
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 4,79-94 (1987)

Vision Algorithms for Hypercube Machines*

T. N. MUDGE AND T. S. ABDEL-RAHMAN

Department of Electrical Engineering and Computer Science,
University ofMichigan. Ann Arbor, Michigan 48109

Received April 2 I, 1986

Several commercial hypercube parallel processors with the potential to deliver mas-
sive parallelism cost-effectively have been announced recently. They open the door
to a wide variety of application areas that could benefit from parallelism. Computer
vision is one of these application areas. This paper develops a general model for hyper-
cube machines, and uses it to show how vision algorithms can be executed on hyper-
cubes. In particular, the steps in the problem of thick-film inspection are used as a
concrete example. The time needed to complete a typical inspection is used to demon-
strate the performance of hypercube machines. Experimental results from a hyper-
cube machine illustrate the potential use of such machines. Q 1987 AC&III& press, I~C.

1. INTR~DUCD~N

Simple computer vision (CV) problems such as inspecting a printed circuit
can easily require the processing of 10 Mbyte of data in a few seconds. If the
inspection task is at all complex the processing power required runs into
billions of operations per second. Therefore, in practice only a reduced ver-
sion of such problems is implemented. The required level of processing
power is possible only with a high degree of parallelism.

In the past there have been numerous proposals for massively parallel ma-
chines. Examples of such machines include the Illiac IV [2], which consists
of 256 processors organized as four 8 X 8 arrays; Cytocomputers [171, which
employ a number of identical processing elements that are cascaded in series
to form a pipeline of processing stages; the Massively Parallel Processor
(MPP) [3], which employs a 128 X 128 array of processors interconnected
in a nearest-neighbor topology; the Pyramid Machine [22], in which the

* Thii work was supported in part by the Army Research Office under Contract DAAG29-
84-K-0070.

79
0743-73 15187 $3.00
Copyright Q 1987 by Academic Press Inc.
All rights of reproduction in my form reserved.

80 MUDGE AND ABDEL-RAHMAN

processors are interconnected in a pyramid topology; and the PASM archi-
tecture [191, in which a multipath routing network is used to connect a set
of 1024 processing elements.

Recently several commercial systems offering 1 OO- 1000 processors in a
hypercube configuration have been announced in the super-mini price
range. Intel’s “personal supercomputer,” the iPSC, is an example. It com-
prises 32,64, or 128 processing nodes connected in a regular hypercube to-
pology [9]. The processing node is constructed from a standard 80286 16-bit
microprocessor and 5 12 kbyte of memory. Connections between adjacent
node processors are by point-to-point 10 Mbit/s ethernet connections. I/O
is achieved also by a 10 Mbit/s ethernet connection that links a system man-
ager and all of the node processors. A similar machine is available from
Ametek Corporation [11. The node processor is also an 80286 processor;
however, in addition each node includes a separate 80 186 processor to han-
dle internode messages and can have as much as 1 Mbyte of memory. Up to
256 nodes can be incorporated into a system. Finally, a hypercube machine
is offered by the NCUBE Corporation [8]. It has a custom 32-bit processor
for the node processor that is capable of executing floating point operations.
The connection between adjacent node processors is by point-to-point bit-
serial links, and its I/O structure allows data transfers to/from the cube array
over separate bit-serial links to each node. Its high level of integration allows
systems with up to 1024 nodes to be assembled.

The idea of interconnecting processors in a hypercube topology is not new,
going back to proposals as early as 1962 [20]. In 1975, IMS Associates Inc.
announced a 256~node hypercube made up of 8080’s, but it was never pro-
duced. For the most part however, the idea remained unexploited until the
construction and demonstration of the Cosmic Cube at Caltech in 1983 [18,
23, 15,7]. The hypercube topology yields a regular array in which nodes are
quite close together: no more than log& steps apart, where N is the number
of nodes. At the same time the number of connections from each node to its
neighbors is quite low (also 1ogJV). It thus strikes a balance between a two-
dimensional array in which internode connection costs are low, but the
nodes are far apart (O(G) steps on average), and a completely connected
array in which the internode connection costs are high, but the nodes are
only one step apart. The hypercube topology is homogeneous, in the sense
that all the nodes are identical. There are no special nodes such as those on
the boundaries of mesh connected arrays, for example. It is also possible to
divide a large hypercube array into smaller hypercube arrays, allowing fault
tolerance and making it easy to support multiprogramming [14, 81. The hy-
percube topology can also efficiently embed other regular topologies such as
grids, trees, and pyramids [4,2 11.

This paper develops a general model for hypercube machines, and uses it
to show how vision algorithms can be executed on hypercubes. In particu-

VISION ALGORITHMS FOR HYPERCUBE MACHINES 81

lar, the steps in the problem of thick-film inspection are used as a concrete
example.

The remainder of this paper is organized as follows. The next section pre-
sents a general model for hypercube machines. Section 3 outlines the prob-
lem of thick-film inspection and a set of algorithms to perform it. Section 4
maps those algorithms onto the hypercube model and shows the perfor-
mance of hypercube machines for the algorithms. Section 5 presents experi-
mental results obtained from an existing hypercube machine, a prototype
NCUBE. Finally, Section 6 presents general comments and conclusions.

2. A MODELFORHYPERCUBEMACHINES

There are two broad classifications for models of parallel processing: the
shared memory model that characterizes tightly coupled processing, and the
distributed memory model that characterizes loosely coupled processing.
The shared memory model assumes that the processors have identical mech-
anisms for access to a common memory. The distributed memory model
assumes that each processor has its own memory and communicates with
others by an I/O access. Hypercube machines are distributed memory ma-
chines.

Hypercube machines are constructed from N = 2” identical processors
connected through point-to-point bidirectional links in an n-dimensional
hypercube array, or an n-cube. This hypercube array is in turn connected to
the outside world through an I/O structure. The dimension it is also referred
to as the order of the cube. Hypercubes can be constructed and their node
processors labeled with a unique binary number according to the following
recursive rule. Form a 1 -cube as a system of two processors connected by a
single communication link. Label one processor with a 0 and the other with
a 1. This is the basis step. The general step constructs an n-cube from two
(n - l)-cubes as follows. First, prefix the node labels in one of the (n - l)-
cubes with a 0 so they are of the form Oxx . . . xx. Second, prefix the node
labels in the other (n - l)-cube with a 1 so they are of the form lxx. . . xx.
Finally, connect the two (n - I)-cubes with communication links between
nodes that have labels differing only in their most significant bit. Figure 1
shows a 4-cube.

Several points are worth noting. Nodes connected by a link have labels
differing only in one bit. Each processor connects to the cube through n (or
1ogJV) links. At any point in time up to Nlinks can be in use.

Figure 2 sketches a node processor. For the purposes of our model we will
assume that it consists of a CPU with a cache or register file, main memory,
and (n + 1) bidirectional DMA channels. The first n of the DMA channels
are connected to communication links that join the node processor to its

82 MUDGE AND ABDELRAHMAN

Nodes

InterGode Links

FIG. 1. A 4-tube.

nearest neighbors in the cube. The (n + 1)st DMA channel provides a link
for communicating with the cube I/O subsystem. The channels are bidirec-
tional and can support broadcasting from the processor on from 1 up to
(n + 1) of the links. DMA actions are modeled as buffer transfers that cycle-
steal the bus from the CPU. It is assumed that caching allows the DMA to
proceed so that a fraction LY of the internode communication time can be
overlapped with the node processing; a is termed the degree of transparency.
The I/O structure is modeled as a channel into and out of the cube array
with a bandwidth Of Bi, bytes per second.

The time for an algorithm to run on a hypercube is given by

T(N) = T + Tp + (1 - a)Tc + T,,,

Bidirectional Links

” + 1 DMA Channels

Node Bus

(1)

FIG. 2. Model of a node processor.

VISION ALGORITHMS FOR HYPERCUBE MACHINES 83

where N indicates the number of processors in the cube, Ti the time to input
data to the cube, TP the time to perform the processing at a node, T, the
internode communication time, and T,, the time to output data. These last
four parameters are also, strictly speaking, functions of N. Frequently, we are
interested in ignoring the effects of the I/O subsystem. Then

T(N) = TP + (1 - cy)T,. (2)

The communication time is a consequence of having more than one proces-
sor since TC(1) = 0, but TJk) > 0 for k > 1. Of course, if (Y can be kept
close to 1.0 the effects of T, can be hidden and the overall communication
overhead, (1 - a)T,, kept to a minimum. The communication overhead is
one of the two principal contributors to the intrinsic inefficiency of parallel
algorithms. The other is the dependencies within the algorithm that do not
permit all the N processors to be used all the time. A node processing effi-
ciency of less than 1 .O is an indication of this. This efficiency measure is given
by

E,(N)==< 1.
NT,(N)

If the efficiency of the system, excluding I/O considerations, is given by

T(l)
E(N) = NT(N) 9

then from (2) and (3) and the fact that TC(1) = 0, we can write

E,(N)
E(N) = 1 + (1 -a)(T,(N)/T,(N)) ’

(4)

From (5) we can define a perfectly scalable algorithm as one where E(N)
= 1. In other words, the node processing is 100% efficient,

E,(N) = 1, (6)

and the communication overhead is zero,

(1 - a)T,(N) = 0. (7)

Loosely speaking a perfectly scalable algorithm can make use of large num-
bers of processors without diminishing returns.

84 MUDGE AND ABDEL-R4HMAN

3. THETHICK-FILM-INSPECTIONPROBLEM

To illustrate how a number of typical CV algorithms can be executed on
a hypercube we will consider the steps in the automatic inspection of thick
film (TF) circuits [lo]. These circuits are a network ofconductors and dielec-
trics printed onto a ceramic substrate. The circuits are populated with elec-
tronic components, but, prior to this, and as a quality control step, each TF
circuit is inspected to see if it satisfies a set of geometric specifications. The
geometric check, if passed, increases confidence in the likelihood of the cor-
rect electrical operation of the circuit. The geometric specifications are
phrased in terms of a basic unit of length referred to as a design rule. At
present, typical inspection systems acquire images of TF circuits that have
10 pixels per design rule. This allows defects as small as 0.1 of a design rule
to be detected. A TF circuit is imaged as a composite of about 40 frames
each composed of 5 12 X 5 12 l-byte pixels to obtain the 0.1 of a design rule
resolution. This results in about 10 Mbyte of data to be processed per sub-
strate.

After the data from the imaging device have been input into the cube array,
the TF inspection problem breaks down into the following steps.

1. Tonal mapping. This step is needed if it is required to adjust for un-
evenness or imperfections in the imaging device. It can also be used as part
of an automatic periodic recalibration of the imaging device.

2. Alignment. This step involves translating and rotating the image to a
reference position and orientation. The amount of translation (AX, Ay) and
rotation (A@ is determined by inspecting fiducial marks on the substrate.
Current substrate handlers guarantee that Ax and Ay are less than 3% of the
linear dimensions of the substrate, and that A0 is less than 3”. In present
systems, for performance reasons, this step is performed by mechanically
aligning the substrate.

3. Edge detection. This step applies a simple edge operator, such as the
Sobel operator. Nonmaximal suppression is performed on the resulting edge
strength values to yield pixel-wide edges. An edge following operation with
hysteresis is then carried out to yield a set of closed contours [16,5].

4. Reference check. This step compares the segmented image output
from the previous stage with prestored templates to determine if there are
any geometric violations.

5. Error reporting. This final step interprets the results of the reference
checking. Many types of geometrical errors found by the reference check
do not cause failure in the circuit operation; for instance, a small spur of
conducting material. However, the interpretation of the geometrical errors
requires considerable knowledge about the properties of the TF and its in-

VISION ALGORITHMS FOR HYPERCUBE MACHINES 85

tended operation. It is important to report them but it is not necessary to
reject the circuit. Often nonfatal geometric errors indicate trends in the man-
ufacturing process that are harbingers of fatal errors later. Error reporting
can most naturally be implemented as an expert system. However, in present
systems this is not the case, and the level of reporting is fairly crude. In this
paper we consider only simple reporting.

From the above set of steps, it can be seen that the TF inspection problem
forms a simple paradigm of the CV process in general. There are preliminary
phases of low-level processing where it is required to work on the two-dimen-
sional representation of the image, intermediate-lateloperations such as edge
following that work on noniconic data structures, and a final high-level
interpretive phase where simple elements of machine intelligence are re-
quired [121.

4. MAPPING THE ALGORITHMS ONTO THE HYPERCUBE

The starting point for mapping the steps of Section 3 onto the hypercube
is to subdivide the image among the processing nodes. A natural assignment
is to partition the M X M image into a gray coded tessellation of m, X m2
subimages similar to an n-dimensional Karnaugh map and then to place
each subimage with its like-numbered processor. Figure 3 shows how this
can be done for the hypercube of Fig. 1. This is the data input step. In the
case in which n is even, the subimages are square and ml = m2 = m = Me
2-“j2. In the case in which n is odd, the subimages are rectangular, and ml
= M. 2-(n-‘)‘2 and m2 = M. 2-(n+1)‘2. In either case, the subimages are equal
in size. For simplicity, we carry out the analysis for the case in which n is
even. A similar analysis can be performed for the other case. The remaining
steps in the TF inspection task can then be performed as follows.

Image of M x M Pixels

Assign this
Subimage to
Node 0111

Subimage of m x m Pixels

FIG. 3. Assignment of data to nodes.

86 MUDGE AND ABDELRAHMAN

4.1. Tonal Mapping
This is a simple byte-wise translation of the input image and can be done

by table lookup. It is a scalable algorithm since (6) holds for any table lookup
function and (7) holds because there is no internode data movement. The
time for tonal mapping is proportional to

where t+ is the time for a node processor to perform an additive operation.
We assume that this approximates the time taken to look up an item in
a table.

4.2. Alignment
As a result of translation followed by rotation a pixel at location (x, y) will

move to location (u, u), where

u = (x + Ax)cos(A8) - (v + Av)sin(A@

0 = (x + Ax)sin(Ae) + (y + Ay)cos(A@.
(9

Since A0 is small enough to ignore second-order terms, these equations can
be simplified to

u=x+Ax-(x+y)A8

v=y+Ay+(x-y)A&
(10)

In other words each pixel must undergo six additive and two multiplicative
operations for the coordinate transformation. The values u and u should be
rounded to nearest integers. Strictly speaking a resampling phase should be
conducted to resample the aligned image onto an integer grid. However,
rounding is an approximatism to resampling with nearest-neighbor interpo-
lation. For an image with an initial granularity of 0.1 of a design rule, inaccu-
racies introduced by rounding can be ignored.

We assume that in the worst case the translation requires every subimage
to be transferred to an adjacent node and that the rotation may also require
subimages at the edge of the image to be transferred to an adjacent node (see
Fig. 4). From our earlier observation concerning hx, Ay, and Ae, this sets
bounds on the ratio m/M by implying that m/M > 0.03 and 180m/M > 3”,
respectively. The data movements between adjacent pairs of nodes can pro-
ceed simultaneously; therefore, the upper bound on the time to align the
image is proportional to

2(3t+ + t*)m* + 9m2tr(l - (u), (11)

VISION ALGORITHMS FOR HYPERCUBE MACHINES 87

FIG. 4. Effects of rotation on edge subimages.

where t* is the time for a node processor to perform a multiplicative opera-
tion and tL is the time to move a byte across a link connecting adjacent nodes.
The first term is the time to create u and V. The second term is the time for
three subimage transfers (two for translation and one for rotation) between
adjacent nodes. The factor of 9 arises because we assume 3 bytes need trans-
ferring-the pixel and u and u.

4.3. Edge Detection

A Sobel operator requires that the image be convolved with the two famil-
iar kernels shown in Fig. 5.

Convolution with the left-hand kernel yields the x-direction edge strength
(gradient) pixels, e,. Convolution with the right-hand kernel yields the JJ-
direction edge strength (gradient) pixels, e,,. The strengths e, and e, are com-
bined to give the combined edge strength m and the direction of the
edge, arctan(e,,/eX) - 7r/2. Representing these two values requires 4 bytes
per pixel. Since these. values and the aligned image must exist together, the

-1 0 1 El -2 0 2

-1 0 1

1 2 1 El 0 0 0

-1 -2 -1

FIG. 5. The Sobel kernels.

88 MUDGE AND ABDEL-RAHMAN

combined memory of the nodes must be greater than 5 times the image size
to avoid having to use secondary memory. We will assume the node memory
is sufficient. If multiplication by 2 is implemented as repeated addition, the
convolutions require eight additive operations per pixel. The time for a node
to complete these additions is proportional to 16m*t+. In order to perform
the convolution on the pixels around the edges of a subimage, a pixel-wide
strip of pixels must be copied from the four adjacent subimages. In addition,
four corner pixels must be copied in from two nodes away. Since movements
between pairs of adjacent nodes can proceed simultaneously, the time for
these data transfers is proportional to (4m + S)t,.

When calculating the edge strength, the square root can be performed by
table lookup for the first 8 bits of the result followed by one iteration of the
Newton-Raphson method to obtain a 16-bit result. This requires one addi-
tive operation, one multiplicative operation (a divide), and a right shift (di-
vide by 2). Assuming the time for a shift is the same as that for an additive
operation, square root extraction takes time units proportional to m2(2t+
+ t*). With respect to edge direction, we only need to know if the edge direc-
tion is stronger in the y-direction or the x-direction. The stronger determines
the direction of primary edge strength. This can be accomplished by testing
to see if (e,] > le,,l and then checking the signs of e, and e,,. If comparisons
are counted as additive operations the time for this step is proportional to
3m*t+. The factor of 3 accounts for the need to check signs alter comparing
magnitudes.

Each pixel with greater than zero edge strength is a potential edge point.
Nonmaximal suppression is used to thin the potential edge pixels to pixel-
wide edges. This can be done by comparing the strength of each edge pixel
to that of the two neighboring pixels that are orthogonal to its primary edge
direction. If its strength is less than either of the neighbors it is discarded.
Since every potential edge pixel must be examined, nonmaximal suppression
time is proportional to 2m*t+.

Finally, the pixel-wide edges that do not form closed contours of sufficient
strength must be removed. A strong edge pixel is selected that is above a
predefined threshold T. The pixel-wide edge containing it is followed as long
as no edge pixels occur with a strength of <7/2. Those lines with no edge
pixels above r/2 are removed. The remaining edges form closed contours
that separate the different regions of the substrate and form the pattern that
must be examined for geometrical violation by the reference check. The time
to do this contour generation depends on the number of contour pixels in a
subimage. This can vary from subimage to subimage, with the result that
some nodes have more work to do than others. This class of problems has
been discussed in [111, where they are termedfeature dependent algorithms.
If p is the probability that a pixel is part of a contour we can estimate the
time to generate the contours to be proportional to pm*t+. Again, we have

VISION ALGORITHMS FOR HYPERCUBE MACHINES 89

assumed that comparisons take as long as additive operations. Collecting all
the terms together for the edge detection step yields

(23 + p)m*t+ + m*t* + 4(m + 2)t~(1 - (u). (12)

4.4. Reference Check
Given the previous steps the reference check can be accomplished by sim-

ple image comparison with a foreground and a background template (see
Fig. 6). The templates, which define the reference position and orientation
with which the image was originally aligned, are prestored across the hyper-
cube nodes using the same mapping shown in Fig. 3 for the image. Each
node works independently, comparing the subimage it contains to the two
prestored subtemplates. If the contour is not contained between the tem-
plates the substrate fails the inspection.

The reference check operation is perfectly scalable and requires only that
each pixel be compared with the two templates prestored across the nodes.
The time for reference checking is thus proportional to 2m*t+.

4.5. Error Reporting

Those areas around the contour sections that fall outside of the templates
in the reference check represent geometric errors in the substrate. This must
be interpreted and appropriate reporting done. The time taken for this step
depends heavily on the sophistication of the interpretation required. Cur-
rently, many systems simply report the error and its location. The time to do
this can be ignored compared to the previous steps. We will assume for the
purposes of this discussion that this is how errors are reported.

We have assembled the times from steps I through 5 in Table I. If we
assume 1024 processors, no internode communication transparency, and a

Background

FIG. 6. Reference check templates.

90 MUDGE ANDABDEGRAHMAN

TABLE1
EXECUTION TIMES

Step Time

1. Tonal mapping
2. Alignment
3. Edge detection
4. Reference check

Total

m2t,
2(3t+ + t,)m2 + 9m2tL(1 - a)

(23 + p)m2t+ + m2t, + 4(m + 2)tL(1 - a)
2m2t+

(32 + p)m2t+ + 3m2t, + (9m2 + 4m + 8)(1 - a)tL

substrate image of 10 Mbyte, then m* = 10 kbyte and the inspection time is
approximately proportional to

3 x lo?+ + 3 x 104t* + 9 x 104tr. (13)

In the following section, results obtained from a prototype NCUBE system
are presented.

.
5. EXPERIMENTALRESULTS

The algorithms for the TF inspection problem were implemented on a
prototype NCUBE hypercube system. This section briefly overviews the
NCUBE system and presents the results obtained from that system.

The NCUBE system [14,8] has up to IO24 processing nodes that are inter-
connected in a regular hypercube array topology. The cube array is con-
nected via a set of I/O channels to as many as eight I/O and/or host proces-
sors. The I/O structure allows data transfers with the cube array over separate
bit-serial links to and from each node. These links can support a total data
rate as high as 90 Mbyte/s into or out of the cube.

The processing node consists of a custom 32-bit processor chip and 128
kbyte of high-speed memory. The processor chip is a general-purpose proces-
sor which is capable of executing non-floating-point instructions at about 2
MIPS, single-precision floating point instructions at about 0.5 MFLOPS, and
double-precision floating point instructions at about 0.3 MFEOPS. Bench-
marks (Whetstone [6] and Dhrystone [24]) performed at the University of
Michigan show that the performance of the NCUBE processor chip (10
MHz) is significantly better than that of a VAX 1 l/780 processor with a
floating point accelerator. Figures are shown below.

Whetstones instr/s
Dhrystones/s

VAXl1/780 NCUBE node

426,000 476,000
741 1,249

VISION ALGORITHMS FOR HYPERCUBE MACHINES 91

Communication with other nodes is done asynchronously through 22 bit-
serial links. The links are paired into 11 bidirectional channels. Ten of these
bidirectional channels are used to form the lOdimensional hypercube array.
The eleventh channel provides the I/O mentioned above. The channels oper-
ate at 10 MHz with parity check, which results in a data transfer rate of about
1 Mbyte/s in each direction. Each channel has two 32-bit write-only registers
associated with it. One is the address register, which contains the location, in
the node memory, of the first byte in the message. The other is the count
register, which indicates the number of bytes left to send or receive in the
message. Send or receive operations are initiated by the processor by writing
the address of the first byte in the message to the address register and the size,
in bytes, of the message to the count register (a nonzero count actually trig-
gers the DMA action). The processor then continues with its operations
while the DMA channels complete the communication operation. Interrupts
are used to signal the processor when the channel is ready for a new transfer.

The node operating system, called VERTEX, is a small nucleus that re-
sides in each node. It basically provides communication between the nodes
via a set of send and receive functions that facilitates message transfer be-
tween any two nodes in the hypercube array. The send function has the gen-
eral form

nwrite(length, message, dest, type, status, error),

where length is the length of the outgoing message (the length of a message
can be up to 64 kbyte), message is the name of the buffer that contains the
message; dest is the logical number of the node that is to receive the message;
type is the type of the message, an attribute that is used to distinguish mes-
sages; status indicates when the message has left the buffer message to the
VERTEX buffer area; and error is an error code. The receive function has a
similar general form:

tuead(length, message, source, type, status, error).

nread looks for the first message from source of type type and copies it into
the buffer message. It is possible to specify“don’t care” conditions for source
and type to receive a message regardless of its source or type.

Programs on the NCUBE can be developed in host and node assembly
language or in one of two high-level languages, FORTRAN 77 and C.

The algorithms comprising the TF inspection task were implemented on
a prototype NCUBE system using FORTRAN 77. The programs were run
on a 6dimensional cube with no internode communication transparency.
The communication time between two nearest neighbors in the cube was
found to be independent of the size of the cube. Therefore, appropriate scal-

92 MUDGE AND ABDELRAHMAN

ing of the size of the subimage made it possible to scale the results obtained
from the B-dimensional cube to those that could be obtained from a lo-
dimensional cube. Also, since our prototype was running at 7 MHz, the re-
sults were scaled by a factor of 0.7 to give the 10 MHz equivalent. Table II
shows the scaled execution times for the various steps in the TF inspection
for 40 frames of 5 12 X 5 12 l-byte images on 1024 processors with no inter-
node communication transparency (excluding the I/O time). The figures in
this table reflect not only the basic operations involved in the TF inspection
(shown in Table I), but also all the overhead incurred by the various house-
keeping functions involved in the implementation of the algorithms.

There are a number of factors that contribute to the overhead. One factor
is the additional instructions needed to actually implement the algorithms
(e.g., DO loop instructions and index arithmetic). Another factor is the over-
head incurred by using FORTRAN as the language of implementation (or
any high-level language for that matter). This overhead can be eliminated by
coding the algorithms in assembly language. The last factor contributing to
the overhead is the node operating system. This results in a considerable
overhead in communication time. This overhead can be minimized, in our
application, by designing special-purpose communication routines for the 8
nearest-neighbor topology [131. Preliminary studies suggest that eliminating
the last two sources of overhead can improve the figures in Table II by a
factor of 2-3.

Clock cycle counts suggest that the node processors are capable of per-
forming additive operations in about 1 ps, multiplicative operations in about
10 ps, and internode byte transfers in about 1 ps. Then using (13), the TF
inspection time works out to be about 0.7 s. It is important, however, to
realize that this figure is obtained ignoring all the sources of overhead dis-
cussed above. Thus, it is an extreme lower bound on the performance of the
hypercube, which can be approached only by careful hand coding of the
algorithms.

TABLE II
EXECUTIONTIMESFROMTHENCUBESYSTEM

Step
Time

(s)

1. Tonal mapping 0.09
2. Alignment 1.04
3. Edge detection 1.53
4. Reference check 0.16

Total 2.82

VISION ALGORITHMS FOR HYPERCUBE MACHINES 93

6. CONCLUSIONS

A model for hypercube machines has been developed and its performance
estimated for a characteristic CV task, TF inspection. There was an element
of arbitrariness in selecting the steps needed for TF inspection; however, al-
ternative approaches will probably employ very similar algorithms. Based on
simple operation counts a lower bound of 0.7 s was obtained for the inspec-
tion problem; however, no account was taken of various housekeeping steps
that are needed. The effect of these steps was shown using the NCUBE hyper-
cube system. The results indicate that hypercube machines have great poten-
tial for low- to intermediate-level computer vision algorithms, particularly if
the node processor were optimized for vector processing on subimages
(which is not the case with the NCUBE). Future work will determine their
suitability for higher-level functions, such as those that will eventually be
found in the error reporting step. The fact that hypercubes are MIMD ma-
chines makes them good candidates for this kind of processing.

ACKNOWLEDGMENT

The authors thank the referees for their comments and suggestions.

REFERENCES

1. Ametek Corporation. Hypemet System 14/n, 1985.
2. Barnes, G. H., et al. The Illiac IV computer. IEEE Trans. Comput. C-17, 8 (Aug. 1968),

146-157.
3. Batcher, K. E. Architecture of a massively parallel processor. Proc. 7th Annual Symp. on

Computer Architecture, May 1980, pp. 168-174.
4. Bhatt, S., Chung, F., Leighton, T., and Rosenberg, A. Optimal simulation of tree machines.

Proc. Foundations of Comp. Sci. Conference, Toronto, 1986.
5. Canny, J. F., Finding edges and lines in images. Master’s thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, June 1983.
6. Cumow, H. J., and Wichmann, B. A. A synthetic benchmark. Comput. .I. 19,1(1976).
7. Fox, G. The performance of the CALTECH Hypercube in scientific calculations. Report

CALT-68- 1298, California Institute of Technology, Apr. 1985.
8. Hayes, J. P., et al. Architecture of a hypercube supercomputer. Proc. Int’l. Conf on Parallel

Processing, Aug. 1986.
9. Intel Corporation. The iPSC data sheet. Beaverton, OR, 1985.

10. Leonard, P. F., Svetkoff, D., Kelley, R., and Rohr, D. Machine vision applications in elec-
tronic manufacturing. Proc. Vision 85, Detroit, MI, Mar. 25-28, 1985, pp. 5-99 to 6-116.

11. Mudge, T. N., and Abdel-Rahman, T. S. Efficiency of feature dependent algorithms for the
parallel processing of images. Proc. Int % Conf: on Parallel Processing, Aug. 1983, pp. 369-
373.

94 MUDGE AND ABDEGRAHMAN

12. Mudge, T. N., and Abdel-Rahman, T. S. Architectures for robot vision. In Graham, J. (Pd.).
Specialized Computer Architectures for Robotics and Automation. Gordon & Breach, New
York, 1986.

13. Mudge, T. N., Buzzard, G. D., and Abdel-Rahman, T. S. A high performance operating
system for the NCUBE. Proc. Second ConjI on Hypercube Multiprocessors, Knoxville, TN,
Sept. 29-Ott. 1,1986.

14. NCUBE Corp., NCUBE Handbook, version 0.6. Beaverton, OR, Dec. 1985.
15. Peterson, J. C., Tuazon, J. O., Liberman, D., and Pniel, M. The Mark III Hypercube-En-

semble Concurrent Computer. Proc. Znt’l. ConjI on Parallel Processing, Aug. 1985, pp. I l-
13.

16. Rosenfeld, A., and Kak, A. Digital Picture Processing. Academic Press, New York, 1976.
17. Rutenbar, R. A., Mudge, T. N., and Atkins, D. E. A class of cellular architectures to support

physical design automation. IEEE Trans. CAD of ZC’s and Systems CAD-3,4 (Oct. 1984),
264-278.

18. Seitz, C. L. The Cosmic Cube. Comm. ACM28 (Jan. 1985), 22-33.
19. Siegel, H. J., et al. PASM: A partitionable SIMD/MIMD system for image processing and

pattern recognition. IEEE Trans. Comput. C-30,12 (Dec. 198 I), 934-947.
20. Squire, J. S., and Palais, S. M. Programming and design considerations for a highly parallel

computer. Proc. Spring Joint Computer Conf, 1963, pp. 395-400.
21. Stout, Q. Hypercubes and pyramids. In Cantoni, V., and Levialdi, S. (Eds.). Pyramidal

Systems for Image Processing and Computer Vision. NATO ASI Series ARW. Springer-
Verlag, New York, 1986, in press.

22. Tanimoto, S. L. A pyramidal approach to parallel processing. Proc. 10th AnnualZnt ‘1. Symp.
on Computer Architecture, Stockholm, June 1983, pp. 312-318.

23. Tuazon, J. O., Peterson, J. C., Pniel, M., and Liberman, D. CALTECH/JPL Mark II Hyper-
cube Concurrent Processor. Proc. Znt’l. Conf on Parallel Processing, Aug. 1985, pp. 666-
671.

24. Weicker, R. P. Dhrystone: A synthetic system programming benchmark. Comm. ACM 27,
lO(Ckt. 1984), 1013-1030.

