PRODUCTION AND FRAGMENTATION OF THE D*⁰ MESON IN e^+e^- ANNIHILATIONS AT $\sqrt{s} = 29$ GeV

E.H. LOW ^a, S. ABACHI ^a, C. AKERLOF ^b, P. BARINGER ^a, D. BLOCKUS ^c, B. BRABSON ^c, J-M. BROM ^c, B.G. BYLSMA ^a, J. CHAPMAN ^b, B. CORK ^d, R. DEBONTE ^a, M. DERRICK ^c, D. ERREDE ^b, K.K. GAN ^{e,1}, C. JUNG ^{e,1}, P. KESTEN ^{b,2}, D. KOLTICK ^a, P. KOOIJMAN ^e, F.J. LOEFFLER ^a, J.S. LOOS ^{e,3}, R.L. MCILWAIN ^a, D.I. MEYER ^b, D.H. MILLER ^a, B. MUSGRAVE ^e, C.R. NG ^a, D. NITZ ^b, H. OGREN ^c, L.E. PRICE ^c, L.K. RANGAN ^{a,4}, J. REPOND ^c, D.R. RUST ^c, A. SEIDL ^{b,4}, E.I. SHIBATA ^a, K. SUGANO ^c, R.T. THUN ^b, J.M. WEISS ^{e,5} and D.E. WOOD ^{e,6}

Received 30 October 1986

Neutral D* meson production in c⁻e⁻ annihilation at $\sqrt{s}=29$ GeV has been studied using the high resolution spectrometer. The decay of D*⁰ into D⁰?, where the D⁰ decays into K⁻ π^- , has been observed. The production cross section in units of the point cross section is 0.63 ± 0.22 for fractional energy $Z \ge 0.5$. The fragmentation function is compared with that of the D*⁻ meson measured in the same experiment.

Present understanding of the production and fragmentation of charmed mesons in e^-e^- annihilation derives mainly from the study of the D^{*+} , D^0 and D^+ mesons [1-8]. There is little information about the D^{*0} meson [9-11]. Near threshold the D^{*0} production cross section and decay branching ratios were obtained by performing fits to the recoil mass spectrum in tagged D events which included various D and D* decay channels [9,10]. The only direct observation of the D^{*0} was made by the JADE collaboration [11]. The world average of the $D^{*0} \rightarrow D^0\gamma$

- ³ Present address: Bell Laboratories, Naperville, IL 60566, USA.
- ⁴ Present address: Lockheed Missiles and Space Co., Sunnyvale, CA 94086. USA.
- ⁵ Present address: SRI International, Menio Park, CA 94025, USA.
- ⁶ Present address: ESL, Sunnyvale, CA 94088, USA.

branching ratio is 0.485 ± 0.076 [12], which can be compared to the theoretical prediction of 0.29 [13]. In this paper, we report the observation of the D^{*0} in the decay channel D⁰ γ , with the D⁰ decaying into $K^-\pi^+$. For simplicity, particle states here imply both the particle and its charge conjugate.

The data, corresponding to an integrated luminosity of 300 pb⁻¹, were collected using the high resolution spectrometer (HRS) at the PEP e⁺e⁻ storage ring at a center of mass energy $\sqrt{s}=29$ GeV. The HRS is a general purpose detector, which is described in detail elsewhere [14]. The subsystems relevant to this analysis are the 17-layer drift chamber system and the barrel calorimeter system [15]. Both of these devices are located within the solenoidal magnetic field of 1.62 T. The momentum resolution for high momentum tracks is $\sigma_p/p \simeq 2 \times 10^{-3}p$ (p in GeV/c). The barrel calorimeter is essential for this analysis; it consists of 40 identical modules, each covering a 9° wedge in azimuth (ϕ) and extending over the polar

0370-2693/87/\$ 03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

^a Purdue University, West Lafayette, IN 47907, USA

^b University of Michigan, Ann Arbor, MI 48109. USA

^c Indiana University. Bloomington, IN 47405, USA

^d Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

^{*} Argonne National Laboratory, Argonne. IL 60439, USA

Present address: Stanford Linear Accelerator Center, Stanford, CA 94305, USA.

² Present address: Brandeis University, Waltham, MA 02254, USA.

Fig. 1. K π^+ effective mass distribution for $Z_{K\pi} > 0.4$.

angle region $|\cos \theta| < 0.6$. Each module has two independent longitudinal segments consisting of leadscintillator sandwiches (3 and 8 radiation lengths). Between the segments in each module is a single plane of 14 proportional wire tubes with current division readout, allowing shower location with a precision of 7.4 mrad azimuthally and 8 mrad in the dip angle. The energy resolution for electromagnetic showers is $\sigma_E/E \simeq 0.16/\sqrt{E}$ (E in GeV).

A clean sample of hadronic events was selected by requiring each event to have a minimum of five reconstructed charged tracks and to have a scalar sum of the total visible charged and neutral energy greater than 10 GeV.

No particle identification was used in reconstructing the D^0 meson from the D^{*0} decay and all charged particles originating from the interaction point were taken as both a pion and a kaon. The $K^-\pi^+$ effective mass distributions for $Z_{K\pi} > 0.4$, where $Z_{K\pi}$ $=2E_{K\pi}/\sqrt{s}$, is shown in fig. 1. A clear peak is seen around the D⁰ mass of 1.865 GeV/ c^2 . In further analysis, all K π combinations with $Z_{K\pi} > 0.4$ and with an effective mass between 1.82 and 1.90 GeV/ c^2 were kinematically constrained to have the D⁰ mass; only fits with a $\chi \leq 8$ were accepted. To further reduce the combinatorial background, a decay angle cut of $|\cos \theta_{\rm K}^*| \leq 0.8$ was imposed, where $\theta_{\rm K}^*$ is the angle between the K direction and the D⁰ direction in the D^0 rest frame. Finally, all $K\pi$ combinations which, when combined with another pion from the event, were consistent with being from a D^{*+} decay [2] were rejected. Since the detector has good mass resolution, the number of events with two $K^-\pi^+$

 $(\pi^{-}K^{+})$ entries in the D⁰ region is small.

A photon was defined as an isolated shower in the barrel calorimeter with no associated charged particle. The position of a shower was determined using information from the proportional wire tubes. Three categories of photon were used: a single isolated photon in a shower counter module; one photon sharing a shower counter module with a second photon (in this case the energy deposited in this module was divided equally between the two photons); and one photon and one charged particle sharing a shower counter module (in this case the average energy deposited by a minimum ionizing particle, which is 0.2 GeV, was subtracted from the total energy deposited in the module to determine the energy of the photon).

Since the angle between the D⁰ direction and the photon in the lab frame, α , tends to be small, candidates corresponding to the D*⁰ \rightarrow D⁰ γ decay were required to have $\cos \alpha \ge 0.9$ and further, the energy of the photon was required to be greater than 0.3 GeV. A photon was rejected if it was consistent with being from π^0 decay, defined as $M_{\gamma\gamma}$ between 0.10 and 0.17 GeV/ c^2 . All remaining candidates with $Z_{K\pi\gamma} \ge 0.5$ were accepted.

Because of the low Q value of the D^{*0} decay, the mass difference, $\Delta M = M(K^-\pi^+\gamma) - M(K^-\pi^+)$, was used to enhance the signal since the resolution in it is better than the resolution in mass. The ΔM distribution for $D^0\gamma$ decay is shown in fig. 2. A clear enhancement corresponding to the $D^0\gamma$ decay, is observed around 0.14 GeV/ c^2 . In order to estimate the background, the sidebands in the $K^-\pi^+$ combinations with $1.74 < M(K^-\pi^+) < 1.82$ GeV/ c^2 , and $1.90 < M(K^-\pi^+) < 1.98$ GeV/ c^2 were combined with any photon candidate passing the previously described cuts. This background was parametrized with a smooth function,

$$f(\Delta M) = \alpha_1 (\Delta M)^{\alpha_2}$$

$$\times \exp\{-\left[\alpha_3\Delta M + \alpha_4(\Delta M)^2 + \alpha_5(\Delta M)^3\right]\},\$$

shown as the dashed curve in fig. 2. A Monte Carlo study $[16]^{t_1}$ shows that a photon originating from a π^0 which was not removed by the selection cuts, when combined with a D⁰, results in a peak at around 75

¹¹ Version 5.3 of the Lund Monte Carlo has been used.

Fig. 2. The mass difference, $\Delta M = M(K \pi^+ \gamma) - M(K^- \pi^+)$ distribution for $Z_{K\pi\gamma} \ge 0.5$. The solid curve is a fit to the data and the dashed curve is a fit to the background, both as described in the text.

MeV/ c^2 ; in fact, a hint of such a peak is observed in the data. The data in fig. 2 were fitted with the background parametrization plus a gaussian for the D*⁰ and a gaussian contribution for the photons originating from a π^0 . The central values of the gaussians were fixed to those determined by the Monte Carlo simulation. The fitted widths are consistent with the detector resolution. The resulting signal for D*⁰ \rightarrow D⁰ γ is 49 ± 14 events; the error includes the uncertainty in the background.

In determining the production cross section, corrections were made for acceptance and for initial-state radiation. Acceptance corrections, including all photon selections previously described, were calculated using a Monte Carlo simulation. A center of mass energy of 28.3 GeV was used for the point cross section to correct for initial-state radiation. The production cross sectionw as extracted from the measured number of $D^{*0} \rightarrow D^{0}\gamma$ decays using a branching ratio of 0.485 ± 0.076 [12]. The production cross section times the branching ratio is $\sigma(D^{*0})B(D^0 \rightarrow K^-\pi^+) = 3.79 \pm 1.30$ pb for $Z \ge 0.5$. Using the recent Mark III [17] result on the branching ratio for $D^0 \rightarrow K^-\pi^+$ of 0.056 \pm 0.005, the cross section for D^{*0} at $Z \ge 0.5$ is 68 ± 24 pb, in agreement with the result of 42 ± 8 pb measured for D*+ in the same Z region by the HRS [18]. This D^{*+} cross section was calculated assuming a branching ratio for $D^{*+} \rightarrow D^0 \pi^+ = 0.6 \pm 0.1$. The corresponding R value

Fig. 3. The fragmentation function for the D^{*0} measured by this experiment and by the JADE collaboration (ref. [11]) for $Z_{D^{*0}} \ge 0.5$. The fragmentation function for the D^{*+} (ref. [18]), $Z_{D^*} > 0.2$, is shown for comparison. The curve is a fit of the Peterson fragmentation function (ref. [19]) to the D^{*+} data.

for D^{*0} is 0.63 ± 0.22 , which can be compared with $R(D^{*0}) = 1.4 \pm 0.4$ at $Z \ge 0.5$ measured by the JADE collaboration. The result from JADE, which was recalculated using the new $D^0 \rightarrow K^-\pi^+$ decay branching ratio [17], differs by almost two standard deviations from our result.

Our measurement of the cross section for inclusive D^0 production [18] leads to an upper limit for the D^{*0} cross section at $Z \ge 0.5$ of 73 ± 9 pb, assuming that all D^{0*} s result from D^* decay. Our measured value is in agreement with this limit. Adding the D^{*0} and D^{*+} cross sections, we obtain $R(D^*) = 1.01 \pm 0.23$ for $Z \ge 0.5$. Using the total D^{*+} cross section and the D^{*0} cross section obtained by extrapolating to low-Z regions, we find $R(D^*) = 1.92 \pm 0.46$ for all Z regions. The expected R value at 29 GeV for inclusive charm production for all Z regions is 3.5 using $\alpha_s = 0.17$; this includes 0.7 units from b decay. Our value of R for D* production therefore accounts only partially for charm production.

In order to determine the D^{*0} fragmentation function, the above analysis was repeated for four Z regions. The fragmentation function is compared in fig. 3 with that for the D^{*+} and with the JADE D^{*0} data. The curve is a fit of the Peterson fragmentation function [19] to the D^{*+} data. The D^{*0} results are consistent with that for D^{*+} and is not inconsistent with the results from JADE.

Fig. 4. The mass difference, $\Delta M = M(K^+\pi^+\pi^0) - M(K^-\pi^+)$ distribution for $Z_{K\pi\pi^+} \ge 0.5$. The histogram is the background as described in the text.

In order to search for the decay mode $D^{*0} \rightarrow D^0 \pi^0$, the photon energy cut was reduced to 0.1 GeV to increase the detection efficiency. Combinations of two photons with a mass between 0.10 and 0.17 GeV/ c^2 were taken as π^0 candidates. The energies of the two photons were then constrained to yield the π^0 mass, and combinations with $\chi^2 \leq 8$ for this mass constraint were accepted. The angle, λ , between the π^0 direction and the D⁰ direction in the lab frame is small since the π^0 is produced with very low momentum in the D*⁰ rest frame. At 29 GeV, the energy of the π^0 in GeV is approximately numerically equal to $Z_{D^{*0}}$. Therefore, in order to reduce the combinatorial background, it was required that $\cos \lambda \ge 0.95$ and the energy of the two-photon system, $E_{\gamma\gamma}$, be between 0.4 and 1.2 GeV. Exploiting the fact that the energy of the π^0 is very small in the D*⁰ rest frame, one can calculate E_0 which is the energy of the π^0 in the lab frame, provided that the energy of the D⁰ in the lab frame, $E_{\rm D}$, is known. The energy difference, $|E_0 - E_{\gamma\gamma}|$, was required to be <0.2 GeV, where $E_0 = E_D x/(1-x)$, and $x = M(\pi^0)/M(D^{*0})$. This cut was applied to both the signal and the background region. All candidates with $Z_{K\pi(\gamma\gamma)} \ge 0.5$ were accepted.

Since the detection efficiency for the $D^0\pi^0$ decay is small, only a few candidates for this decay were found. The $\Delta M = M(K^-\pi^-\pi^0) - M(K^-\pi^+)$ distribution is shown in fig. 4. One possible background to the $D^0\pi^0$ decay comes from the decay $D^0 \rightarrow K^-\pi^+\pi^0$, which gives an enhancement in the K π combinations known as the S^0 peak [20] at around 1.62 GeV. Such a $K^{-}\pi^{+}$ candidate, when combined with a π^{0} candidate from the same D⁰ decay would result in a ΔM distribution similar to the one for genuine $D^0\pi^0$ decay. In order to minimize this effect, sidebands away from the S⁰ peak with $1.78 < M(K^-\pi^-) < 1.82$ GeV/ c^2 and 1.90 < $M(K^-\pi^+)$ < 1.94 GeV/ c^2 were used. The background histogram was normalized using four 80 MeV K^{- π + sidebands centered at 1.70,} 1.78, 1.94 and 2.02 GeV/ c^2 . The resulting background is shown as the histogram in fig. 4. The ΔM resolution for the D*⁰ signal is expected to be about 30 MeV from Monte Carlo studies; therefore, combinations with ΔM between 0.1 and 0.2 GeV/ c^2 were considered as D*0 candidates. These selections yielded a signal of 16 ± 11 events after background subtraction.

Assuming that the only decay modes of the D^{*0} are $D^0\gamma$ and $D^0\pi^0$, the resulting branching ratio for $D^{*0} \rightarrow D^0\gamma$ is 0.47 ± 0.23, where the error includes the statistical error and uncertainties in acceptance calculations. This value is independent of the $D^0 \rightarrow K\pi$ branching ratio, since it is common to both $D^0\gamma$ and $D^0\pi^0$ decays.

In conclusion, we have observed the D^{*0} in the decay channel $D^0\gamma$. The cross section $\sigma(D^{*0})$ for $Z \ge 0.5$ is 68 ± 24 pb, and the corresponding R value is 0.63 ± 0.22 , in good agreement with similar D^{*+} results from this experiment, and the D^{*0} results from JADE. The fragmentation function for the D^{*0} is consistent with that of the D^{*+} measured previously. Assuming $D^0\gamma$ and $D^0\pi^0$ are the only two decay modes, the branching ratio for $D^{*0} \rightarrow D^0\gamma$ is 0.47 ± 0.23 , which is in agreement with previous measurement.

This work was supported in part by the US Department of Energy under Contracts W-31-109-Eng-38, DE-AC02-76ER01112, DE-AC03-76SF000998, DE-AC02-76ER01428 and DE-AC02-84ER40125. This experiment was made possible by the support provided by the PEP staff and the technical staffs of the collaborating institutions.

References

[1] HRS Collab., S. Ahlen et al., Phys. Rev. Lett. 51 (1983) 1147.

- [2] HRS Collab., M. Derrick et al., Phys. Lett. B 146 (1984) 261.
- [3] ARGUS Collab., H. Albrecht et al., Phys. Lett. B 150 (1985) 235.
- [4] CLEO Collab., C. Bebek et al., Phys. Rev. Lett. 49 (1982) 610.
- [5] DELCO Collab., H. Yamamoto et al., Phys. Rev. Lett. 54 (1985) 522.
- [6] JADE Collab., W. Bartel et al., Phys. Lett. B 146 (1984) 121.
- [7] MARK II Collab., J.M. Yelton et al., Phys. Rev. Lett. 49 (1982) 430.
- [8] TASSO Collab., M. Althoff et al., Phys. Lett. B 126 (1983) 493.
- [9] MARK I Collab.. G. Goldhaber et al., Phys. Lett. B 69 (1977) 503.
- [10] MARK II Collab., M.W. Coles et al., Phys. Rev. D 26 (1982) 2190.

- [11] JADE Collab.. W. Bartel et al., Phys. Lett. B 161 (1985) 197.
- [12] Particle Data Group, Phys. Lett. B 170 (1986) 1.
- [13] J.L. Rosner, P-wave mesons with one heavy quark, Enrico Fermi Institute preprint EFI 91 (1985), unpublished.
- [14] HRS Collab., D. Bender et al., Phys. Rev. D 30 (1984) 515.
- [15] J.S. Loos et al., Nucl. Instrum. Methods A 249 (1986) 185.
- [16] B. Anderson, G. Gustafson and T. Sjostrand. Phys. Rep. 97 (1983) 33.
- [17] Mark III Collab., Phys. Rev. Lett. 56 (1986) 2140.
- [18] S. Abachi et al., Charm D production in e⁺e⁻ annihilations at 29 GeV, preprint Purdue University PU-582 (1986), unpublished.
- [19] C. Peterson et al., Phys. Rev. D 27 (1983) 105.
- [20] G. Goldhaber. in: Proc. Leptonic session 18th Rencontre de Moriond (1983), ed. J. Tran Tranh Van (Editions Frontières, Gif-Sur-Yvette, 1983) p. 137.