 
the (3q)-(3q) components to the (3q)-(3q)(q2?:l 2) components now have the form 

G,  (R, R') = - (M~3 ~bo(123) ~b~ ( 4 . . .  10)8(ro~ - R)I 

x U_.(q~)2(X7Xg; XsXlo)l~C'33~o(123)d~o(456)8(roo-R')), (27) 

where we have again used the analog of eq. (9) of  ref. 2), and where 

M~3 = 2 '  8pP, sg;3 = 
P P 

antisymmetrize quarks between the 5- and 3-quark clusters and the 3- and 3-quark 
clusters of  bra and ket, respectively (with 6p = +1 for P even/odd).  Note that the 
~b~ in the (3q)(q2~l 2) basis are automatically antisymmetric in the antiquarks labelled 
by 9 and 10. These antisymmetrizers can be converted to a single one acting on a 
3 + 3 + 2-quark (3q)-(3q)-(q2¢l 2) three-cluster function in the bra, by expanding ~b, 

through the M~2 of eq. (9), transferring M~3 to the bra side, and using the identity 

2 sd;3 sd'53 s4;2 = sg "=- Y" 6pP.  (29) 
P 

Note that ~/" is normalized such that the (8 ! /3!3!2 !)= 560 terms in the sum of  the 
3 + 3 + 2-particle three-cluster expansion are all weighted with + 1, without additional 
normalization factors. Moreover, in the matrix element (27) the expansion of  ~/" 
can be reduced to a sum over 35 double-coset generators 4,6) which can be further 
simplified to a sum of 18 terms with the use of the exchange operator Po, where 
Po = P14 P25 P36 exchanges the three quarks of  the two 3q-clusters. Thus 

~¢" = (1 - Po) [ 1 - 6P67 + 3 P47 Pss - 6P37 + 3 P,7 P28 - 91°36 

+ 18(P38P67+P36P37+P37P36)+36(P36P57+P36P27) 

-- 9(P36 P47 Pss + P36 P17 P28) - 18(P57 P37 P48 ÷ P27 P67 P18 

+ P4a P37 P57 + Pls P67 P27)] - 72P~4 P3a P67- (30) 

Since the combination of  permutations 

(1-6P67+3P47Pss) 

contribute to the single-nucleon internal energies through the ~ba ( 4 . . .  10) com- 
ponents of the improved single-nucleon wave functions, these must be eliminated 
from ~t" in order to convert the G~ of  eq. (27) into a true two-nucleon exchange 
kernel. The factor (1 - Po) on the left-hand side of  this expression for s4" can be 
replaced by the simple factor 2. In the product  of  antisymmetrizers in the bra side 
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of G o the hermitean conjugation of such products brings the factor ( 1 -  Po) to the 
right-hand side where it gives the factor 2 when acting on a two-nucleon function 
of good parity in the ket; (see the discussion in connection with eqs. (33) and (35) 
of ref. 2)). In the two-nucleon exchange kernel, Go, the antisymmetrizer can thus 
be replaced by 

~g" ~ 2 Y~ CeP 
P 

= 2[-6P37 + 3P,7 P28 - 9P36 W 18(P38 P67 ÷ P36 P37 + P37 P36) 

+ 36(P36 P57 + P36 P27) - 9(P36 P47 P58 + P36 PiT P28) 

- 18(P57 P37 Pa8 + P27 P67 P18 + P48 P37 P57 + P18 P67 P27) - 36P14 P38 P67] 
(31) 

leading to 15 distinct types of exchange terms. 
For the evaluation of the kernels it is useful to characterize the double coset 

generators for the 3 + 3 + 2  three-cluster decomposition of the 8 quarks in the 
(3q)-(3q)(q2q 2) cluster function by the double-coset symbol 6), dab, which gives the 
sum of the unit matrix elements in the abth submatrix of the 8 x 8 matrix representa- 
tion of P. This can again be specified by four integers xyuv (cf. eq. (8) of ref. 4)) 

dab = V 3 --y y -- V , (32) 
V y - - u  2 - - x - - y + u + v  

where the xyuv are listed in table 2 for the 15 needed double-coset generators of 
eq. (31). The exchange kernels can be separated into space and spin, isospin, color 
factors through 

G o (R, R')  = N~/2 E CpG¢(R, R ' ) ,  (33a) 
P 

G~p( R, R') = as ficSx/-6 Ip (R, R') X~p , (33b) 

where the spin, isospin, color factors 

X~p = (P[~'½½(°°)(123) x ~'°'½½(4 • • • 10)IS÷[[ V~°°1)(79) 

X vl°(ll)(8 10)]°°(°°)][1"½½(°°)(123) x sr½½(°°)(456)] sT) (34) 

TABLE 2 

The basic exchange types 

P xyuv P xyuv P xyuv 

P37 1000 P37 P36 1110 P57 P37 P48 1210 
PI7 P28 2000 P36 P57 1 2 1 1  P27P67PI8 2101 

P36 1111 P36 P27 2111 P,,8 P37 P57 1201 
P38 P67 1 1 0 0  P36P47Pss 1 3 1 1  P18Pe7P27 2110 
P36 P37 1 1 0 1  P3ePI7P2s 3 1 1 1  P14P38P67 2211 
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are evaluated by the generalization of the methods used to evaluate the single-nucleon 
spin, isospin, color factor of eq. (11). The spatial integrals 

Ip (R, R') = ( Pt~(roo - R )Xos (p, y)~bos(3q)4~os (3q) 4~os(q2~12)l 

x ~(x7--Xg),5(Xs-Xlo)F(x7--xs)lS(roo-R')Cbo~(aq)¢~o~(3q)) (35) 

are calculated, as in refs. 2-4), through their Bargmann transforms, (or complex 
GCM form 7-1o), and subsequent transformation from complex GCM to RGM form, 
by expanding the two parts of F(r)  in terms of gaussian radial functions. With the 
replacement 

F(r) ~ e x p  [ - -X2T2]  , 

the gaussian complex GCM kernels are given by 

I~Cm(z, z') = (PAv2(ro ~, Z)Xo~(P, Y)~bo~(3q)~bo~(3q)~bo~(q2cl2)l 

x 8(x7 - x9)8(x8 - xlo) e-X2~7-x~)21A,o(roo, z')~bos(3q)~bo~(aq)). 
(36) 

The RGM form is obtained through the Bargmann transformation 

f d/z(z) ' , , .  Gcm I.(r,  R ' )  d/z(z )A,2(R, z )A ,o(R ,  z ) Ip  (z, z ') .  (37) 

Here, z,z' are 3-dimensional complex Bargmann space variables, and the 
6-dimensional d/z(z) contains the Bargmann weighting factor 

d~[,~(z) ~- 71 --3 exp ( -z* • z) d3(Re z) da(Im z).  (38a) 

The Bargmann kernel functions are given by 

A , ( R ,  z) = exp [ - . y ( r -  ~ / 4 " ~ ) 2 - ~ - 1 Z 2 ]  o (38b) 

The relative motion vectors are given in terms of n-particle c.m. vectors, Xn, by 
P : X 4  X ~ 2 ) ,  . _ i t ( l )  - -  i - ( 2 )  (1) 1 (2) - , oo -~3  ~'3 , roe =X3 -v(4X4+3X3 ), with associated oscillator 
parameters y = (6/7b2), 3'0 = (3/462), y2 = (21/2062). Since the coupling kernels of 
eqs. (35) and (36) involve a 3 + 5-quark cluster decomposition in the bra with internal 
wave functions symmetric in the 5-particle variables, whereas the (q~l)E-creation 
interaction acting on the (3q)-(3q) functions generates a 3 + 3 + 2-quark decomposi- 
tion, the kernels depend on exchange type only through the double coset parameters 
x and u. Under reduction to a 3 + 5 ~  3 + 3 + 2  cluster decomposition, the full 
3 + 3 + 2-~ 3 + 3 + 2 DC symbol of eq. (32) reduces (through addition of the 2nd and 
3rd 3- and 2-particle rows) to a DC symbol independent of y and v, 

drab=(3--X U X - - U )  (39) 
X 3--U 2--X+U " 
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The gaussian kernels of eq. (36) are of simple exponential form 7,8) and are given 

by 

I~CM(z, z') = 1 +2b2x 2] exp [ -  kfz*2 + h(z*. z')] (40a) 

with 

f =  -~[1 - ~ ( x  - u) +~8(x - u) 2 -  ~x-u,15K], 
h = ~/~[1-½(x + u)] ,  (40b) 

where K =X262/(1 +2x2b:). The relationship between exchange type, P, and the 
parameters x, u can be read from table 2. Note that the x-dependence sits exclusively 
in terms with x - u = 1. For a pure gaussian kernel of this form the transformation 
to RGM form is carried out by standard formulae (see, e.g., appendix B of ref. 9) 
or table 1 of ref. 10)) and yields 

- - -  exp - - 1  "y2R 2 I e ( R , R ' ) =  1 + 2 b 2 x  2 "n" 

- ( 2 ( l d f )  1) ,2 4h - -  R ' ) ] ,  (41) To R + - - £  ~/Y2 y o ( R  " 

with d = 1 - f -  h 2. 

As in refs. z-4) the Wigner transform of the RGM kernel will be used to construct 
an equivalent local potential. Since the coupling kernels appear in the symmetrized 
form of eq. (26) it will be useful to construct the Wigner transforms of the sym- 
metrized G°e(R, R') of eq. (33) 

G~p'~(R, R') = G~p(R, R')+ G~( R', R)*, (42a) 

G°ew(R,p)=IdsexP[h(S.p)]{ G~;~e(R-½s'R+ks) ! 
G~'~(R -ks, -R  - k s ) J  ' (42b) 

where the upper/lower case applies for h >10/h < 0 in the (R.  R') term of the RGM 
kernel of eq. (41), (cf. refs. 2-4)). This leads to a Wigner transform 

G~pw(R, p) _%(h2/mb 2) 16x/-6ftu w = Gxu (R, P)X~p (43a) 
"/7" 

with P given by xyuv, and 

J t  u = 81o - 

[(--1)' 
- -  I x + u < 3  
for x + u = 3  

I x + u > 3 .  

(43b) 

Here, I is the orbital angular momentum of the NN relative motion function, which 
satisfies ( - 1 ) l + s + r = - l .  Note that with x + u = 3 ,  ( h = 0  in eq. (40)), there is a 
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contribution only for S-wave scattering. (In this case the RGM kernel becomes 
separable). For the simple 1/r  z and 6(r) radial factors of the (qCt)E-creation interac- 
tion, (cf. eq. (2)), it is possible to give the full Wigner transform in analytic form, with 

R 2 b p 2  

x D1/2 C ( e q f l ) + S ( a ,  f l ) tan ~o -2---~cb (44a) 

with 

and with 

o-- 1 
(R. e) 

fl = ~ - -  (44b) 
h 

fo C(a,  fl) = dt e ~`2 cos (fit2), 

fo S(a, fl) = dt e~"2 sin (fit2). 

The coefficients Di, ~7i, ~, ~ are given for the needed xu in table 3. 

(44c) 

T A B L E  3 

T h e  x u - d e p e n d e n t  coeff ic ients  fo r  eq. (44) 

10 20 
xu O0 11 21 

32 31 

D 0  - -  F 

47 32 1-0 ~ ] 3  20 ¥ 3 

13 • 21 21 7 17 " 21 
7o  0 - -  - -  

4 • 94 16 10 4 • 40 

2 7 3 19 41 
~0 . . . .  

21 94 16 45 3 • 40 

43 5 2 39 
~o 0 . . . .  

94 8 15 40 

4 • 4 7  8 0  
D 1 1 1 1 

5 • 37 77 

5 • 21 • 21 21 • 27 
"qi 0 0 0 

8 • 3 7  • 47 40"  44 

31 • 31 3 • 21 
~1 0 0 0 

1 0  • 3 7  • 47 11 • 4 0  

21 • 31 7 • 27 
~1 0 0 0 

2 • 37 • 47 11 • 40 
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4. Equivalent local potentials 

In the single-channel approximation equivalent local potentials can be calculated 
from the Wigner transforms Gw(R2; p2; (R.  p)2) of  the quark-exchange kernels 

via the self-consistent equation 

uef~( R ) = Gw( R2; MN[ E . . . .  - -  Uen(R)]; MN R2[ E . . . .  --  U~a( R ) 

- h2(I+~)21MNR2]). (45) 

Here, the Wigner transform, Gw, is that for the full kernel of  eq. (26), where the 
(3q)-(3q) piece, G~, gains a contribution both from an interaction kernel and the 

norm kernel 

24 6 

G=c4[G(E)(3q)-(2EN+E .... )N(E)]+c~ Y, c~Gf +c 3 Y, ct3GS~. (46) 
c t = l  /3=1 

The total energy has been expressed in terms of the internal energy of the two 
nucleons and E .... for the NN relative motion. Since the pair creation interactions 
contribute to the full G not only through the coupling kernels, G f ,  G~:, but also 
through their contributions to the internal energy, it may be useful to exhibit this 
dependence explicitly, particularly since it may be interesting to isolate the pure 
(3q) contributions to the potentials from those for the (3q)(q?:l) and (3q)(q2~l 2) cross 
terms. If 3/ designates one of the 31 components 3/= 0, a, fl, the single-nucleon 
internal energy is obtained from 

30 

Y~ [H3"3",- EN Nvv,]c v, = 0.  (47) 
3, '=0 

Setting y = O, this leads at once to 

EN= Eo + 1  (~  c~,Ho,~ + ~, coHos), (48) 
Co \ ,~ js 

where Eo = Hoo. Note that No~ = Not3 = 0, Noo = 1; and the single-nucleon matrix 
elements, such as Hot3 = Ht3o, can be read from eq. (15). This leads to a separation 
of  G into (3q) and cross-term contributions 

G = Co4[ G o -  E . . . .  N(E)] + Z' 3 ~ ( e )  Cocr[av-2Ho3"N ] (49) 
y=a , /3  

with 

Go = G(E)(3q) -- 2Eo N (E) , 

where the y-sum is over the terms a = 1 . . . .  ,24, fl = 1, . . . ,  6 only. If  the Wigner 
transform for this form of  the kernel is substituted into eq. (45), it is convenient 
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also to make the substitutions of eq. (45) and set 

E .... = p2 /MN + U ~ , 

leading to 

U ef~ = cg[Gow- ( p2 /MN+ Uen) N(w E)] + 

o r  

3 .9' (E) CoC~[G~w-2Ho~Nw ] ,  (50) 

U e~=[c~/(1 4 (E) + c o N w  )][G0w- (P2 /MN)N~)]  

+ [ 1 / ( 1  4 (~) 3 + c o N w  )] E' CoCv[Gvw - 2nov N ~  ~] (51) 
3,= ~,fl 

where functions of p2 and (R.  p)2 in the Wigner transforms of the right-hand side 
are to be replaced with their local values, as exhibited explicitly in eq. (45), leading 
to the final form for the transcendental equation for the determination of U e~. 
Although there is no uniqueness about this particular decomposition of U e~ into a 
pure (3q) and the two types of coupling-kernel contributions, the inclusion of the 
appropriate internal-energy contributions with each type of term does give a more 
realistic measure of the relative importance of each term. The use of the pure Wigner 
transforms of the coupling kernels by themselves, as used in fig. 12 of ref. 2) as a 
measure of the coupling-kernel potentials, tends to overemphasize the magnitude 
of the coupling-kernel attraction as well as the pure (3q) repulsion. 

Fig. 2 shows the equivalent local potentials for the 1S channel, at E .... = 0 and 
350 MeV, as calculated from eq. (51). It can be seen that the overall attraction for 
the 1S potential in the low-energy limit, E .... = 0, requires the combined effects of 
the (3q)(q~l) and (3q)(q2~l 2) coupling kernels to overcome a pure (3q) repulsive core 
of 669 MeV. The (3q)(q2~l 2) coupling kernel, in particular, is vital for the needed 
medium and short-range attraction. It is also interesting to note that the Ec.,~. = 0 ~S 
potential is roughly similar to the simple square-well potentials of historical interest 
for the NN interaction. (The square-well binding rule, MN Uoa2/h2>~¼7r 2, with a 
range parameter, a, of about 1.4 fm for Uo = 50 MeV shows at once that the ~S0 state 
is unbound). The 350 MeV potential shows that the strong energy dependence of 
the short-range parts of these potentials arises mainly through the coupling kernels 
of (3q)(qC:l)-type. Similar single channel 3S1 equivalent potentials show that these 
potentials are somewhat more repulsive than the 1So potentials. (At R =0  and 
350 MeV, e.g., the 3S~ potential has a repulsive core of 196 MeV compared with 
154 MeV for the 1S0 potential; see also fig. 2 of ref. 5)). The weaker attraction for 
the low energy 3S~ central potential is in accord with the experimental facts since 
the binding in the 3S~ channel gets important contributions through coupling to the 
3D~ channel via tensor force terms. 

Our original motivation for including the (3q)(q2q 2) coupling kernels was based 
on the fact that the counterpart of o--meson attraction of conventional meson 
exchange models of the NN interaction was missing from our quark model. It is 
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Fig. 2. The 1S equivalent local potentials. The dashed curves give the contributions to U e~ from the 
pure (3q) part and the pure coupling terms of (3q)(q?:l) and (3q)(q~l) 2 types, using the decomposition 
of eq. (51), including the c0-dependent factors. The solid curve gives the solution for the full U err using 

all terms ofeq. (51): (a) for Ec.m.=0, (b) for E¢.m.=350 MeV. 

therefore interesting to compare  the (3q)(q2~l 2) cross term contr ibutions to the S-wave 

potentials with the convent ional  scalar meson exchange potentials o f  tr and ~ type. 
These compar isons  are made  in figs. 3a and 3b. Since a (q2cl2) cluster with $23 = 0, 
T23 = 0 ,  ( o r  T23 = 1 ) ,  of. table 1, carries the quan tum numbers  o f  a or, (or 8), meson,  

the (3q)(q2~l 2) cross term contr ibutions for  /3 = 1 , . . . ,  4 are compared  with a or. 

exchange potential  in fig. 3a, those for /3  -- 5, 6 with a t~-exchange potential  in fig. 

3b. (For  the meson potentials,  given by the dot ted curves, the masses were taken 

as m~ = 550 MeV, ma = 960 MeV; the meson exchange potentials were regularized 

th rough  the in t roduct ion o f  m om e n tum-dependen t  form factors o f  the coupl ing 
constants,  g ( k  2) = g ( O ) [ A 2 / ( A 2 +  k2)], with g 2 ( 0 ) = 6 . 2 2 ,  g~ (0) --1.83, and a com- 
mon  cutoff parameter  A = 1530 MeV; see refs. 3) and 11)). Two types o f  curves are 

shown for  the effective local potentials derived f rom the (3q)(q2~l 2) coupl ing kernels 
o f  Ntr  and N8  type. The solid curves give the full Ue~(N~r) and Ue~(Nt~), including 

the contr ibut ions o f  all 15 types o f  exchange terms generated th rough  eq. (31). These 
curves involve the full solutions o f  the t ranscendental  equat ions for  U ee. The dashed 
curves, on  the other  hand,  are the bare P = 0 Wigner  t ransforms given only by the 

contr ibut ion o f  the two simple exchange terms arising f rom P37 and P17 P28-  The 
proper  combina t ion  o f  these two terms, (see, e.g., fig. 13 o f  ref. 3)), leads to the 
simple exchange between the two nucleons o f  a (qEcl2) cluster with the or or  

quan tum numbers.  It is therefore satisfying to note  that the dashed-curve  potentials 
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Fig. 3. The individual No'(a) and NS(b)  potentials. The solid curves give the No, or N~ contributions 
to the solution, U eer, of the transcendental equation, eq. (51), for Ec.~,. = 0 ,  and all exchange terms of 
the coupling kernels of No, or N~ type. The dashed curves give the bare P = 0 Wigner transforms for 
the simple (qC:l)2-exchange terms only. Dotted curves are conventional OBEP's (see text for o,- and 

B-parameters). 

most closely resemble the more conventional o- and g OBEP's. They also share the 
following OBEP properties. The simple (q2~12)-exchange potentials of  or-type are 
common to all partial waves, whereas those of  g-type are common for 3E and IO 
channels on the one hand and 1E and 30 on the other. Although the full Uee(No ") 
and Uee(Ng)  are only in qualitative agreement with the corresponding OBEP's, fig. 
3 shows that our (3q)(q2~l 2) coupling terms do carry the contributions usually 
attributed to or- and g-meson exchange potentials. 

Potentials in the odd partial waves have central parts which are generally too 
repulsive. In this case the coupling terms, particularly those of  (3q)(q~l) type, make 
an additional repulsive contribution to the repulsive potentials of pure (3q) type. 
Due to the negative parity of the odd-/  relative motion functions, the dominant 
(3q)-(3q) components of  the N N  system can now couple to additional excitations, 
e.g. a configuration in which a 0s (3q)(qEt) single-nucleon negative-parity excited 
state of one N is coupled with a 0s (3q) cluster of  the other N in a 0s relative motion 
wave at extreme short range. Although it was hoped that distortion due to such 
closed-channel contributions might lower the odd partial wave central repulsive 
cores, a detailed analysis shows that this particular type of distortion effect is almost 
completely negligible. 
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Since channel coupling effects are vital for a detailed quantitative comparison 
with the NN scattering data, the RGM equations for the full exchange kernels of 
eq. (46) have also been solved directly. This also makes it possible to test the quality 
of the predicted equivalent local potentials. Table 4 makes a comparison between 
the S-wave phase shifts, t~ELP, calculated with our equivalent local potentials and 
those obtained from a full solution of the RGM equation, 8RCM. For the 3S case 
the equivalent local potentials are derived through eq. (51) for pure central-force 
kernels only and are compared with the corresponding single-channel RGM result, 
since our aim here is a comparison of the two phase-shift calculations rather than 
a comparison with the experimental results. Four types of comparison are made 
in table 4. (I) For the pure (3q)-(3q) model of the NN system, the ELP are derived 
by retaining only the first term in eq. (51), and the RGM equation is solved with a 
kernel including only the first term of eq. (49). Note, however, that the c 4 dependent 
factors are retained in both cases. This leads to (3q) S-wave phase shifts somewhat 
less repulsive than those of ref. 12); (for comparison of ELP and RGM results see 

TABLE 4 

Comparison of RGM and equivalent local potential phase shifts (in deg.) 

1S 3 S 

Model space Ec.m.(MeV ) ~RGM t~ELP 8RGM (~ELP 

(3q) 5 -8.1 -8.1 -6.4 -6.6 
10 - 11.4 - 11.5 -9.1 -9.3 
25 -17.9 -18.0 -14.3 -14.6 
50 -24.9 -25.1 -19.9 -20.4 

100 -34.1 -34.4 -27.5 -28.1 
150 -40.3 -40.7 -32.6 -33.3 

(3q) 5 7.2 7.3 2.1 2.6 
(3q)(qq) 10 8.7 8.6 2.3 2.8 

25 8.9 7.9 1.3 1.4 
50 5.3 3.2 -2.1 -2.8 

100 -3.5 -6.8 -9.8 -11.4 
150 -11.3 -15.2 -16.5 -18.7 

(3q) 5 -1.6 -1.0 -2.4 -1.9 
(3q)(qq) 2 10 -2.5 -1.7 -3.5 -2.8 

25 -4.6 -3.9 -5.8 -5.2 
50 -7.7 -7.5 -8.9 -8.4 

100 -13.1 -13.8 -13.5 -13.6 
150 -17.2 -18.5 -16.8 -17.4 

(3q) 5 69.2 49.1 14.6 13.0 
(3q)(qq) 10 65.0 49.2 17.8 15.5 

(3q)(qq) 2 25 54.9 42.8 19.3 15.9 
50 43.0 32.5 15.9 11.6 

100 27.0 17.5 7.3 2.0 
150 15.8 6.9 -0.1 -5.9 
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also fig. 4 of ref. 12)). For entries (II) and (III) of table 4 the phase shifts are 
calculated from the combinations of the pure (3q) terms of eqs. (49) or (51), as in 
(I), with the coupling kernel terms of pure a- or /3-type. Finally, entry (IV) is 
calculated for the full model through all terms of eqs. (49) or (51) including both 
types of coupling kernels together. It is interesting to note that the coupling terms 
of (3q)(qO) type by themselves are more effective in making the phase shifts more 
attractive than the coupling terms of (3q)(q2~ 2) type even though the latter lead to 
stronger attraction at R=O. (Note, however, the reversal of the (3q)(q~l) and 
(3q)(q2~l 2) 1S-potentials of fig. 2a for R>0.5 fro). Clearly also the combination of 
both types of coupling terms is more than additive in making the S-wave phase 
shifts sufficiently attractive at very low energy. (Note again that important tensor 
force terms and channel-coupling effects are missing in the 3S entries). For the 
simpler models the agreement between the 8ELP and the exact 8R~M is remarkably 
good. For the full model the agreement is at best semiquantitative. This is undoub- 
tedly related to the near resonant characteristics of NN scattering around E .... =0, 
and shows again that full RGM solutions are needed for a detailed quantitative 
comparison with the NN scattering data. Nevertheless, the agreement is good enough 
so that the predicted equivalent local potentials can be trusted to give a reasonable 
picture of NN scattering. Further, it shows that the Wigner transform-WKB tech- 
nique can be used to evaluate equivalent local potentials even in a relatively 
sophisticated quark model. 

5. RGM formulation 

The RGM equations 

( e  . . . .  -TR)x(R)= f dR' G(R, R')x(R') (52a) 

for functions of good parity 

x( R ) =½[x( R )-(-1)s+ rX(-R ) ] , (52b) 

and with 

TR =- (h2 /MN)[d2 /dR 2- l ( i+ l ) /R2]  (52c) 

in a partial wave expansion, has been solved for the NN scattering problem and 
the kernel 0(11, R') of our quark model by the variational method of Kamimura 13). 
The interior region (R<Rc)  trial function is expanded in terms of a set of nonor- 
thogonal gaussian trial functions, Ul in).  The coefficients of these u~ in) and their 
gaussian range parameters serve as the variational parameters. The interior trial 
functions are extended to R > Rc to match the proper scattering boundary conditions. 
The method requires the evaluation of the matrix elements 

.~t" _ _ ( .  (in) c ~ .  (in)'~ [ ( .  (in) c D(0) , (in)xt% (53a) 
o ' ~ i j - - \ U i  , ,:,Z"lUj ] - - \ t , u  i , or, 1 ~ j  1] , 
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where 

&at = TR + G - E¢ . . . .  .~o) = TR - E . . . .  (53b) 

and the inner product (( , )) involves an R-integration from R = R¢~ 0o only and 
is thus a small quantity, but essential for this particular variational method. The 
gaussian trial functions, ul in) = Ru~, (R, ~7i), are chosen as 

ut,, (R, 7/) = ul (R, r/) Yt,, (/~), (54a) 

with the radial functions 
[ 4~ ] 1 / 2 ( ? ) 3 / 4  

ut(R, ~7)= (2/+-1)!! (2x/~R) I e -nR2. (54b) 

For the matrix elements of the noncentral components of the kernel, the radial parts 
of these trial functions are to be combined with standard vector-coupled spin, 
angular functions 

JM "~ . ~,s (R, spin) = [ YI(R) x Xs] jM, (54c) 

where Xs is a two-nucleon spin function. 
The direct terms of the RGM equation, given through £¢I °)= T R -  E .... .  involve 

the matrix elements 
(in) . (in)'~ (u, , ,,~ / - ( ( u l  in), uJl"~))= I (xc; /+3)e  o, (55) 

(U~ in) ,  TRUJ in)) - - ( ( U ~  in) ,  TRUJin)))  

2 h  2 , e-Xcxl+3/2"] 
= ( 1 + 3 ) / ~  I(x¢;/+~)+2~7' ~ | e 0, (56) 

MN Lr/+ r/ F ( l ~ )  _1 

where l~ =/j = l, and rh = r/, r b = 7/' are implied and 

e 0 = (57) 
k n + n /  

In eqs. (55) and (56), I (x;  v) is the incomplete gamma function defined by 

1 e_~t~_ 1 I (x;  v)=F--~v) dt ,  (58) 

and x~ is given in terms of the channel radius R~, by Xc = (~7 + ~')RZ~. 
Since all parts of the exchange kernel G(R, R') in the decomposition into (3q) 

and coupling kernels, as given by eq. (49), have been expressed through expansions 
in terms of gaussian kernels, the partial wave decomposition of these kernels and 
the evaluation of RGM matrix elements between the basic trial functions of eq. (54) 
can be carried out in a unified framework by the use of the general gaussian kernel 
formulae derived in appendix A. The RGM matrix elements of G in eq. (49) are 
separated into 

- .  (in) (in) G~=-tm ,Gu  t ) 
C 4 . . ~ r ( E ) ]  ~ t  3 O ° (E) = o [Goo-E~m- '0  ~+ CoCv[Gvo-2Ho~N ~ ] .  (59) 

y = a , / 3  
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For the (3q)(q~l)-coupling kernels, G f ,  the RGM matrix elements, G~j,  are given 
by (with I~---l, / j -  1') 

G a~ij 2 2 4 6 , ~ . - ,  . . . .  Z X c,. Z ~-OlsX m c  --~[4"['~'~3/21kT-I/2¢~=M,D P i=1 

X ~. r . . O O S J z  IAr~OSJ[ I \ l l lO,~O 
[MPi ,  i'l' t ~ ' ~  ~')+IVIpi ,?I  t ~  "~ ~ ) J A p ,  i , 

O =C,LS,  T 
(60) 

where we have used the expansion of G~ into interaction type, ~7 = M (momentum) 
and D (derivative)-type, exchange type, P, i, and into g~ = C (central), LS, and T 

-V ¢7,ag~ (tensor) parts. The spin, isospin, color factors, 1..,~ , are evaluated through eqs. 
(27) and (16) of ref. 3). As is shown in appendix A, the width parameters ~ = 7/~ 
and 7 ' =  ~j of the trial functions always appear in the combination 

Y-~7 Y ' -  ~7' 
= , e' Y' (61) e y+7/  + , / '  

where y and y'  are the relative motion width parameters for the bra and ket sides, 
respectively, and y = Yl = (15/16b 2) and y ' =  Y0 = (3/4b 2) in the present case of the 
(3q)(q~l)-coupling kernels. Also, in the L S  and tensor matrix elements, it is con- 
venient to factor out the standard matrix elements of (L.  S) and $12 operators 
defined by 

(L"  S )  = ½ [ J ( J  + 1) - l(l  + 1) - S(S + 1)], 

(S12) Jj --- 2, J x 6x/-f( J + 1) 
(SI2)J--I'J+I 2J + 1 = ( & 2 ) J + , : - ,  - 

j 2(1 - J )  x 2(J+2)  
( S 1 2 ) J + I , J + 1  - -  - -  (62) ( S12) J-1.j-1 2J  + 1 " 2J  + 1 

Thus, the matrix element a Mw(~7; rl') in eq. (60) for a particular ¢?P/ and SJ  is 
expressed as (see also appendix B of ref. 14)), 

M~(,7; ,7') 
= (1 - -  e2)0+312)12(1 - -  e'2)(r+312)12(111~<°))312 

x J - 6 S l S , , ( L "  S)It_,(C; l ~'Ls) f o r ~  = (63) 

18s,(S,2)~,[6,,,(l+~)I,_,(C; ~ ) +  8,,,,+2,/(2l + 1) (2 / -  1) 
l x4,(e; #)+8,+=,,, (2d77?- i)(-777 -77s,(e, a)] 

The explicit expressions for/~(o) and It(C; ~ )  with ~ =/~, F, t~, V, I7 "Ls are given 
in appendices A and B in terms of the coefficients of the GCM kernel, f (o ) , . . . ,  m, 
which are explicitly given in eq. (11) of ref. 4) for each ¢?P/. 
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Since the (3q)(q2;) 2) coupling kernels of sect. 3 are purely central, the spin- 
independent RGM matrix elements G,~j in eq. (59) have the simpler form, (with 
l '= / ) ,  

G'~ii = -a sx  2mc2 8q'-6 (~)3/4N~/zy ~ Ce[Mp, t('r/; 7/')+ Mp,,(r/'; r /)]X~, (64) 
p 

where the decomposition into spatial and spin, isospin, color factors, X~p, follows 
that of eq. (33), and the dependence on exchange type P = (xyuv) is given through 
the parameters x and u only. The matrix element Mp,107; rf) is also given by the 
O = C  case of eq. (63) with Ii-l(t~; I7")=0. For e and e', defined in eq. (61), one 
should now use 3' = 3'2---(21/20b 2) and 3,'=3"0 = (3/4b2). The explicit expressions 
for/~(0) and It(t~;/~) are given in appendix B in terms of the parameters x and u. 

Since the various components of the (3q)-(3q) RGM kernels have already been 
analyzed by many authors 1), a very brief description of the classification scheme 
of the exchange kernel is given with the final expressions of the RGM matrix 
elements. For the quadratic-type confinement potential, the confinement potential 
contribution to the (3q)-(3q) RGM kernel Go = G(E)(3q)-2EoN (E) of eq. (49) 
disappears precisely so that the (3q)-(3q) RGM kernel Go is composed only of the 
following pieces: (K) for the exchange kinetic energy contribution, (CC) for the 
color-coulombic or (Ai" Aj)/r~ piece, (GC) for the combined color-delta and color- 
magnetic or (;ti. hi)(1 +2(o'i-qrj))~(r~) piece, (sLS) for symmetric LS, (aLS) for 
antisymmetric LS, and (T) for tensor kernels 12) (In this series of studies the 
momentum-dependent Breit retardation (or Darwin-like) term in the central force 
has been omitted.) Therefore, the (3q) RGM matrix elements G0~ in eq. (59) are 
separated into 

- -  K C C  G C  ['~,sLS d- f 2  aLs -1- T 
O o i  j - G o i  j --k G o i  j --1- Gog + ,-,oi~ - ,-,o~ - G o i j  , (65) 

where the K, CC, and GC terms are the central matrix elements. For each interaction 
type, ~70 = CC, GC, sLS, aLS, or T, quark exchange types (which will be denoted 
by 3-, corresponding to P/ and P for (3q)(q~l) and (3q)(q~l) 2 coupling kernels, 
respectively) are specified by symbols 3-= E, S, D+, and D_, which uniquely 
determine the structure of the exponential factors, exp[l(z *. z ' ) - l h  (pz*+ qz')2], 
of the gaussian GCM kernel by 9) 

p =  q = 0 f o r  3-=E,  p =  1, q = 0 f o r  3 - = S ,  

p = q =  1 for 3 -=D+,  p =  1, q = - I  for 3 - = D _ .  (66) 

The correspondence between 3- and the notation P(/j)-= P36 (/J) of ref. 15) is: ( / j)= 
(45) for E, (26) for S, (25) for D+, (36) for D-.  (See, in particular, fig. 1 of ref. 15), 
and note that the exchange type (56) is the hermitian conjugate of (26).) With these 
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N (E) in eq. (59) and each piece of eq. (65) can be expressed by definitions, --o 

N~E) = GC , X N  M E, t ('17, r] ) ,  

Go~K = 3 x2 mc2XN M~(  rl; *l') 

CC ~ 2  2 4 CC CC Go~ = asXmC XN~{2ME, t (7/; 7/ ' ) -2[Ms,t  (7/; ~/') 

• ~ C C  / ~ C C  t CC 
+ M S ,  t It/ ; r / )]+MD+,l(r] ,  r/, , ~7 )+  MD_,t( */')} 

3 2 GC G°C/c= V ~  asX mc {XE[ME., (~7; */')--MsC.C(r/; 7/') 

- Ms+,f (,7'; + XD+ M c,, ' */) +XD MD_.,(*/; r/')}, 

[ 
-2 3 2 LS LS 

= MD_,t (7/; r/ ')],  GSoLij s ~ /  ~ OlsX m c  [XD+Mo+,I(• ; T]t)[- X LS - LS 

GaLS ~ / 2  lV~s,l~7/; ~) ] ,  o~ = a~x3mc2X~S[M~(~7; "11')+ , ,Ls ,  , 

f -2 3 2 T T G~ o = ~/ ~ asX mc {Xs[  Ms,u,( rl; qe]t)"~- Ms1,,l( 7~"~ 7)] 

+XLMT,+,,,,(n; n')+ • XD_ MD_,n,(r/, 'r/')}, (67) 

where the spin, isospin, color factors, XN, X~,  X~r s, and X T are given in appendix 
B. The matrix element oa . Me~,n,(*/; */') for a particular Og2ff is again obtained from 
eq. (63) with I t - l (C; V ) = 0  for O =C.  This time one should use e, e' of eq. (61) 
obtained from y = 3,'= 3'0 = (3/4b2). The explicit expressions for/~(0) and It(C; ~ )  
for each Og2 are again given in appendix B in terms of the coefficients p and q, 
which are explicitly given in eq. (66) for each :3-. 

With these explicit, analytic expressions for the RGM matrix elements of the 
exchange kernels in the decomposition of eq. (49), the RGM equations have been 
solved through the coupled channel variational method of ref. ~3). Again, following 
the general format of ref. ~3), the ~7~, have been parametrized as follows, 

25 (~0 )  (i-l)/'4 
~/~ =-~- (fm-2), with i-- 1 , . . . ,  i . . . .  (68) 

and R~=3 fm, where /max = 15, 12, 11, and 10 for 1=0, 1, 2, and 3, respectively, 
were the final chosen values. A test of the stability of the solutions with respect to 
the choice of R~ and the trial functions indicates that the accuracy of the final 
calculated phase shifts is better than A6 = 0.1 °, unless the long-range tensor force 
of the one-pion exchange potential is involved. For the coupled-channel calculations 
of the triplet states, using the long-range tensor force of appendix C, the accuracy 
deteriorates up to a few degrees in the low-energy region. For instance, the channel 
radius R~ should be increased to a value of 5 fm, with ~/~ = 3(~5o) (H)/~4, in order to 
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obtain enough accuracy for the low-energy parameters of  the 3S1+3D1 coupling 

problem. 

6. RGM results 

With the method outlined in sect. 5 and the results of  appendices A and B, the 
coupled channel RGM equations have been solved and phase shifts have been 
calculated for low-energy NN scattering. Before discussing these phase shifts it 
should be emphasized that the results of our calculations are zero parameter 
predictions. The four model parameters as, m, b, a¢ were determined from single- 
nucleon data in ref. 2) and were used without further adjustment. Since our single- 
nucleon data were sensitive essentially only to the final values of the ca of the 
single-nucleon wave functions but otherwise insensitive to the details of the para- 
meter fit 2), the addition of  the c~ does not make significant changes in the single- 
nucleon predictions. The one exception is the absolute value of  the nucleon mass 
which was not considered to be a crucial parameter of our model for NN scattering 2). 

However, the predicted pion tensor force of  our simple (q~)-exchange potential 3) 
was too weak by a factor of  - 3 ,  (see fig. 3 of ref. 4)), in agreement with our predicted 
coupling constant 2), 2 gNN~, which was also too weak by a factor of  ~3.  Since our 
method can pinpoint the exchange terms responsible for this piece of  the NN 
interaction, these simple (q~l)-exchange terms of N~r type were removed from the 
tensor part of the (3q)(qq)-coupling kernel and were replaced with a more realistic 
OPEP tensor force. This more realistic pion tensor term uses a form factor g2(k) = 

14.17 exp [-0.0943k 2] with the experimental value for g~N~(0) and a gaussian 
k-dependent factor which gives a very good approximation to the actual k-depen- 
dence predicted by our quark model through eq. (69) of ref. 2). The RGM matrix 
elements of  this form of  the pion tensor term are evaluated in appendix C. With 
the exception of  this one adjustment the phase-shift predictions are free of parameter 
fitting, including the use of  the unadjusted predicted internal energy of  2EN= 
2 (693 MeV). This predicted quantity does make nonnegligible contributions to the 
exchange kernel of  eq. (49) through the norm kernel term. We do not expect that 
our quark model can give reliable predictions for the absolute value of  baryon 
masses; but the low-energy NN scattering results are relatively insensitive to this 
quantity. Although an exact fit of  the N mass could have been attained through a 
further adjustment of  the model parameters, in particular through a change in the 
value of  the confinement-potential constant, the NN scattering predictions are very 
insensitive to such a change. A change in the potential constant, a¢, will make large 
changes in the internal energy, but the at-dependent contribution to the (3q)-(3q) 
kernal G o = G ~ E ) ( 3 q ) - 2 E o N  ~E) disappears precisely for a purely quadratic 
confinement potential and has been shown to be very small for a linear potential 12). 
Even a very large change in ac has only a small indirect effect on the NN interaction 
through small changes in the c,~. It is our philosophy to trust only those predictions 
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of our model which are insensitive to the strength of the confinement potential. The 
phase-shift analysis can therefore be made in terms of the original parameters 2) of 
our extended quark model. 

Figs. 4 and 5 show the predicted RGM phase shifts for the S-waves. The results 
of the single-channel calculation for the 1S0 phase shifts are analyzed in fig. 4 in 
terms of the decomposition of the quark exchange kernel, given by eq. (49). It can 
be seen that the repulsive phase shifts of the pure (3q) components of the kernel 
are changed to a very weak attraction at extreme low energy by the inclusion of the 
(3q)(q~l)-coupling terms. The much stronger needed attraction is gained through 
the cooperative effect of the combined coupling kernels of (3q)(qq) and (3q)(q2~l 2) 
type. Although the final values of the predicted 1So phase shifts, calculated with the 
full kernel, are now somewhat too attractive, we consider this a satisfying fit for a 
zero-parameter calculation, particularly since energy-dependent distortion effects 
through a K-dependence of the c~ have been neglected. Such effects may influence 
the phase shifts at higher energies where the disagreement is greatest. A similar 
analysis of the 3S1 phase shifts in fig. 5 shows that the combined effects of all central 
terms, including both the (3q)(qq) and (3q)(q2~l 2) coupling kernels, do not give 
sufficient attraction in this case. However, when the important effects of channel 
coupling to the 3D 1 channel through the tensor force are included the full coupled- 

3O 

90 i I i 

RGM IS o 
. . . . . . .  Exp. 

6 0  -" 

• .= ~ ~ ~ ( 3 q ) +  (3q)(qq) 

60 I 
0 50 100 150 200 
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Fig. 4. Analysis of ~So phase shifts. The (dotted) experimental points for figs. 4-7 are taken from ref. ~6). 
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Fig. 5. Analysis of 3S 1 phase shifts, with improved N~r tensnr force. 

channel calculation gives a good fit to the experimental 3S~ phase shifts in the 
0-100 MeV range. The comparable fits to the 3D] as  well as the single-channel ~D2 
and 3D 2 phase shifts have already been shown in figs. 3 and 4 of  ref. 5). However, 
the mixing angle e~ in fig. 4 of  ref. 5) was inadvertently shown with the wrong sign. 
Using the conventional definition of  ~ the extreme low-energy value of the predicted 
el is positive. 

The predicted extreme low-energy S-wave phase shifts (in the 0-10 MeV range), 
have also been used to extract values for the singlet and triplet scattering length 
and effective-range parameters. The results of  a standard low-k 2 analysis of the 
predicted S-wave phase shifts are shown in table 5. These low-energy parameters 
lead to a predicted deuteron binding energy of  0.68 MeV. Diagonalization of the 
interior region trial function with ~7i =3(~o) (i-~)/~4, on the other hand, led to a 
deuteron binding energy of  0.66 MeV. (The 0.5 MeV quoted in ref. 5) came from 
diagonalization with eq. (68).) The small difference is due to the missing extreme 
long-range tail of  the deuteron wave function, which is never described completely 
by the gaussian trial functions. The 0.68 MeV value from the low-k 2 analysis of  the 
eigen-phase shifts is therefore the most accurate measure of  our calculation. The 
low-energy analysis of  the calculated phase shifts leads to a predicted ~So virtual 
state at 57 keV. The analysis of  the extreme low-energy values of  the Blatt-Biedenharn 
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TABLE 5 

Scattering length and effective-range parameters 

Calc. Exp. a) 

a s - 26 .2  -23 .75  ± 0.01 
res 1.53 2.75 + 0.05 
a t 8.75 b) 5.42±0.01 
ret 1.69 b) 1.76 ± 0.01 

a) np data taken from M. M. Nagels et al., Nucl.  
Phys. B147 (1979) 189. 

b) Numbers obtained from Rc = 5 fm trial func- 
tions, 

mixing parameter, ¢1, yields a positive value of  the deuteron quadrupole moment, 
which is however too large by a factor of ~1.5.  The results of  figs. 4 and 5 and 
table 5 show that our extended quark model gives a good account of  the low-energy 
scattering data and the deuteron bound-state characteristics. The difference between 
0.68 MeV and the experimental value of  the binding energy of 2.225 MeV must be 
considered insignificant in view of  the remaining uncertainties of our quark-model 
potentials. 

Figs. 6 and 7 show the calculated phase shifts for odd partial waves, again with 
the use of  the unadjusted predicted internal energy and with no adjustments of the 
four model parameters. The 3p  predictions of  fig. 6 show that our odd-L interaction 
is too repulsive. In odd partial waves the coupling kernel terms of  (3q)(q~l) type 
lead to repulsive central terms which reinforce the repulsive central potential arising 
from the pure (3q)-(3q) kernels and are only partially compensated by a strong 
attractive contribution from the coupling kernels of (3q)(q~l) 2 type. Since conven- 
tional analyses of  the N N  interaction lead to very weak triplet odd central terms in 

5 0  , , , 

3P 2 (exp.) 
) • • • • • • • • • • 

• = • ' • ~ 1 1 1  • 

0 • • • | • 

- 5 0  

- 6 0  i I I t 
0 5 0  I 0 0  150 2 0 0  

E c r n ( M e V )  

Fig. 6. The Sp phase shifts, with improved NTr tensor force, but with calculated E N and no adjustment 
of model parameters. 
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Fig. 7. The 1P 1 and 3F 2 phase shifts and mixing parameter e 2. 

the medium and long-range region, the 3p low-energy phase shifts must be expected 
to arise almost exclusively through tensor and LS terms. It was shown in ref. 4) that 
the LS and tensor terms of  our quark model, (with the improved NTr tensor force 
term), give a very good account of the observed 3p phase shifts. With triplet odd 
central terms turned off, the RGM calculations give a good fit to the observed 3p 

phase shifts (see fig. 11 of  ref. 4)). Fig. 7 shows that the predicted 1P1 phase shifts 
are also too repulsive. The quark exchange kernels of this investigation in general 
lead to odd-L central potentials which are too repulsive. Since the extreme short- 
range odd-L central potentials of  our model result from partial cancellation of the 
strong repulsive (3q)(qC:l) coupling terms with the attractive contributions of  the 
(3q)(q£1) 2 coupling kernels, these central potentials are subject to considerable 
uncertainty. At extreme short range these central terms may also gain significant 
contributions from terms of second order in the ca and c o in the quark kernel 
expansions of  eqs. (26) and (49). Such complicated terms have not been incorporated 
into the model. 

7. Summary 

Since simple (3q)-(3q) models of the N N  interaction could elucidate only the 
extreme short-range part of  this interaction and failed to make a natural connection 
with the meson exchange picture responsible for the long-range part, a number of 
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models have arisen 1) in which the quark degrees of freedom of a nucleon interior 
are coupled to various meson fields. In such models quarks and meson fields are 
treated as separate entities. However, since quantum chromodynamics is believed 
to be the fundamental theory of the strong interaction a more satisfying picture 
should be based on a model built only from quarks and antiquarks. It is our 
philosophy that a model in which both baryons and mesons are described in terms 
of their common constituents is to be preferred over a model in which quarks and 
meson fields are treated as separate entities, particularly when quark exchange 
effects become important, since the Pauli principle among the quark constituents 
can be respected only in this way. 

In this series of investigations E-S) an extended quark model has been built in 
which the (qcl) and (q~)2 excitations inherent in the quark-gluon interaction 
lagrangian have been explicitly incorporated into the model space. By studying the 
NN interaction within the framework of the resonating group method very explicit 
coordinate space results have been attained which make it possible to isolate the 
interaction corresponding to the exchange of a (qcl) pair or a (qCl) 2 cluster between 
the two nucleons. This has led to a unified picture in which both baryons and the 
exchanged mesons appear on an equal footing in a pure quark model. 

Since low-energy hadron phenomena confront QCD with formidable problems, 
a QCD-inspired effective quark interaction must perforce form the starting point of 
any model. Following the successes of the 3q models of the nucleon, our quark 
interaction is built from a phenomenological quark confining potential which is 
combined with a gluon exchange interaction of the general form of a one-gluon 
exchange potential through the color analog of the Fermi-Breit interaction. However, 
the (qq) and (qc l )  2 creation terms which are part of the one-gluon exchange diagrams 
are explicitly included in the interaction in the hope that this improvement in the 
quark interaction is at least a first step toward the incorporation of meson field 
effects into the NN interaction. The final NN interaction has the fortunate property 
of being almost completely independent of the strength of the confining potential. 
The model therefore passes the crucial test of being insensitive to the details of the 
phenomenology. The quark mass and the gluon coupling constant are considered 
parameters of this effective interaction. Together with the confinement potential 
constant and the basic size parameter, b, these form the four parameters of our 
model. Since these parameters have been determined from single-nucleon proper- 
ties 2), and since no further adjustments of parameters are made, the model leads 
to a zero-parameter prediction of the NN scattering data. 

The full quark exchange kernels have been analyzed to study the relative import- 
ance and the characteristics of various components. In particular, the pure (3q) 
contributions to the NN interaction have been isolated from the contributions arising 
from specific (3q)(q~l) and (3q)(q2~t 2) components of the single-nucleon wave 
functions. Due to the intrinsic p-wave character associated with the (q~l)-pair creation 
process the fully antisymmetrized (3q)(q~) components form a nearly orthonormal 
set so that real physical significance can be ascribed to the spin, isospin quantum 
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numbers of  the (qcl) pairs. By isolating from the many more complicated exchange 
terms those contributions to the exchange kernels which correspond to an exchange 
between two nucleons of  a (q~) pair with the quantum numbers of  a real pseudoscalar 
or vector meson, ref. 3) showed that our model makes good contact with conventional 
one-boson exchange potentials. The present work completes the model with the 
inclusion of  the (3q)(q~l) 2 components which arise naturally through the RPA-type 
off-shell terms of  the Breit interaction. Since the (3q)(q~l) 2 components with their 
intrinsic 0s-wave relative-motion functions span a smaller part of  the quark-model 
space, the significance of  the (q~l) 2 quantum numbers is partly washed out by quark 
antisymmetrization effects. The present work, however, shows again that those parts 
of  the exchange kernel which correspond to the exchange between two nucleons of 
a (q?=l) 2 cluster with S = 0, T = 0 and 1 leads to interactions with the basic characteris- 
tics of  conventional tr- and 8-meson exchange potentials. Moreover, these furnish 
the additional medium-range attraction needed to bind the deuteron. 

The model has been subjected to a quantitative test of the scattering data through 
a solution of  the RGM equations in a coupled-channel formalism. The partial wave 
decomposition of the RGM kernels has been carried out and the needed RGM 
matrix elements for the gaussian trial functions are given in analytic form. Since a 
simple (q?=l)-pair with the quantum numbers of  a pion was not expected to give a 
realistic picture of  a real pion, a fit to a realistic long range OPEP was not expected. 
In particular, the predicted N~r tensor force was too weak by a factor of  - 3 .  Since 
the exchange terms responsible for this piece of the NN interaction can be identified, 
it is possible to improve this part of the interaction. The (qct) exchange terms of 
NTr type were removed from the tensor part of the coupling kernel and replaced 
with a pion tensor term with the experimental value of 2 gNN~ and a gaussian form 
factor which gives a very good approximation to the form factor predicted by our 
quark model. With this one improvement of  the interaction, the model gives a 
satisfying semiquantitative fit of  the low-energy S-wave scattering data and the 
binding characteristics of  the deuteron. Although the central parts of  the odd-L 
potentials are still too repulsive, our model is close to a quantitative account of the 
experimental data. 

It is noteworthy that our model gives a unified picture of  the NN interaction 
which is versatile enough to lead to an understanding of the extreme short-range 
part of  the NN interaction in terms of  the quark exchange mechanism and at the 
same time contains much of  the conventional meson exchange description through 
the exchange of  (qcl) pairs between nucleons through the coupling kernels. The 
central parts of  the NN interaction gain important contributions from all three 
major components of  our exchange kernels, the pure (3q)-(3q) kernels and the 
coupling kernels of (3q)(q~t) and (3q)(q~l)2-type. The pure (3q)-(3q) kernels have 
strong central components which are repulsive in both even and odd partial waves 
and arise predominantly from the color-magnetic contact term of  the quark-quark 
interaction. The coupling kernels of  (3q)(q~l)-type lead to central force terms which 
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are strongly energy dependent  and show a weak attraction in the even partial waves 
but a very strong repulsion in the odd partial waves. The central forces arising from 
the (3q)(q~) 2 coupling kernels are attractive in both even and odd channels but not 
attractive enough to overcome the strong repulsive (3q)(q?:l) potentials in the odd 
partial waves. Since momentum-dependent  distortion effects have so far been neglec- 
ted there is the possibility that such changes in the nucleon wave functions may 
decrease the repulsion of  the strongly energy-dependent (3q)(q~l) coupling kernels. 
Since the central potentials result from a partial cancellation of  strong attractive 
and repulsive components, contributions to the coupling kernels of second order 
in the single nucleon ca and c~ may also have to be examined. 

The tensor and spin-orbit  forces were analyzed in ref. 4). The contributions of 
the pure (3q)-(3q) kernels to the tensor force are completely negligible. The tensor 
force arises almost exclusively from the coupling kernels of  (3q)(q~l) type and is 
dominated by simple (q~l)-exchange terms of  Nor and Np type. It therefore has 
meson exchange characteristics. Since the p-exchange terms partially cancel the 
7r-exchange terms and since the predicted N~- tensor force was too weak by a factor 
of  - 3 ,  the improvement of  this term is vital to gain a tensor force sufficiently 
attractive in the even and repulsive in the odd-L chanrtels. The LS force has the 
expected repulsive character in the even-L and attractive character in the odd-L 
channels. Its most important contributions come from simple (qcl) exchange terms, 
this time of  Np and No) type. Although about 60-65% of the LS force in the most 
important medium-range region of the attractive odd-L potentials arises through 
the coupling kernels of  (3q)(q?:l) type, the pure (3q)-(3q) kernels do make important 
contributions. These arise from the combined effects of symmetric LS (70%) and 
antisymmetric LS (30%) terms in the quark-quark interaction. 

Despite the successes of  our extended quark model of the NN interaction impor- 
tant problems remain. The exchange of a simple (q¢l) pair with the quantum numbers 
of a pion is clearly not a good model for a realistic OPEP with its long-range Yukawa 
tail. An improved quark model of the pion is needed for a truly quantitative 
description of the NN interaction. The good connection between our model and 
the conventional one-boson exchange picture is made through the RGM formalism 
and its explicit coordinate space representation which makes it possible to isolate 
the exchange of a (qcl) pair between nucleons. However, the RGM formalism is 
nonrelativistic. Although low-energy NN scattering is a nonrelativistic problem, 
relativistic effects may become very important at the level of  quark exchange 
phenomena. Relativistic corrections should therefore be incorporated into the model, 
even if a truly relativistic formulation of the NN interaction is still too much of  a 
challenge for this complicated many-body problem, 

Appendix A 

In this appendix, we will continue the mathematical discussion of appendix A 
of  ref. 4), and derive a convenient analytic formula for the RGM matrix elements 
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with respect to the gaussian trial functions of eq. (54). The class of the RGM kernels 
treated in this appendix is restricted to that of a gausstan two-cluster RGM kernel, 
but is otherwise quite general and involves the central, LS, and tensor kernels 
required not only for the (3q)-(3q) analysis but also for the (3q)-(3q)(qC:l) and 
(3q)-(3q)(qCt) 2 coupling problems. The RGM matrix element is explicitly given by 
the coefficients of a particular term of the GCM kernel, which is assumed to be 

r lfz*2 l"z'E+h(z* z')] I~CM(z, z') =exp t-~s, - ~ s  

× [(az* + bz% (cz* + dZ')k + eSjk]. (A.1) 

The central (C), LS, and tensor (T) RGM kernels are defined through 

egc(R, R') = 1 ~. i ° (R, R ' ) ,  
J 

egLS(R, R') = i X eqkljk(R, R')S, ,  
qk 

egT(R, R') =1~  [ijk(R ' R ' )+ Ikj(R, R')]tr~jCr2k-egC(R, R')(o~ " o2) ,  (A.2) 
jk 

where Ijk(R, R') are given by (A.1) through the Bargmann transformation (see eqs. 
(37) and (38)) 

Ijk(R, R') = f d/z(z) dlx(z ' )av(R , z)Av,(R' , Z')*I~kCM(z, Z'). (A,3) 

Let us express the RGM kernel of eq. (A.2) as 

(24"~ t~  3/2 
eg ° (R, R') = \ ~ /  exp [ - A y R  2 -  By'R'2 + C~/--~'y'(R. R')] 

f E + FyR 2 + GyR'2 + Vx/~y'(R" R') ~C 
x ~ v L S x / ~ y ' i ( [ R x R ' ! .  S) f o r a :  ILS 

(FyS~(R, R)+ Gy S~2(R', R')+ V4-~y'S~:(R, R') T. 

(A.4) 

Here the tensor operators $12 (U, V) are defined by 

&2(v, v)=~(o,, c)(,,2, v)+~(o2, c)(,r~, v ) - ( c ,  v)(,~l" 02), (A.5) 

and the coefficients F, G, and V are introduced by 

F = 4(Fab/D)(F~d/D),  

G = ](Qb/o)(Gc~/D), 

V = ~[(F~b/D)(Gcd/D) + (G~b/D)(Fcd/D)] .  (A.6) 

The coefficients A, . . . , E, V Ls, F~ b (Fed), and Gob ( God ) are explicitly given in appen- 
dix A of ref. 4) in terms of the a , . . . ,  h defined by eq. (A.1). (See eqs. (A.6), (A.15), 
and (A.16) of ref. 4).) 
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The first step in the derivation of the RGM matrix elements is the partial wave 
decomposition of the RGM kernel in eq. (A.4). Let us introduce the spherical Bessel 
function of an imaginary argument 

5, (x) = 4~ri~], ( -  ix) 

47r 
- -  x z + O ( x  1+2) ( A . 7 )  
(21+1)!! 

for the partial wave decomposition 

exp [ C',/7"),'(R" R')] = Z .~, (Cx/TT'RR') Y~,,, (R) Y~,. (R')*. 
Im 

(A.8) 

Then the spin, angular matrix element of eq. (A.4), with respect to the standard 
vector-coupled spin, angular functions of eq. (54c), yields 

• ,//g'SJ(R, R') 
g2 A ( ~ ; ~ , ( ~ ;  • , J,,, ,. - spm)[~ (R, R )[~rs (R,  spin)) 

= (2 yx/'~7'] 3/2 
\ ~rD ] exp [ - A y R  z -  By'R '2] 

( 6u,{[ E + l( V/ C) + F3,R2 + GT'R'2]~, + V~77'RR'.9,+l} {C 

x ~-6slSu,(L. S)(vLS/c)sI  for/2 = LS 
] 8sl(S,2)[r{Str,(l+ 3)( V /C)5  ¢, -I- FTR2,,~r + Gy'R'Z,~t T. 
L+ V~Ty'RR [6,r ~t+l + 6,+2,r ~,+1 + 6u,+2~,,+1]} (A.9) 

In eq. (A.9), ~t is a shorthand notation for ~l = ~I(Cx/--~y'RR'), and the standard 
matrix elements of eq. (62) for the L.  $ and the tensor operator $12 = $12(R, R) are 
used. 

The gaussian matrix element of eq. (A.9), in terms of the trial functions of eq. 
(54b) with the width parameters ~ and ~', is most easily derived by the technique 
developed in appendix B of ref. 14). By applying the formulae in eqs. (B.7) through 
(B.9) of ref. 14) to the bra and ket states, one finds 

i0 io o M~'S~(n; 7') ~ R ~ dR R '~ dR' u~(g, n)u,,(R', n ' ) ~ S ~ ( g ,  R') 

= ( ~ , ' ~  3/2 [(2/._++ 1)!! (2l'+ 1)!! (l_e2),+3/Z(l_e,Z)r+3/2] ~/2 
\2  7"~Y'] L 4,rr 4,rr 

x lim lim (4---~*2x/yR)-'(~-e'2x/-~R')-"~t~'~(R, R'),  (A.IO) 
R-*0  R ' -*0  

where the ~/, 71' dependence always appears in the fom of e, e' of eq. (61), and 
~ 'S~(R,  R') is the partial wave decomposition of the RGM kernel ./~n (R, R') which 
corresponds to the GCM kernel I~kCM(z, Z') = I~kCM(x/'L-~Z, --x/-~e'z'). Since we have 
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assumed the explicit form eq. (A.1) for the original GCM kernel, ~ta 'SJ(R,  R ' )  is 
easily obtained from eqs. (A.4), (A.6), and eqs. (A.6), (A.15), (A.16) of ref. 4) by a 
simple replacement 

f ~ ( - e ) f ,  g + ( - e ' ) g ,  

a + x/-Z-e * a, b + x/----~ b , 

c--, 4 ~ *  c,  d --, 4U~e'd. 

h ~ x/-z-~*x/--'~h, 

(A.11) 

The process of limiting R, R ' + 0  in eq. (A.10) allows only a restricted number of 
terms to survive in eq. (A.9); viz., due to the asymptotic behavior of the ..~t(x) in 
(A.7), the F, G and V terms of  the central kernel and the last V terms of the tensor 
part go to zero. As a result, one obtains the following simple expression for the 
RGM matrix element of eq. (A.10); 

M a  s J, u" t ' l ;  ~f) 

= (1 - g2)(l+3/2)/2(1 - g. '2)(r+3/2)/2(1/iD)3/2 

fSu, d t - ' (d /~  + I f )  { c  

x ~ - S s ,  Su,(L" S ) C ' - '  ~,LS for ~ = L S  

[ 8 s , ( S , 2 ) ~ , [ S u , ( l + 3 ) C  l - '  V +  8u,+2x/(21 + 1)(21-1) T, 

[. x C"/~ + ~/+2.rx/(21'+ 1)(2/ '-  1)t~tt3] (A.12) 

where the coefficients C , . . . ,  G, I~, ~V L s  are given by 

/) = (1 + ef)(1 + e 'g )  - ee 'h  2 , C = ( h / i f ) ) ,  

E, = e + (IYI/15) ,  ~,LS = [ ( a d  - b c ) / E ) ] ,  

f f T ~ b = ( l + e ' g ) a + e ' h b  , G , b = ( l + e f ) b + e h a ,  

I ~I = eCffTab "4- e 'dGab = e a L d  + e 'bGca.  (A.13) 
As for the transformation formula of the RGM kernel and for the Wigner transform 

in appendix A of ref. 4), it is also convenient to let the coefficients of the GCM 
kernel adhere to the parameterization 

f = f ( ° ) +  Ap2, g = g ( ° ) + A q 2 ,  

a = a (°) - A p m ,  b = b (°) - A q m ,  

d = d ( ° ) - A q k ,  e = e ( ° ) - A m k ,  

h = h (° )  - h p q ,  

c = c (°) - h p k ,  

(A.14) 
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where the A = 0 case generally corresponds to the normalization kernel. Let us again 
use the previous rule 4) that the superscript (0) is always used to denote quantities 
evaluated with h = 0; e.g., 

~5(o) = (1 + e'g(°))a + e'h(°)b, ,~(o) _ (1 + efl°))b + eh(°)a. (A.15) ab L l  ab - -  

Then the coefficient/)  in eq. (A.13) is expressed by 

/~-/~(°)(14- A ~ )  ~ _ "(o) "(o) - , - ( A l , q / D  ) ,  
,~(o) _ ~(o) 4- ^'k~--(°) ab - earpq - e O U p q  . (A.16) 

For the other coefficients ~ = C,/~,/~, G, V, and 17'Ls in eq. (A.13), it is convenient 
to use a component notation ~(o), ~(1), and 4 (2) through 

~__ ~(0) A ~ ( D 4 - (  h )2~(2) 
(A.17) 

14-AK ~ ' 

where the 4 (°) are obtained from eq. (A.13) by the simple replacement: a , . . . ,  h -> 
a (° ) , . . . ,  h (°). The non-zero higher order components ~( ')  and 4 (2) are given by 

"(1) "(0) "(0) "(0) "(0) C - - ( F p q / D  ) (Gp q /D  ) ,  

/~(') = [ / i~)b<o, /5  (°) + m ][ ,4~J)a(o)/ /)  (°) + k ] ,  

~(1)= 1 "(0) "(0) "(0) "(0) "(0) "(0) ~(Fvq /D ){(Fa(%,o)/D )[A~(o,a(o,/D + k ]  
- (o) "(o) ~(o) ~ (o) +(Fc(o)a(o>/D )[A,(%(o)/D + m ] } ,  

~(2)  = t t ,,5(o) / ~ (o )~2  E-O) 
3 \ ' t  pq l a-~ I ~ , 

~r(1)=1 "(o) ~(o)  -(o) ~(o) ~(o) ~(o)  -(o) "(o) ~{[(Fpq/U )(Gc(o)d(o)/D ) + ( G v q / D  )(F~(o>a(o)/D )] 

r ;'(o) ~ A ( o )  + m] X LZ' ia(O)b(O)/U 

+ [(P(,°)//5(°))(G~°)%(o)//5(°>) + (G~,qlD'(°> -(o>)(F,%(o>/D-(O> -<o>) 

r:(o) " 5  ( ° ) + k ] } ,  X [Z4c(O)d(O) / 

• 72> = ~ ( , > # ( , ) ,  

I ~'Ls(1) = 517 "Ls(°) - [(pb (°) - qa(°))k - (pd (°) - qc(°))m]/i~) (°) . (A.18) 

The expression of ~(1)(~(2)) is obtained from that of/5(1)(/5(2)) by a simple change 
F-* O. The explicit h dependence in the coefficients in ¢qs. (A.16) and (A.17) is 
especially convenient for analytic evaluation of the integral over A, which makes 
the formula given here applicable to the RGM kernels with arbitrary kinds of radial 
functions of the two-body interaction, as long as they can be represented by gaussian 
integrals. 

A p p e n d i x  B 

In this appendix, the explicit expressions for/~(0) and It(C; 4 )  of eq. (63) are 
given for each piece of  the (3q)(q~l) and (3q)(q~l) 2 coupling matrix elements and 
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of the pure (3q)-(3q) matrix elements. The spin, isospin, color factors of the 
(3q)-(3q) RGM kernel needed in eq. (67) are also given. 

First, for the (3q)(qcl) coupling matrix elements, the Ii(C; 4 )  of eq. (63) for 
=/~, F, O, I7", or ~,LS are given, through a common unified expression by 

~ - ~  (c(°)) ' " ( l~ ' )~)  

[ "o" 2 r + l  4 (.) 2 r + l  4 (:) ] 
x /5~  ~ ' - - -  - - 4  . (B.1) 

L 2 r+3  1 3 + 5  2 r+5  (13+5)2J 

The necessary coefficients,/~(o), t~, ~(o), ~(1), ~(2), are given through eqs. (A.13), 
(A.16), (A.18) in terms of the coefficients f ( o ) , . . . ,  m given in eq. (11) of ref. 4) as 
simple functions of xyuv and a/7 for each 6/9/. In eq. (A.13) the expressions of the 
coefficients /~(o) and 4(0)( = (~(o), /~(o), ~(o), (~(o), ~.(o), or ~:LS(O)) are obtained by 
the simple replacement: a , . . . ,  h -) a (°), . . . ,  h (°). 

For the (3q)(qq): coupling matrix elements, Iz(C;/~) is given by 

, 1 , +  ,/7( ) ]  
I_r=O \ r l  ~ --2mc~ ~ ' 

(B.2) 

where ~(o), ~, and /~(o) are given by 

C(°)=, , /~[1-~(x+u)] / f f ) ( ° ) ,  ~¢ = 8x_,.,~ (e//~(°)),  

1 9 ( ° ) = l - E i [ 1 - ~ ( x - u ) + & ( x - u ) 2 ] - e e ' ~ [ 1 - ] ( x + u ) ]  2, (B.3) 

for each P = xyuv. 
For the (3q)-(3q) matrix elements, one should use 

" 2 (1+ 3)( C(°))1[1 - e - e '+~ ee ' ] / /~ (°) ( K  

[ I~(C; E) = \ 3 - - ~ ]  ~ , ( o ) _3+~ j  for O = GC 

( 3 ) '/2 ( : )  ( -  l'lr / t~(1) ' r  ~ ~; ' . ,  ~,(o)~,-,/-- / 
,=o 2 r + l  " " \ 3 + 5 /  CC,  

for/2=LS, ,:o 7777- - t3-7-g: 

/ ' ( C ' ~ ) : ~  3 - ~  ~ ( l ) ( - - 1 )  r (t~(°)) '-r for/7 = T ,  (B.4) 
,=o \ r l  \3  + o'~/ 

where ~ = I~, /~, or t~ for the tensor term. The coefficients /~(o), ~, ~(o), (~(~), and 
are expressed by 

1 t /~(o) = 1 - ~ e e  , (~ = [ep2+ e'q2+Eee'pq]ll~(°) ,  

~(o) = ~(1//~(o)), ~(1)= ~(o)(~ +3pq) ,  

~r -'~'~ i C(1) , F = ½ [ f ( ° ) ( 3 P + e ' q ) ] 2 ,  G=~[C(° ) (aq+ep)]2 ,  (B.5) 
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in terms of  p and q given in eq. (66) for each exchange type S r = E, S, D+, or D_, 
The necessary spin, isospin, color factors XN, X~, X~- s, and X~ in eq. (67) are 

given, in terms of the matrix elements of  (o"1 • ~2) [2S(S+ 1 ) - 3 ]  and (¢1 • ¢2) 
[2T(T+ 1) - 3], through ~s,17) 

X N = - - ] [ I + ~ ( o h  0"2)+~('rl 'r2) 25 
• • +~(o,.~)(.~,.~-2)] 

XE=~[1 +~(e q ¢r2) + ~ ( , r ,  65 • • " r 9  + ~ ( , r l  • , r : ) ( ' r ,  • " r 2 ) ] ,  

~ [ 1 - ~ - ~ ' ~  (0"  1 " 0"2)- [ -1(" i"1"  ~ 2 ) " 4 " ~ 7 ( 0 " 1 "  0"2) (~1  " ~'2)]  , X D  + = 11 5 

XD_-----~[1 + h ( O l "  o 2 ) + ~ ( ' r , "  "T2)-~" 7 -~9(0"  1 " 0 ' 2 ) ( ' I "  1 " ~ 2 ) ] ,  

L S  L S  1 5 XD+ =--~[1 + ~ ( ' r l  "r2)], • , • X D  = ~ [ l + ~ ( ' r ,  "t~)] 

L S  1 7 Xs = ~[1  +~('rl • "r2)], X T= - h i 1  -~('r,  • 'r2)], 

X T ' r l + ~ ( ' r ,  'r2)], x T _ = ~ [ I + ~ ( " r l  ~ t : ) ] .  (B.6) D+ = T6gt  • 

Appendix C 

In this appendix, we will derive a compact expression for the gaussian matrix 
elements of  the one pion tensor force when the form factor of the coupling constant 
is assumed to be gaussian, g2(k)= g2 exp (-i lk2).  As is discussed in sect• 6, the 
RGM matrix element of  the tensor component  for the Nw type (3q)(qq) coupling 
kernels in the present quark model is replaced with this more realistic matrix element 
by assuming the experimental coupling constant g2NN~ = 14•17 and the (3q) value 
fl = 0•0943 fm2; (see ref. 4), in particular, the crossed curves of fig. 3 of  ref. 4)). 

The one-pion tensor force with the gaussian form factor is expressed by (leaving 
out a trivial isospin factor ('rl • x2)) 

U T --  g2~ m w c 2 ( m ~ / 2 M N ) 2 [ _ D , ~  ( x )  + Z a ( x ) ] S 1 2  , ( C . 1 )  

where $12 is the tensor operator and x = (m ~c /h )R  with a pion m a s s  m~rc 2 = 138 MeV. 
The functions D~ (x) and Z~ (x) = [1 - (3/x)(a/ax)] Y~ (x) with a = (m,~c/h)Efl in 
eq. (C.1) are defined through 

D,~(x)~ 4rr 
y~,(x)j=--(2~)3 f dqe'('r~){l/(ll+q2)} e-'~q~ 

" 1 --3/2 = ~ a exp [ - ( x E / 4 a ) ]  

e a 

where erf is the standard error function. For fl-> 0 these become the standard 
Yukawa functions; viz., Do(x) = 4~r6(x), Yo(x) = e-X/x, and Zo(x) = 
[1 + (3/x)  + (3/x2)] Yo(x). 
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The  matr ix e lement  o f  U T with respect  to the gaussian trial funct ions o f  eq. (54) 
is given by  

MS!( '0 ;  n ' )  (ut(R, JM A ------ n ) ~ r s  (R; spin)) n ) °~s  ( R ; s p i n ) l U r l u r ( R ,  ' "~  ~ 

8 "S "J 2 ~m~c2(m,~/2MN)2Nu,(71; 71') = S1~ 12)ll'g 

6 

6 ] 
+ - ~  J<,+r)/2-1(a; a )  , (C.3) 

where a = ( m , c /  h )( "0 + ~7') -1/2 and 

[ + l' 3 3 , 3 -1/2 
Nu,(*?; ~7') = F ~ - - T + ~ ) [ F ( I + ~ ) F ( I  +~)] 

2 (1+3/2)/2 2. 0, (1'+3/2)/2 

The matr ix elements ($12)~, in eq. (C.3) are given in eq. (62). The funct ion Jp(a; a )  

(p  = 0, 1, 2 , . . . )  in eq. (C.3) is defined by 

I? -x2 Jp(a ;  a ) ~ - [ 2 / F ( p + ~ ) ]  dxx2p+2e Y~,(ax) 

= 1  / 4a 2 ~p+l/2 ~ p[ ( o ¢ ) 2  

a \ a 2 + 4 a ]  ,=o s ! ( 2 p - - 2 s + l ) !  -~  I2(p-~)+l((aZ+4a)l /z) '  (C.5) 

through an integral 

2 
jOXJ e--t2-at • I q ( a ) = - ~  d t t  q (C.6) 

The numerical  values o f  Iq (a )  are most  easily obta ined through a recursion relation 

Io(a) = ea~/4[1 - erf (½a)], 

I~(a) = ( 1 / v ~ )  -½a lo (a )  , 

I q + 2 ( a ) = ½ ( q + l ) l q ( a ) - ½ a l q + l ( a )  ( q = 0 ,  1, 2 , . . . ) .  (C.7) 
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