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Summary 

It has been shown that for any simple fluid, a flow field of the form 
u = - f ~ [ y -  g(z)], v = f ~ [ x - f ( z ) ] ,  w = 0, which is appropriate for model- 
ing the flow in a orthogonal rheometer, is dynamically possible. The func- 
tions f ( z )  and g ( z )  depend on the choice of constitutive equation. In the 
present paper, these are calculated for a class of K-BKZ fluids which exhibit 
shear thinning. The results are then used to study the interaction of shear 
thinning and inertial effects on the flow field in an orthogonal rheometer. 

1. Introduction 

The flow of viscoelastic fluids in an orthogonal rheometer has been 
studied by  various authors (cf. Maxwell and Chartoff  [1], Blyler and Kurtz 
[2], Goldstein and Schowalter [3] and others). A more complete list of 
references can be  found in [4]. The early investigations primarily ignored the 
inertial effects. Abbo t  and Walters [5] were the first to incorporate the 
inertial effects and they obtained an exact solution in the case of the 
classical linearly viscous fluid. In the case of a more general viscoelastic 
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fluid, they employed a perturbation analysis assuming the offset between the 
axes to be small. In the case of an incompressible fluid of second grade (cf. 
Truesdell and Noll [6]), Rajagopal [7] has included inertial effects and has 
established an exact solution. 

Recently, Rajagopal [4] showed that for any simple fluid, the flow field 

u =  - ~ [ y -  g(z) ] ,  

v=~2[x-f(z)] ,  
W -~- O,  

which is appropriate for modeling the flow in an orthogonal rheometer, is 
dynamically possible.* In particular, Rajagopal [4] showed that the velocity 
field is characterized by the two functions f(z), g(z) which satisfy a system 
of non-linear second order differential equations and thus the no slip 
boundary conditions are sufficient for determinacy. The form of the dif- 
ferential equations depends on the choice of the constitutive equations. 
Rajagopal and Wineman [9] used this result to study the effect of inertia on 
the flow of a special subclass of K-BKZ fluids in an orthogonal rheometer. 
This subclass is a generalization of Lodge's rubber-like liquid [10] and 
exhibits no shear thinning. Rajagopal and Wineman [9] obtained an exact 
analytic solution for this case, which makes it one of the few known 
non-trivial exact solutions involving the flow of a fluid characterized by an 
integral model. They showed that large deviations from the classical non-in- 
ertial solutions would occur if the rotation rates or the plate separation are 
sufficiently large. 

In the present paper, the earlier study of Rajagopal and Wineman [9] is 
extended to a more general class of K-BKZ fluids which exhibits shear 
thinning. This work is motivated by several considerations. First, the prob- 
lem under consideration highlights the interplay between shear thinning and 
inertia in a complicated flow. Secondly, since the corresponding equations 
for f(z) and g(z) require a numerical method of solution, this represents a 
numerical simulation of a flow of a viscoelastic fluid represented by an 
integral model. In distinction from other numerical work, the present paper 
uses a semi-inverse technique in which the velocity field is specified a priori. 
When numerical difficulties arise, they can be traced to the development of 
a boundary layer at the plate of the orthogonal rheometer, or to unusual 
properties of the constitutive equation. 

A brief treatment of the kinematics and the equations of motion is 
presented in section 2. The particular choice of a shear thinning K-BKZ 
fluid is introduced in section 3. Two material property functions arise which 

* Essentially the same result has been established independently by Goddard [8]. 
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are analogous to the real and imaginary parts of the complex modulus, but 
which depend on the shear strain amplitude. The boundary value problem is 
defined in section 4. Also in this section, expressions are developed for the 
error when inertia is neglected in the formula for finding the material 
properties from the experimental data. The computation of the material 
property functions, and their general characteristics, are discussed in section 
5. In section 6, a numerical method for solving the boundary value problem 
is outlined. Numerical results are presented and discussed in section 7 using 
data which are typical in experimental applications of the orthogonal 
rheometer. 

A study of this problem has also been carried out by Rajagopal et al. [11]. 
They use another class of integral models which exhibit shear thinning. 
However, the goals of the study and the method of solving the governing 
equations are quite different. Their interest is in the qualitative properties of 
the solution of the governing equations, whereas the interest here is in a 
detailed study of the interaction of shear thinning and inertia and the 
determination of corrections due to inertia. 

2. Kinematics and governing equations 

An idealized orthogonal rheometer is shown in Fig. 1. The plate sep- 
aration is 2h, the distance between the axes of rotation is 2a and the angular 

t Iz 
2h 

Fig. 1. Schematic drawing of an orthogonal rheometer. 
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velocity of the plates is fL The coordinate system is as shown. Rajagopal [4] 
assumed a velocity field of the form 

u =  - a ( y -  g(z) ) ,  v = a ( x - f ( z ) ) ,  w = 0 ,  (2.1) 

where u, v and w are the x, y and z components of velocity, respectively. 
In this velocity field, the fluid layer at z = constant undergoes a rigid body 
rotation about the point ( f (z ) ,  g(z)). The relative motion, relative deforma- 
tion gradient and other quantities of kinematic importance can be obtained 
from (2.1) by a lengthy but straightforward computation. The relevant 
results for the fluid model under consideration will be presented in the next 
section. 

For this motion, Rajagopal [4] showed that the stress T in an in- 
compressible simple fluid can be expressed as 

T= - p l  + R(A 1, A2), (2.2) 

where p is the indeterminate scalar arising from the constraint of in- 
compressibility and A 1 and A z are the first two Rivlin-Ericksen tensors [6]. 
Since the latter depend on f ' ( z )  and g'(z) where the prime denotes 
differentiation with respect to z, (2.2) can be rewritten as 

T= - p l  + R ( f ' ,  g'). (2.3) 

Let (2.1) and (2.3) be substituted into the equations of motion, and let it 
be assumed that the body force is conservative and derivable from a 
potential. After operating on the equations of motion by the curl operator in 
order to eliminate p, one obtains the equations 

dRx3 
dz =Pf~Zf(z) + q (2.4) 

and 

dR23 
d z  = p 2g( z ) + s '  (2.5) 

where q and s are constants. The existence of asymmetric solutions associ- 
ated with q 4:0 and s 4= 0 and the qualitative properties of eqns. (2.4) and 
(2.5) are discussed in [11] for a class of integral models. In fact, Berker has 
exhibited the existence of a two parameter family of asymmetric solutions 
even in the case of a Navier-Stokes fluid [12]. An expression for p can be 
easily obtained and is presented in [9]. In this paper we shall study the case 
q = 0 and s = 0, which implies mid-plane symmetry. 

Equations (2.4) and (2.5) are two non-linear ordinary differential equa- 
tions for f ( z )  and g(z). The appropriate boundary conditions arise from the 
adherence conditions on the upper and lower plates of the orthogonal 
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rheometer. Since the centers of rotation of the plates at z = + h  are at 
( f (  +h), g( +h)) = (0, +a), the boundary conditions on f ( z )  and g(z) are 

f ( - h )  = f ( h )  = 0, g ( - h )  = - a ,  g ( h ) = a .  (2.6) 

Due  to the symmetry of flow about z = 0, it is sufficient to consider only the 
region 0 ~< z ~< h. Alternate boundary  conditions for the problem are then 

f ( 0 )  = 0, g (0)  = 0, f ( h )  = 0, g ( h )  = a.  (2.7) 

3. Fluid model 

We shall study the flow of a K-BKZ fluid (cf. Kaye [13], Bernstein, 
Kearsley and Zapas [14]) in the orthogonal rheometer. In order to present 
this framework, let F,(~-) denote the gradient of the particle coordinate x(~') 
at time ~- with respect to the coordinate x(t) at time t, i.e. in a Cartesian 
coordinate system, Ft(~-)ij = OXi('r)/~)xj(t ). The strain tensor Ct(¢ ) is de- 
fined by 

Ct(~- ) = FtV(¢)Ft (~-), (3.1) 

and its principal invariants are 

Ii(t,  I-) = tr CZI(~-), 

I2(t, ~-) = tr C~(~-). (3.2) 

A K-BKZ fluid is characterized by the stored energy potential function U 
which depends on I 1, 12 and t - r, i.e. 

U= U(I,, 12 , t - r ) ,  (3.3) 

and the stress T is given in terms of U by 

T = - p l  + 2ff 
where 

U 1 = aU/aI1, 

{U~C,-'(T)- U2C,(¢)} dT, (3.4) 

u2 = av / a I2 .  (3.5) 

For the motion based on (2.1), 

I l = 12 = 3 +.2(1 - cos ~2(t - r ) ) x  2 

= I ( ~ ( t - ¢ ) ,  x) (3.6) 

where 

x2 = ( f , )2  + (g,)Z. (3.7) 

The fluid motion is such that each material particle moves on a circular 
path in the plane z = const., and undergoes an oscillatory shear strain 
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history. The amplitude of the shear strain is proportional to x. The shear 
stress components Tx: = R13, Ty z = R23 in eqns. (2.4) and (2.5) are given by 

T~.= B(x, a)f '(z) + A(K, a)g'(z), 

Ty~= -A(x ,  a) f ' ( z )  + B(x, a)g'(z),  

where 

fo = -  A(x, a ) =  2 u(I(as ,  x); s) sin as  ds,  

fo ~ -  B(x, a )=2  u ( i ( a s , , , ) ; s ) ( l - c o s a s ) d s  

and 

8(1, s) = Ul(I, I, s) + U2(I, I, s). 

(3.8) 
(3.9) 

(3.1o) 

(3.11) 

(3.12) 

The particular choice for U will be that developed by Wagner [15] from 
experimental data on shear flows. This model predicts shear thinning 
response in steady shear flow experiments. It is given by 

1 dG(s)  exp(_n/2~-Z-~) ' G=0,  u~= 2 as (3.13) 

where G(s) is the shear stress relaxation function in the linear viscoelastic 
regime and n is an experimentally determined constant. For low density 
polyethylene melts, n = 0.29. 

Substitution of (3.13) into (3.10)-(3.12) gives 

A(x, ~2)= - fo°°d(s) exp(-nx(2(1-cos P.s) ) sin f~s ds, (3.14) 

B(K, a ) =  - f o~d ( s )  exp(-nx~2(1 - c o s  a s ) ) (1  - c o s  a s )  ds. (3.15) 

Note that 

l imA(x,  fl) = -f°~(~(s) sin as" ds = G2(tl ), (3.16) 
g--*0 J0 

lim B(x, tl) = - / ° ° d ( s ) ( 1  - cos ~2s) ds = Gl(fl ), (3.17) 
g--~0 ao 
where Gl(12) and G2(~2 ) are the real and imaginary components of the 
complex modulus in linear viscoelastic response. 

The results in [9] correspond to the case in which n = 0 in (3.14) and 
(3.15). In order to relate the results in the present work to those in [9], the 
relaxation function G(s) used in [9] will also be used here. Thus, G(s) is 
taken as that for a 19.3% solution of polyisobutylene in cetane for which 
experimental stress relaxation data were provided by L. Zapas of the 
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TABLE 1 

Stress relaxation data for a 19.3% solution of polyisobutylene in cetane (P -- 900 kg/m 3) 

Time (s) Relaxation function value G(t) (Pa) 

0.0 800.0 
0.2 562.0 
0.5 340.0 
1.0 213.0 
2.5 86.0 
5.0 38.0 

10.0 14.6 

National Bureau of Standard [16]. The data are listed in Table 1. The value 
G(0) = 800 N / m  2 was obtained by extrapolation. For s >/10 seconds, G(s) 
was approximated by a linear extrapolation to zero. A natural cubic spline 
was fitted to the data in Table 1 in order to generate a representation for 
G(s), 0 <~ s <~ 10. 

4. The boundary value problem 

The system of equations for f (z)  and g(z) is obtained by substituting 
(3.8) and (3.9) into (2.4) and (2.5), in which q = s = 0. This gives, 

d { B ( x , f ~ ) ~ + A ( K  f ~ ) - ~ } = p ~ - I f ,  (4.1) 
dz  

dz -A (x ,  a )  + B(x, a) =pa2g, (4.2) 

where ~, A and B are given by (3.7), (3.14) and (3.15), respectively. The 
boundary conditions are stated in (2.7). 

Let t x and t,. denote the x and y components of the tractions on the 
upper layer of fluid. By (3.4), (3.8) and (3.9) 

tx= B(ff, f t ) f ' (h)  + A(ff, ft)g'(h), (4.3) 

t~,= -A(ff ,  f~)f '(h)+ B(E, ~)g'(h), (4.4) 

where 

E= K(h)=  [ f ' ( h )  2 + g'(h)2] ,/2 (4.5) 
The material properties A(E, f~) and B(E, f~) are then expressed in terms 

o f t  x and ty by 

1 [txg'(h)-t , . f ' (h)] 
. , 

+ t vg ' (h) ] .  

(4.6) 

(4.7) 
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These expressions are used to calculate the material properties A and B 
when t,. and t v have been measured and f '(h), g'(h) are known. When 
inertial effects are neglected, f ' ( h )  and g '(h)  are, (cf. [8]), 

f ' (h)  =0,  g'(h) =a/h,  (4.8) 

so that ff = g'(h) = a/h. Let the material properties in this case by denoted 
by Ao(ff, fl) and Bo(ff, fl). By (4.6)-(4.8) these are given by 

h 
Ao(~, ~2)= a t , ,  (4.9) 

h 
Bo(k-, a )  = at,.. (4.10) 

Expressions for the relative error in using (4.9) and (4.10) are obtained 
from (4.3), (4.4), (4.9) and (4.10). These are 

A o - A _ h f ,  B (h , ) 
A a A- + a g - 1  , (4.11) 

B ° B - B  a/h .,A [h , 1~ '} - -  - ~-  + ~ a g  - (4 .12)  

in which all quantities are evaluated at z = h. Computations show that I f '  [ 
is generally very small, so that the first terms on the right hand sides of 
(4.11) and (4.12) are negligible. Thus, the relative error in using (4.9) and 
(4.10) to compute A 0 and B 0 depends on how much g'(h) deviates from 
a/h, (or equivalently, how much g(z) deviates from being a straight line). 

Let the following dimensionless variables be introduced: e = z/h, f=  f /a,  
~, = g/a from which it follows that 

a [(<2 ( ~ ,  ~(e) = d~1211/2 
x =  d e ]  + -d-zI ] " (4.13) 

Also let A(~, a)=A(~: ,  a) /8(a)  and B(~, f l )=  B(~:, a)/6(a),  where 
d(~2) = [a,(a)  2 + a2(a)q 1/:. The boundary value problem (4.1), (4.2) and 
(2.7) becomes 

d[/~(~, d f  ^ ^  ~ 2 ) d ~ ] = X 2 f ( , ) ,  
de  a)dT +A(K' 
d [_A(~,a)d/ ~}(~,a)dg]=S2~(e), 

/ (0)  = ~(0) = / ( 1 )  = O, ~(1) =1 ,  

where 

$2= P ~2h2 
d(a) • 

(4.14) 

(4.15) 

(4.16) 
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The dimensionless parameter  S represents the ratio of the physical gap 
length h to a natural length L = [G(~2)/p]l/2/fL Let T R be a characteristic 
relaxation time in shear calculated from the relaxation function G(t). Then 
S can also be written as the product of a Reynold's number  [p~2h 2/(TR~(~2))] 
and a Deborah number  (f~TR). For the discussion of the effect of inertia, it 
is more convenient to regard S in the form S = h/L.  This natural length 
appears in the exact analytic solution obtained by Rajagopal and Wineman 
[9]. When inertia is neglected the natural length becomes infinite and the 
dimensional solution is 

f ( z )  = 0 ,  g(z) = h z. (4.17) 

When inertial effects are small, the gap is very small compared to L and the 
solution in [9] differs from (4.17) by terms of O(S).  This solution shows that 
the importance of inertia increases as h increases relative to L. For a given 
fluid, this occurs when either the gap size h increases or g(f~)z/2/f~ de- 
creases. The latter occurs as f~ increases and G(f~) approaches G(0). The 
solution in [9] shows that the deviation of g ' (h)  from a/h (or equivalently, 
the deviation of g(z) from az/h) increases with S, and so do the relative 
errors in (4.11) and (4.12). In particular, both f ( z )  and g(z) approach zero 
in the neighborhood of z = 0 and become very steep near z = + h. 

Now consider a class of fluids whose relaxation functions G*(s) can be 
expressed in terms of a given relaxation function G(s) by the relation 
G*(s) = GoG(s ) e -~s. As G O decreases or a increases, it follows from (3.16) 
and (3.17) that G(~2) associated with G*(s) decreases for fixed f~ and so 
does the zero shear rate viscosity ~/0 = f~G*(s) ds. For such fluids inertial 
effects become more important.  

The Wagner model given in (3.13) displays these characteristics. As x 
increases the steady shear rate viscosity and the properties A and B defined 
in (3.14) and (3.15) decrease for fixed f~. On the basis of the above 
discussion it can be expected that the consequence of shear thinning is to 
enhance the effect of inertia. This is explored in the next sections. 

5. Material property functions A and B 

Since the material property functions A(x, ~2) and B(x, ~2) are non-linear 
functions of f '  and g', the system of eqns. (4.1) and (4.2) must be solved 
using numerical methods. Any such procedure will require A(•, ~2) and 
B(x, ~2) to be evaluated for a large number  of choices of the argument x. To 
reduce the cost of computat ion associated with a large number  of evalua- 
tions of the integrals in (3.14) and (3.15), A(x, ~) and B(K, ~2) were first 
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computed  for a finite set of values x i for a fixed choice of a .  They were then 
approximated  using a spline interpolation. 

The integrals were first written as a summat ion  of subintegrals each over 
a period of 2~-/a .  Each subintegral was then evaluated using a 10-point 
N e w t o n - C o t e s  formula with an error control  algori thm which was de- 
veloped by the University of Michigan Comput ing  Center. The summat ions  
were t runcated when the (N  + 1)st subintegral w a s  10 - 6  times the sum of 
the first N subintegrals. 

Alternate forms of (3.14) and (3.15) can be derived by integration by parts 
to obtain integrals which are expressed in terms of G(s). In these forms, the 
derivative of 

e x p [ - n x ~ / 2 ( 1 - c o s  a s ) ]  sin a s ,  

which appears in the integral of A(x, a), becomes very large near  s = 2~r i /a .  
Due to this behavior, evaluation of the integral becomes very costly. The 
derivative of 

exp[ - nx~/2(1 - cos a s )  ](1 - cos a s )  

which appears in the integral of B(K, a )  is well behaved. 

Po 
80O 

600 

=40 Rod/sec 

A,B 400 

Linear Approximation to B 

200 ~a 
Linear Approximation to A 

0 , -~ 

o lo 20 3'0 
K 

Fig. 2. Plot of A(~, 40) and B(~, 40) vs. x, with linear approximations on [0,2]. 
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Pa 800 
600 1 

A,B400 ~ ~/.--80 Rad/sec 

200 li~ 
0 1; 2; 

K 
Fig. 3. Plot of A(~, 80) and B(~, 80) vs. ~. 

10 

Values for B(x, ~) computed using the form in (3.15) involving G(s)  
were compared to values computed using its alternate form involving G(s) 
which was obtained by  integration by parts. Agreement was very good. 
Thus, A(x, f~) was computed using (3.14). 

Results for f~ = 40 and 80 r a d / s  are shown in Figs. 2 and 3. For each f~, 
A(x, f~) and B(x, f~) decay rapidly with increasing ~. This shows the effect 
of the exponential in the integrand. The material property functions are seen 
to be nearly linear functions of x, for 0 ~< K ~< 2, so that in this range, 

A(~,  a )  = A l ( a ) x  + A 2 ( a ) ,  (5.1) 

B(x, Bl( )x + (5.2) 
Values for these slopes and intercepts, based on a least squares approxima- 
tion, are listed in Table 2 

TABLE 2 

Approximate slopes and intercepts of the material property functions, A(~, ~) and B(~, ~) 
on [0,2] 

(Rad/s) A x ( fl )(Pa) A 2 ( f l ) (Pa)  B 1 ( fl )(Pa) B2 ( fl )(Pa) 

40 - 8.68 31.86 - 339.3 799.9 
80 - 3.79 15.94 - 339.2 800.0 
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6. Method of solution 

It can be seen from the exact solution in [9] that as inertial effects become 
dominant, f (z )  and g(z) change more rapidly near z = _+ h. For this reason, 
a Runge-Kutta-Fehlberg method was used (cf. [17]) to solve the system 
(4.14)-(4.16). The method provides a means of estimating the error and 
reducing the step size used to control the error. The accuracy of this method 
is of the order of the step size squared. 

Equations (4.14) and (4.15) are not in a form which is appropriate for the 
use of the Runge-Kutta-Fehlberg method because ,4(~, ~2) and/~(~, ~2) are 
non-linear functions of d f / d 2  and d~ , /d£ .  However, these equations can be 
transformed into a system of four first order equations to which the method 
can be applied. Let 6x. and ~i~,~- denote the dimensionless shear stresses 

h h 
6x. = 6vo. = (6.1) 

a G ( ~ ) '  a G(fl)"  

Relations (3.8) and (3.9) can be written in terms of dimensionless quantities 
as 

^ ^ ^ 

6x. = B f '  + A~,' (6.2) 

~ . .=  - A f '  + / ~ ' ,  (6.3) 

where the prime now denotes differentiation with respect to £. Then, by (6.2) 
and (6.3) 

6 2 = M(~, ~),  (6.4) 

where 6 is the resultant shear stress, i.e. 

62 = 62z "[- 6~ 2 , (6.5) 

and 

M(2, ~2)= ~2[.42(~, f]) +/~2(~, f~)]. (6.6) 

It is assumed that M is an invertible function of 2 in the domain of interest. 
Then 

~ = M-1(82, ~). (6.7) 

Let A*(6, ~2) and /~*(6, ~2) be defined by the change of variables using 
(6.7) 

A*(6,  ~ ) = d ( M - l ( 6 2 ,  ~) ,  ~) ,  (6.8) 

/~*(6, f~)= B(M-I (62 ,  ~), ~).  (6.9) 
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Because of the complicated forms of ,4(~, ~) and B(~, f~), it is not 
possible to obtain an analytic expression for the inverse in (6.7). When the 
numerical integration procedure calls for, say, .A*(& ~2) at some value 8, the 
corresponding value of ~ is determined by numerical solution of the non-lin- 
ear eqn. (6.4)..4" is the evaluation at this ~. 

When n = 0  in eqn. (3.13), M(~, ~) reduces to the form M(~, f~)= 
M0(~)~ 2. When n = 0.29, M(~, ~) increases from zero at 2 = 0 to a local 
maximum at some value ~M, and then decays to zero. It was assumed that 
when n = 0.29, the solution would not differ strongly from the solution 
when n = 0. Thus, in the computations which are discussed in Section 7, it 
was assumed that the solution would lie on the branch of M(2, f~) for 
0 ~< 2 ~< x M. However, there may be conditions which lead to multiple 
solutions associated with the use of the branch of M(~, f~) for ~ >/2a4- 

Finally, solving for f '  and g' from (6.2) and (6.3) and using (6.8) and 
(6.9), we obtain 

d? 
d3 - [ / ~ * ( 8 ,  f~)Sx:- A*(8, ~2)Sv:]/A, (6.10) 

d~ ^ 
d3 - [ A * ( 8 ,  ~)Sx~ +/~*(8, fa)ov.l/A, (6.11) 

where 

A = .d*(8, a )  z +/~*(8 ,  a )  2. (6.12) 

Equations (,6.10) and (6.11) are two first order ordinary differential equa- 
tions for f ,  ~, 8x:, By.. The remaining two equations are obtained by 
substituting (6.2) and (6.3) into (4.14) and (4.15) to give 

d ^ S2f, (6.13) 
d - d %  = 

d ^ 
d-zOV: = $2~. (6.14) 

Equations (6.10)-(6.14) are in the standard form for the application of the 
Runga-Kutta-Fehlberg method. These equations, together with the 
boundary conditions (4.16), define a two point boundary value problem. The 
method of integration of (6.10)-(6.14) requires values for 8x.(0 ) and 8,,:(0), 
which are not known. Let vectors { b } and { e } be defined as 

s ,a) 1 ,61,) ( b } =  8vz(0) ' ( e } = ~ g ( 1 ) - I  " 

There is some function [D] such that 

[ D( ( b } )] -- ( e }. (6.16) 
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The correct starting value {b*} is a zero of [D]. The starting value (b*} is 
determined by the quasi-Newton iteration procedure 

{b,+l} = {bi} + [Bi]{ei}, (6.17) 

in which [B~] is obtained by first using Broyden's method [18] to construct a 
rank one update to the Jacobian as an approximation to the Jacobian, and 
then applying the method of Sherman and Morrison [17] to directly compute 
the inverse of this matrix from the original inverse and the updating vector. 

7. Numerical results 

The parameters chosen for this study were typical of those reported in the 
literature on the experimental application of the orthogonal rheometer [1]. 
Results are presented for the plate separation h = 0.01 m and offset ratio 
a/h = 0.1. Results for a larger set of parameters can be found in [19]. The 
values of the dimensionless parameter S defined in (4.16) are S = 0.424 and 
0.848 for ~2 = 40 r a d / s  and 80 rad/s ,  respectively. 

The numerical solution of the boundary value problem (4.14)-(4.16) was 
compared with the exact analytical solution of Rajagopal and Wineman [9] 
for the case where the material property functions are independent of K. For 
plate angular velocities f~ = 40 r ad / s  and f~ = 80 rad/s ,  there was agreement 
to at least 5 significant digits. In all of the computations to be discussed, it 
was found that f never exceeded 10-5 

It will be instructive to first consider the case in which the material 
property functions are independent of ~ (i.e., n = 0 in (3.13)). A plot of ~(2) 
for several values of [2 is shown in Fig. 4. The straight line represents the 
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Fig. 4. Plots of ~(2)  v. • for  .4, B independent of  x, h = 0.01 m, a/h = 0.1. 
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solution ~ = 2, when inertia is neglected, (see (4.17)). Deviation from this 
solution is very small even at ~2 = 80 rad / s .  Inertia causes ~' to decrease 
near £ = 0 and to increase near 2 = 1. 

A convenient quantity for showing the effect of inertia on the stresses in 
the fluid is the dimensionless resultant shear stress 8 which is related to the 
dimensionless shear amplitude 2 and material properties in (6.4)-(6.6). By 
(3.14)-(3.17), and the non-dimensionalization introduced following (4.13), 
8 = ~ when material properties A(•, ~2) and B(~:, f~) are independent  of ~. 
Furthermore,  d f/d2 is negligible so that 8 = d ~ / d £ .  Figure 5 shows 8(2) 
for various values of f~. The vertical line corresponds to the inertialess case 
8 = 1. As f~ increases there is increased deviation of 8 or d ~ / d 2  from the 
inertialess solution especially at 2 = 1, i.e., at the plates of the orthogonal 
rheometer. Consequently, by (4.11) and (4.12), there is increased error in the 
use of (4.9) and (4.10) where inertia is neglected to determine the material 
properties from experimental data. Table 3 lists dimensional values of the 
material property functions and the relative error for these calculations. The 
relative error increases rapidly with fL 

Results for the case in which the material properties depend on 2, 
(n = 0.29 in (3.13)) were calculated for f~ = 40 and 80 rad / s .  Consider first 
the case in which inertia is neglected. In this case, ~ = 2 and it follows from 
(6.4), (6.6), (4.13), and (4.17) that 

6= [A(a/h, f~)2 + B(a/h, f~)2]l/2/~(f~).  (7.1) 

For  each value of f~, this represents a vertical line in Fig. 6. For the material 
model under consideration, the values of this expression are about 0.96 for 
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Fig. 5. Plot of ~ vs. 2 for A, B independent of ~, h = 0.01 m, a/h = 0.1. 
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T A B L E  3 

Values of mater ia l  modul i  calculated with and  wi thout  account ing  for iner t ia  (A,  B - - w i t h  
Inert ia ;  A o, B o - - w i t h o u t  Inert ia;  (h/a = 0.1, h = 0.01 m) 

f~ A A o A o - A B B o Bo - B 

A B 

I. 20 66.175 66.175 - 800 809.45 0.3 x 1 0 -  3 
40 31.861 31.862 3 x 1 0  -5 800 811.9 0.015 
80 15.935 15.936 6 × 1 0  -5 800 847.93 0.059 

160 2.433 2.436 10 3 800 983.37 0.229 

II. 40 30.979 30.994 4 x 1 0  -4 765.38 777.89 0.016 
80 15.531 15.569 2 × 1 0  -3 763.76 813.34 0.065 

III. 40 30.094 30.127 1 . 1 x  10 3 730.71 743.88 0.018 
80 15.123 15.191 4 x 1 0  -3 727.12 779.24 0.072 

IV. 40 21.511 21.534 1.1 x 10 -3 525.17 537.94 0.024 
80 10.784 10.839 5 x 10 -  3 522.73 573.03 0.0962 

~2 in r ad / sec ,  A, A o, B, Bo in Pa 
I. A, B independen t  of t¢ 
II. Actual  mater ial  response ^ 
III. A, B l inear  in ~, slope B 1 ~ - 6 8 0 ,  B,_~= B*_ 
IV. A, B l inear  in ~¢, in tercept  B2 = 560, B] = B~. 

a/h = 0.1, ~2 = 40 rad / s  and ~ = 80 rad/s .  Plots of  ~(~),  when inertia is 
included, are similar to those shown in Fig. 4 and are omitted here due to 
lack of space. The graphs of ~(£) ,  with and without inertia, do not appear to 
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Fig. 6. Plot of 6 vs. ~ for actual  A, B dependence  on  ~. h = 0.01 m, a/h = 0.1. 
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differ by very much. The differences are probably not large enough to be 
detectable by experimental optical methods. Yet the spatial variation of 
d ~ / d 2  cannot be ignored. The combined influence of the spatial variation 
of d ~ / d L  and hence ~, and the rapid decrease of A and B with shear 
amplitude cause significant deviation of 8 from the inertialess case, as is 
shown in Fig. 6. This deviation increases as f~ increases. This is also seen in 
Table 3 which lists the dimensional values of the material property functions 
and the relative error. The relative error is increased by shear thinning. This 
can be explained by considering (6.4), (6.6) and (7.1) at 2 =  1, where 
material properties are evaluated. The value of ~, when inertia is considered, 
is greater than ~ = 1, when inertia is neglected. Because of shear thinning, 
the coefficient of ~, with inertia, is smaller than in (7.1), where inertia is 
neglected. 

As was discussed in section 5, the material property functions A and B 
can be approximated very closely for 0 ~< • ~< 2 by the linear functions (5.1) 
and (5.2), respectively. These expressions were used in a study of the 
dependence of the solution on slopes A~ and B~ and intercepts A 2 and B 2. 
Since B is significantly greater than A for the rotation rates considered, it 
was assumed that B(K, f~) has a greater effect on the solution. The variation 
of A(x,  ~2) was thus related to the variation of B(x,  ~2) by writing 

B(K, a )  =/~IK +/~2, (7.2) 

A ( x ,  f~) = aiBlx + a2B 2. (7.3) 

In (7.2) and (7.3) /~, are the independent variables for the study and 
coefficients a~ are defined as 

a, = A * ( ~ ) / B * ( f ~ ) ,  i = 1, 2, (7.4) 

where A* and B* are the best fit values listed in Table 2. Results are shown 
for f~ = 80 rad/s .  

Numerical results obtained using (7.2) and (7.3) with A~ = A*, /~i = B* 
were very close to the numerical results obtained for the actual material 
model. By varying Bt, one can study the effect of chan~ing the rate of shear 
thinning parameter n in (3.14) and (3.15). By varying B2, one can study the 
effect of changing the zero shear strain amplitude values of A and B, which 
is equivalent to scaling the relaxation function G(t). 

Graphs of ~(2) are again omitted for brevity. The earlier comparison of 
~(2) with the straight line in the inertialess case also applies here. The 
deviation of ~(2) from linearity increases as the slope magnitude I/~11 
increases or as the intercept J~z decreases. The deviation of ~ from linearity 
is much more sensitive to changes in the intercept parameter B2- Figure 7 
shows the effect of varying the slope parameter B 1 for fixed intercept 
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Fig.  7. Plot  o f  ~ vs. 2 for  A,  B l inear ly  d e p e n d e n t  on  ~. h = 0.01 m,  a/h = 0.1, ~ = 80 
r a d / s ,  /}2 = B~ a n d  var ious  s lopes  B 1. 

p a r a m e t e r  B~2 = B~'. Figure 8 shows the effect of varying the intercept 
parameter  B 2 for fixed B~ = B~'. The curves in these figures should be 
compared  with that for fl = 80 r a d / s  in fig. 6. An increase in the slope 
parameter  I /~  I appears to have very little effect on d~,/d£ and the shear 
ampli tude ~. The dominant  effect is to reduce the value of the coefficient of 

in (6.6) and thereby scale down the size of 8. On the other hand,  reducing 
the intercept B 2 c a u s e s  d ~ / d £  to increase near £ = 1 and decrease near 
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Fig.  8. P lo t  o f  8 vs. 2 for  A, B l inear ly  d e p e n d e n t  on  ~. h = 0.01 m,  a/h = 0.1, fl = 80 
r a d / s .  /}l = B~ a n d  var ious  in te rcep t s  B 2. 
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- 0. This results in a complete change in the shape of the graph of 8. As 
seen in Table 3, the relative error is increased by reducing the zero shear 
magnitudes of A and B, or if the rate of shear thinning is increased. 

Conclusions 

The conclusions to be drawn from this study apply only to the particular 
fluid model considered here. However, the study does provide substantial 
insight into the combined effects of inertia and shear thinning in an 
orthogonal rheometer which can be expected in similar fluid models. The 
values of, f~, a/h and h used in this study are representative of the upper 
range of values which have appeared in the experimental literature. For 
these values, the results show that inertia and shear thinning effects are 
becoming important. For larger values of these parameters, inertia and shear 
thinning cannot be neglected. Their importance is amplified as the rate of 
shear thinning increases or as the moduli A and B are scaled down in 
magnitude. 
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