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We discuss the constraints imposed by the unitarity of the S-matrix on the theory of a closed bosonic string propagating 
in a background consisting of a condensate of the string modes. The equations of motion for some of the low mass modes 
are thus obtained to all orders in a' but to second order in a weak field expansion about a flat background. 

Recently, there have been several investigations of string propagation in a background consisting of a conden- 
sate of  the string modes [1,2]; In most of these approaches, the Polyakov path integral formulation of a string 
theory [3] was employed andthe equations of motion for the background spacetime fields followed from the re- 
quirement that the 3 functions of  a two-dimensional nonlinear sigma model vanish. Though this method gives co- 
variant results, higher-order "stringy" corrections are tedious to incorporate. 

I n  this letter, we show how the equations of motion for the background fields may be obtained to all orders in 
a ' ,  the inverse string tension, but to a given order in a weak field expansion about a fiat background. Consistent 
string propagation requires conformal invariance (closure of  the Virasoro algebra) which can be shown to guaran- 
tee the unitarity of  the S-matrix. In our approach the constraints on the background fields follow directly from 
the unitarity of the S-matrix, i.e., from the condition that physical states in the remote past map into physical 
states in the distant future. There is close connection with the string tree amplitude calculations and the operator 
formalism is used to obtain explicit forms of the equations of  motion to second order in a weak field expansion 
for some of the low mass modes. 

The theory of a dosed bosonic string propagating in a background consisting of a condensate of its massless 
modes, the symmetric tensor mode g.~v (X) and the antisymmetric tensor mode B,v (X'), is described by the fol- 
lowing action: 

S = - 1  j dodr  [Vc-~Tafg~v(X) aaX~ a~X v + eO~fBtzv(X ) a,~XU afXVl . (1) 
4rra' 

Here, 3'a# (r, o) is a metric tensor on the two-dimensional world-sheet parametrized by o, r. Henceforth we will 
choose the conformal gauge, set ~' = }, and restrict ourse!ves to 26-dimensional spacetime and to the string tree 
level. Classically, the Virasoro generatorsL n ,Ln and the hamilt0nian may be constructed and it is found that 
the Virasoro algebra doses without any constraints on the background fields [4]. In order to study this theory 
at the first-quantized level, we introduce a weak field expansion around fiat spacetime, i.e., we set guy (X) = 
~7~v + ht, v(X),B~v(X) = buy(X), and regard ht, v(X ) and b uv(X ) as weak fields. The hamiltonian and the Virasoro 
operators may be expanded with respect to these fields and the zeroth-order terms correspond to the usual 
fiat space expressions. The higher-order terms with respect to the weak fields are treated as a perturbation. We 
may now go to the interaction representation where the operators are expressed in terms of the "in" operators 
xu(in) ,  train), which satisfy free equations of motion, The normal mode expansion for xu(in)  is 
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1 i x - ~ l  

- - -  - -  a n  ' x#(in)(r, o) =xU + 2 p~r + 2 n~O n {an~ exp[-in(r  - e)] + ~u exp[-in(r  + a)] } (2) 

and the canonically conjugate momentum, n~ in) = rr-1 rluv aXV/ar. The xU, pV and the oscillators satisfy the 
usual commutation relations [5 ]. From now on, we omit the superscript "in". As mentioned above, the 
Virasoro and hamiltonian operators can be expanded as L n = L fn °) + L (n 1) + "",Ln = L (n°) + L (n 1) + .... H = 
H (0) +H(1) + ..., where the superscript denotes the corresponding order in the weak field expansion. Their ex- 
plicit expressions are 

2,r 2,r 
1 , (3,4) L (0) =~-~ f do exp(-in o) :pu(r, 0)2:,  /7, (0) = 1 4rr f daexp(+ina) :PU(r ,e)2:  

0 0 
2,r 

1 
L(1) __/(1) =4~r f daexp(- in  0):puv(JOPU(r,o)fi'v(r,o):, (5) 

0 

H (0)=L~ O)+E~ 0 ) - 2 ,  H (1) =2L~ 1), etc.  (6) 

In the above, puv(X) = -hm,(X)+ b ~v(X) and 

~'~'(r, o) = (a/Or - alaa) x . ( r ,  o), F .  (r, o) = (a/or + alao) x .  (r, 0) .  (7) 

In (3)-(6) a normal ordering prescription has been introduced. For string propagation in a flat background, 
normal ordering of the oscillator parts in Ln (0) and Ln (0) is necessary in order to get the correct central charge 
terms in the Virasoro algebra [5]. We adopt the same normal ordering for the oscillators in Ln (1) and Ln (1) , how- 
ever, because of the presence ofpuv(X ), we still have an order~g ambiguity for the zero mode part O.e.,xU 
and pU). This ambiguity can be removed by demanding aUpuv(X ) = aVpuv(x ) = 0. As we shall see later, these 
conditions correspond to gauge conditions for the background fields. 

Until now we have only considered condensates of the string massless modes. Tachyon and other massive 
tensor fields condensates can als o be incorporated in our formalism. To do so within a weak field expansion, 
we simply include the corresponding terms in the hamiltonian. For example, if ¢(X) represents a background 
tachyon field, then its contribution is included by adding an interaction hamiltonian, AHtach = (1/270 f do 
X :¢(X):. In general, the total hamiltonian takes the form 

H =H (0) + H  (1) + H  (2) + ... + Zk/-/tach + ~-/1 st massive + "'"-H(0) +HI (8) 

Thus, in a weak field expansion, the form of the interaction hamiltonian for each mass level is essentially given 
by the corresponding vertex operator. 

Let us now discuss what constraints are imposed on the background fields due to the unitarity of the S-matrix. 
Consistent string propagation requires the closure of the Virasoro algebra which guarantees the decoupling of 
the ghost states. For string propagation in a fiat background, if we specify the physical state conditions in the 
usual manner, then, using the Virasoro algebra with the correct central change term, one can show the decoupling 
of the ghost states from the physical spectrum [5 ]. Consider next the analogous problem for a string propagating 
in a background consisting of a condensate of some of its modes. In this case, even though the classical Virasoro 
algebra is satisfied, quantum mechanically, it is valid only if the background fields satisfy some constraint [4]. 
Order by order in a weak field expansion, i tcan be shown that if the Virasoro algebra is satisfied, then the S- 
matrix is unitary [4,6]. In order to make a precise statement of the unitary requirement within perturbation 
theory, we assume that the physical state conditions for the "in" states are specified as in the fiat case, i.e., 

[L~O)(¢in ) + [,~O)(¢in ) - 2]lphys) = O, [L~O)(q, in) -f-,~O)(¢in)l[phys) = O, 

L(nO)(q~in)lphys) = 0 (n > 0), Ln(O)(¢in)lphys) = 0 (n > 0).  (9) 
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Here we have used the adiabatic hypothesis such that Ln, ['n reduce to the flat space expressions L(n 0), Ln (0) a t  
~" --> - ~ .  At intermediate times the string can interact with the background fields and in order to maintain uni- 
rarity, we have to require that at r -+ +~ the physical state conditions are 

[Z~0)(¢in ) +E~0)(¢in ) - 2]Slphys) = 0,  [L~0)(¢in ) -L~0)(¢in)]Slphys> = 0 ,  

L(n0)(~bin)S]phys>=0 ( n > 0 ) ,  Ln(0)(¢in)Slphys)=0 ( n > 0 ) ,  (10) 

where S = T exp [-i  f~= H I (¢in) dr] is the S-matrix. Therefore, the unitarity requirement can be stated thus: 
:Take a physical state ]B> satisfying (9) and consider the matrix dement 

T = <A IL °)S (11) 

with (,4 IL (0) an on-shell state, i.e., (A I(H(°) + n) = 0, but not necessarily a physical state. Unitarity then demands 
that T vanish for any choice of the states [A) and [B). An explicit connection between the above requirement 
and the closure of the Virasoro algebra can be established to each order in a weak field expansion [4,6]. 

Our approach in determining the equations of motion for the background fields consists in expanding the ma- 
trix element T order by order in a weak field expansion and demanding that it vanish. The simplest choice of T 
corresponds to taking n = 1 and the following states for C4 [ and IB)) 

C41=<0,p'lff~, p ' 2 = 0 ,  Ig>=10,p>, p 2 = 8 ,  (12) 

where <0, P'{ and 10, p) are ground states with momenta p' and p respectively. The first-order contribution in the 
weak fietd expansion of T (denoted by T(1)) is readily evaluated and the results for the massless and tachyon 
mode contributions are [omitting an overall 2rr6 (0) factor] 

T(ml)ssless = (- i)  (,4 [L t0)H (1) [B) 

=(--i) f dO~kD(2rr)DSD(p' , , k  puv(k)(Ymassless) , (13) (2~r) - p - k )  1_ 2 . uv,X 

= (-i)  f dDk (21006D(p ' -  p -- k ) ( I k  2 - 1) ¢(k)(Ytach) x . (14) 
a (Zl r )"  

Here, we have introduced the Fourier transformation of puv(X) and ¢(X): 

f dDk ( dDk (p(k):exp(ikX);, (15) 
:p~v(X): = d(27r) D ppv(k) :exp(ikX):, :¢(X): = a(27r) D 

and the tensor structures (Ymassless)U v, h, (Ytach)h are given by 

(Ymassless)VV,h = ½qV [~vh + ½qV ~ (p '_  p)h], (Ytach)X = ½(p'_ p)X, (16, 17) 

with q = -~(p + p'). If we demand that (13) and (14) vanish irrespective ofp  and p' then we obtain the free part 
of the equations of motion for the corresponding background fields. In x-space these are 

02puv(x)=0,  (a 2 + 8 ) ¢ ( x ) = 0 .  (18,19) 

(18) is the free equation of motion for the massless modes, i.e., the graviton, antisymmetric tensor and dilatom 
modes in the gauge OUpuv(x ) = 8 Vpu v (x) = O. In this gauge the trace of Puv (x) represents the dilaton. If we re- 
quire these on-shell conditions on H(1) and z~r-/tach then they reduce to the corresponding vertex operators, how- 
ever, it is important to notice that (18) and (19) arise in our formalism as a result of consistency requirements. 
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The first-order results may be easily extended to the massive modes. For example, the requirement that the con- 
tribution to T (1) fromthe term in the interaction hamiltonian, zSJ-/1 st m assive , vanish, gives the free equation of 
motion (a 2 - 8)M.~, v#(x) = 0, and so on. 

We next consider the second-order term in T (denoted by T(2)). Upon combining with the first-order result, 
this will correspond to the interaction terms in the equations of motion. In this letter, we will only consider the 
contribution to T (2) corresponding to second order in Our(X) and ¢(Y0 (denoted by T~2~ and T~ (2) respectively). 
To(2z) is given by 

Tp(2~ = (-i)  3 ((.4 [L~0)H (1) A-1H (1) [B) - (A IL~0)H (2) [B)) (20) 

where, A = H (0) is the inverse propagator. Consider the second term on the tight-hand side of (20). In theories 
with derivative interactions, one should be careful to distinguishbetween T and T* products. In the hamiltonian 
formulation we must use the T product, whereas the standard string operator formalism corresponds to using a 
T* product. A careful examination along the lines of ref. [7] reveals that the difference between these two prod- 
ucts is cancelled by the second term in (20), in accordance with the Mathews-Nambu theorem [8]. Thus, drop- 
ping this term and using the T* product, we get 

1 ~dDkl dDk2 
GtILt0)H(1) A-1H(1)IB) = _ ~ J ~  (2/r) n Pt~v(k l )  P.#(k2)(2rr) D 6D (19' _ k 1 - k 2 - p) 

1 1 1 ~ 
r ( - 1  - g s )  r ( - 1  - g u )  p ( - 1  - 

(21) 

where 

s = - ( p + k 2 )  2 ,  ~ = _ ( p ' _ p ) 2 + k  2 + k  2, u = - ( p + k l ) ~  , (22) 

and K"u a,Kxut 3 are tensors composed of the invariants s, t, u and the momenta [6]. It can be shown that if we 
use the first-order result k 2 Pup (X 1) = k2 Our (k2) = 0, first, then the above expression vanishes. This is due to the 
gauge invatiance of the massless modes and corresponds to the spacetime Ward identity. However, nontrivial con- 
tributions arise when we set t near one of the on-mass shell values. Then, one picks up the corresponding t-channel 
poles and the above expression reduces to the indeterminate 0/0 form. By using a proper infrared regularization, 
these contributions precisely correspond to the interaction terms in the equations of motion. For t near the on- 
shell values of the tachyon, massless and massive modes, we can thus pick up the corresponding contributions to 
the equations of motion. The infrared re~ularization we adopt here corresponds to shifting the mass shell condi- 
tion for Pu v (k 1), P, v (k 2), i.e., we let (k 1 + m 2) Pup (k l) = (k2 + m 2) Pu v (k 2) = 0, then We take t near one of the 
on-sheU values and at the end consider the limit m 2 -+ 0. T(2£ )" can be treated in analogous manner and below 
we list our results for To(2~ and T¢ (2) when t is near on-mass shell for the massless and the tachyon modes (k = 
kl +k2): 

1 ~ dDkl  dDk2 (2?r)D6D(p, _ k l  - k 2 - p) 
(TP(~)t ~0 = --(--03 4" J ( 2 ~  (2rr) D 

X pu,v,(kl)  pa,¢,(k2) t u'a'u tu'l~'V(Ymassless)uu x, (23) 

, , 1 1 k a '  ) k (k 1 --- k2)"] with tu a u = b?a'u g kU' - rluu' ½ ka '  + ('17 a'u' - ~ k U ' g  

T(2h 1 [ "  dDkl  dDk2 
( o - . t - - 8  = - ( - 0 3  ~ - j  (2rr)o (2rr) D (2r0v 8D(P' - k 1 - k 2 - p) 

-- ~ k~ ~ kv)(Ytach)  x X plav(ki)Pa~(k2)(r~a" - l k a  lku)(rl[3v 1 x (24) 
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1 f d D k l  dDk2 
(T(c2))t~ o = (-i)3 ~ ~ (2r0 D (2rc)DSD(P' - k I - k 2 - p) 

X ¢(kl) ¢(k2)(kluk2v + kluk2u)(Ymassless)UV,2,, 

1 January  1987 

(25) 

(T!2),• 
1 (  dDkl dDk2 

i t - - 8  = --(--i) 3 4 Y(21r)D (2,r)D (2rODSD (t9' -- k l  - k 2  - p) ¢(kl) q~(k2)(Ytach) k" (26) 

From these we note that the t "-- 0 contributions for both T(2~ and T!2) have the same factorized form as T (1) • 
p ~ m a s s l e s s  

and in particular the same tensor structure (Ymassless)~V, k. This enables us to identify the corresponding equa- 
tions of motion consistently. Similar remarks apply to the t " - 8  contributions which give the tachyon equation 
of motion. To second order these equations in x-space are 

a2puAx) = } au~av¢ - [axao(pxopu ~ - & x  PoO + ~ (~xo + ½ a x ~ a~) a~ (a~p~ pux - p~oavpux) 

+ ½ (,7 ~'' + } ~ ~°)~(~.a~a~ -ao~.paO 

+ ~ (@o + ½ a x ~ ao)(rffa + ~ a~" } aa)(auavpo~ axg, - auPoa avpM¢)] , (27) 

(02 + 8) q~(x) = 2¢ 2 + 2(r/a# + } ~a ~ ~,)07au + ~_ 0# ~ ~V)(puvpa# ) . (28) 

The various couplings in the above equations are consistent with the string tree amplitude calculations [5]. 
The equations of motion for the massive modes can be similarly determined by taking the corresponding t- 

channel pole in T(2). For example the pp and ¢~b contributions to the equation of motion for the first massive 
mode can be obtained by taking the t "~ 8 pole in T(~, T(2~. These are 

1 " dDki dDk2 (t9, 
(T~22))t~ 8 = - ( - i )  3 ]--6-J ~ (2~r)D (2rr)D6D -- k l  - k2 - P) 

tat  V~ t 
X pla,v,(kl)pa,f,(k2)MU , a M  # va,(Ymassive)~iaut3,~., (29) 

(T(~2))t~ 8 = - ( ' i )  3 16 J (2~r)D (2rr)D (2rc)DSD(P' -- k l  - k2 - P) 

X l (k  1 - k2) • ~ (k 1 - k2) a ~ (k 1 - k2) v ~(k 1 - k2)/3 ¢(kl ) ¢(k2)(Ymassive)#avB,~., (30) 

with 

M"'a'  a = [ r ~ i ' a ' - } k t i ' l - z ' a ' ~ ( k l - k 2 ) , ~ ( k l  k2)a + ~ 7 ; ' l k , ' ~ ( k l  k2) a # 2 ~ - _ 

, , _ .' ½ka' I- (k 1 +rig ~k"'~(kl-k2).-~." }ka'~(kl-k2)a na -k2) .  

+ off p '  + ~ a ' ~ g '  _ ~  1 ' 1 ' 1 
~?u rla a "'u "~k~* gk  a ~k u ~,ka] , (31) 

(rma,si~o).-~a,~ = } q.  } qa ~6~'- P)~ ~ q~ ½ q~ + .x~ lp~ + . ~  ~- p~. (32) 

The different couplirigs are again consistent with the string tree amplitude calculations. The interaction terms in 
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the equations of  motion for the massive modes correspond to taking t > 0 poles in our approach and would in- 
volve the introduction of nonrenormalizable terms in the action in the Polyakov path integral formulation [9]. 

In conclusion, we have obtained the equations of motion near on-shell for some of the low mass modes of a 
string in background fields by directly demanding unitarity of  the S-matrix. These are consistent with the string 
tree level three-particle couplings for the modes to all orders in a ' .  Unitarity is formally guaranteed by conformal 
invariance [4] and the equations of motion for background fields have been obtained in refs. [1,2] by demand- 
ing the vanishing of the/3-function in a a-model approach. In the a-model approach an explicit coupling of the di- 
taton background to the world-sheet curvature is included, ensuring that the equations of motion from the vanish- 
ing of the/~-function are gauge covariant. On the other hand, we do not include such a coupling for the dilaton 

= 0. As discussed in refs. [10,11] in (1) and the equations of motion derived here are in the gauge a~p~u = a P~v 
in the context of  the string three point function calculation in the same gauge, the states of definite spin (i.e., the 
symmetric traceless graviton, the antisymmetric tensor and the dilaton) correspond to various projections of P,v. 
The spin zero projection in fact just corresponds to the dilaton. A gauge invariant effective action for the three 
massless modes that reproduces the string three point function with massless external legs, to order ~ ' ;has been 
obtained by Nepomechie [ 11 ]. The effective action for the graviton, antisymmetric tensor and the dilaton tha t  
will be obtained from our results will be the same as Nepomechie's to order a ' .  CaUan, Klebanov and Perry [2] 
have shown that the effective action to order a '  in the a-model approach also agrees with that of refs. [10,11] 
up to field redefinitions. 

This work was supported in part by the US Department of Energy. 

References 

[1] E. Fradkin and V. Tseytlin, Phys. Lett. B 158 (1985) 316; 
C. Lovelac e, Phys. Lett. B 135 (1984) 75 ; Rutgers preprint (1985); 
C.G. Callan, D. Friedan, E.J. Martinec and M.J. Perry, Nucl. Phys. B 262 (1985) 593; 
A. Sen, Phys. Ray. Lett. 55 (1985) 1846; Phys. Rev. D 32 (1985) 2102; 
T. Banks, D. Nemeschansky and A. Sen, SLAC preprint (1986); 
S. Das and B. Sathiapalan, Phys. Rev. Lett. 56 (1986) 2664. 

[2] C.G. Callan, I.R. Klebanov and M.J. Perry, Princeton preprint (1986). 
[3] A.M. Polyakov, Phys. Lett. B 103 (1981) 207. 
[4] R. Akhoury and Y. Okada, University of Michigan preprints UM TH 86-2 and UM TH 86-8. 
[5] C. Rebbi, Phys. Rep. 12 (1974) 1; 

J. Scherk, Rev. Mod. Phys. 47 (1975) 123; 
J.H. Schwarz, Phys. Rep. 89 (1982) 223. 

[6] R. Akhoury and Y. Okada, in preparation. 
[7] C. Bernard and A. Duncan, Phys. Ray. D 11 (1975) 848. 
[8] P.T. Mathews, Phys. Ray. 76 (1949) 684; 

Y. Nambu, Progr. Theor. Phys. 7 (1952) 131. 
[9] S. Das and B. Sathiapalan, CalTech preprint (1986). 

[10] J. Scherk and J. Schwarz, Nucl. Phys. B 81 (1974) 118. 
[11] R.I. Nepomechie, Phys. Ray. D 32 (1985) 3201. 

70 


