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By studying the effective potential and renormahization group for quasi-super-renormalizable
models 1t 15 demonstrated the models can undergo spontaneous symmetry breaking in a manner
consistent with stability A relation among ratios of masses 15 seen to hold at the minimum of the
potential

1. Introduction

In a recent paper [1] we introduced the notion of quasi-super-renormalizable
theories as those models obtained from fimte, globally supersymmetric theories by
adding arbitrary soft-breaking terms (scalar masses, fermion masses, and cubic
scalar couplings) The gauge coupling constant 1s not renormahzed 1n such models,
while the massive parameters in general require mfinite counterterms, the soft
breakings can be chosen to leave the theories finite, but as these fimteness relations
are not enforced by any known symmetry, such a choice. we argued, would involve
an unnatural fine tuming of parameters For example, one could take any field
theory which has a fixed point and choose the coupling constant to take on precisely
the value at that point. whereupon the theory has a zero beta function. but one
would not 1magine one had a sensible finite theory, as a shght deviation from thus
metastable value would cause the parameter to run with the scale In ref [1] we
showed that the finiteness relations among the soft breakings correspond to an
infrared attractive hypersurface 1n the space of the coupling constants and masses.
and that a small deviation from finiteness grows with energy so that in the
ultraviolet himut there 1s no memory of these relations Such globally supersymmetric
theories are therefore unappealing as prototypes of a fundamental theory that would
be expected to be finmite in the high energy regime But they do have an interesting
feature since an arbitrary set of soft breakings tends to converge toward the fixed
hypersurface 1n the infrared, relations among masses — 1n particular, between boson
and fermion masses — may emerge naturally in the low-energy effective field theory
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[2] Thus quasi-super-renormalizable models offer intriguing possibilities for model
building

In this paper we discuss the effective potential for quasi-super-renormalizable
models Spontaneous symmetry breaking (SSB) does not occur in the models which
are arranged to be fimite [6] - in certain directions the potential due to cubic and
quartic terms 1s flat, so broken symmetry states can be degenerate with the
unbroken phase Adding negative masses-squared. the usual signature of sponta-
neous symmetry breaking, causes the potential to be unbounded from below.
destabilizing the theory But in non-finite models the mass parameters run with the
scale, and a scalar mass-squared may change sign. engendering symmetry breaking
without destabilization As in softly-broken supergravity models [3] the mass could
be positive in the ultraviolet (stabilizing the ground state) but negative in the
infrared (drniving spontaneous breaking of the gauge symmetry)

We first discuss, 1n the next section. the one-loop contribution to the effective
potential As with the Coleman-Weinberg analysis of SSB bv radiative corrections
[4]. this perturbative analysis suffices to establish the phenomenon when the
normalization scale 1s chosen appropriatelv In sect 3 we consider the renormaliza-
tion-group-improved effective potential and demonstrate that SSB is compatible
with stability, 1n fact, the effective potential grows at large scales Fmally, in sect 4,
we conclude with a summary of the possible role for quasi-super-renormalizable
models

2. The effective potential

The model we are studying 15 the softly broken N = 4 supersymmetric Yang-Mills
theory

L=—1F, F* +1(D,A,)(D"') + 1(D,B)(D*B') + {A, DX,

— N (m) e Ay + Ligh [T A=V, (21)

A trace over gauge mdices 1s implied The theory contains six spin-zero fields, four
Majorana fermions, and one massless gauge boson All fields are in the adjoint
representation of the arbitrary gauge group A'= A'“T“ [T T"}=1¢>T, TrT*T"
= C,8“" We can write the potential as

5

{
Vo= imle0, % 37609 04] = g[8 (22)
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Here, 1, j,k=1,2, 6 and K. L=1. .4, are indices for an erstwhile SU(4) or
O(6) global symmetry* imposed by supersymmetry but broken by eq (2.2)
The effective potential 1s, to one-loop order and in the Landau gauge,

Var=Vo+ V1,
where
1 M?
v, = = Str M*1n— (23)
647~ wo

The supertrace, Str, 1s the sum over bosons minus the sum over fermions, weighted
by the number of hehicity states 2J + 1 This form of the effective potential assumes
a renormalization scheme where polynomial terms are absorbed mto the counter-
terms, and one should subtract from 1t the value 1t takes when all coupling constants
vanish (so V; 1s zero for a free theory) The vector, fermion, and scalar mass
matrices are

(M\Zl)”hngfade beegdg

(M;MF)Ia(bL B = (m%)KL3”b8a3~gf”b‘qbf(mff' +I"+mf)

KL aff

+gifece bde(i’j‘f)jj(rij)m aB s
ab
(MSZ)U =m,218”h— C'jl‘fuhcqbcl\ + gz{fawfhde[‘i)‘;ﬂﬁs,,—¢f¢jd]

+ el ) (24)

(In eq (2 3) the trace over Dirac indices has already been factored out )

We are interested in the flat directions of the tree potential, in the absence of soft
breakings, m? = m,=¢,, =0, the potential V; 1s zero only when [¢,.¢]=0, 1e
when the fields are mn the Cartan subalgebra of the group In a flat direcuion,
therefore, the fields ¢, can be taken as diagonal in the above mass formulas Even
so, the terms hinear 1n the fields in the scalar and fermion mass matrices will not be
diagonal, making the effective potential very difficult to evaluate in general The
QSR nature of the theory, however, provides us with a convenient technique for
approximating the effective potential, because mn the absence of soft breakings V|

* This notation 1s related to that of ref [1] as follows If v, v z=1,23 then ¢, =4, ¢ , 3= B..
Cavsz 7= FE o Cytd 43243 = 38 o ('\{ +3:+3 =p)\:’ C 3y = q“:\ ”l%\ = a%l " nl% P E3 T b\:\ * ”Z%‘ 3
+mi =« Iy =g 8.0 I8 =B (1v5) ., Here a and B are the six matrices that span the
space of real traceless antisymmetric 4 X 4 matrices, forming a homomorphism between the funda-
mental representations of O(6) and SU(4) and have an algebra similar to that of the Pauli matrices
[(x‘,a‘]= 72£\l.'a:‘ [B\’Bl]z _ZSXIZB: [a‘a,B‘]:()
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vamshes, suggesting we expand the supertrace about the symmetric theory — an
expansion that will be valid when the fields are large compared to the massive
parameters in the theory
The analysis of the effective potential will demonstrate that for appropriate, but
not very restrictive, choices of the parameters, the theory 1s stable [5] and allows for
spontaneous symmetry breaking via a Coleman-Wemnberg-like mechanism
Symbolically. writing (cf eq (25))

M*=m "+ T+ M> (25)

for either the fermion or scalar mass matrix, with M2’ the matrix for the supersym-
metric theory and 7 the hinear term, we expand 1n the breaking terms

m>+T
g
M

S

StrM*In M-" = StrM“ln[Mz’

1+

m>+T
=StrM*In M*' + St M*In )

MZ/

=StrM*In M*" + Str(m*M~"+ 1T} + O(¢) (26)

(Note TrM>'T=0=Tr TM*In M?'. by symmetry of the matrices )

The second line follows if [m=+ T. M*’] =0, which we will now demonstrate
Consider eq (24) Because we are working n a flat direction the M 2/ matrices are
diagonal in the group space indices 1n the adjoint representation, (7¢)"¢ = —if“",
so fucefbdegipd = (TT?),,¢'¢", lymng in the Cartan subalgebra of diagonal matrices
By the same reasoning the linear (7') terms are diagenal 1n group space Then one
checks that [T, M*’] =0 in the remaining indices, for the scalar matrix, the totally
antisymmetric objects ¢, ,, contracted with ¢;. will either commute past §,, or give
zero when contracted with another field in Mg, and for the fermions one finds,
using a'a’ = BB’ = —4§'" and the commutation relations for a and B matrices (see
previous footnote), that M7 M{ 1s proportional to the unit matrix in the K, L
indices This last statement also gives [mi, M M{]=0 It 1s not true in general that
[m*, M2’] =0, but under the trace the only order ¢ contribution to (2 6) from this
commutator 1s Tr M*'[In M*' (M?*’) 'm>]. which 1s zero

Then using Str M*'In M*' =0,

2y
1

1
Vig=Vy+ ——=Str|({m>. M?} + T*)In p + 3T+ m*M> (27)

647°

This form can also be obtained from evaluating directly the sum of one-loop
graphs, mserting up to two breaking vertices 1n each graph. (but if one absorbs the
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polynomuals from the expansion mnto the counterterms one will be using a different
renormahzation prescription from eq (2 3)) The supertrace 1s over fermions and
scalars only An important result of this approximation 1s that the leading behavior
of the effective potential 1s of order ¢2, so the theory appears stable 1n the directions
where the cubic and quartic terms vamsh, as long as the signs of the masses are
chosen to be positive when the theory 1s renormalized at large scales The full
Justification behind this point mnvolves the renormalization group, as described 1n
sect 3

We now search for a mimmmum of the potential (other than the onigin) For
sumplicity let us examine only the ¢,; direction, 1e ¢, =¢85 — a choice which.
because of the explicit breaking of the original 0(6) symmetry by the soft-breaking
terms, provides a loss of generality, yet which will demonstrate that a global
minimum away from the ongin does exist somewhere m field space, for as
V(0)=0 the fact that V<0 for some ¢ mdicates the existence of such a
minimum, provided V ;> 0 as ¢ goes to mfinity

In the (flat) ¢, direction, take the directional derivative of eq (27) by
multiplying ¢ by a scale factor « and finding « dV/dk Because of homogeneity the
derivative on all terms except the logarithm gives us twice the original expression, so
if we choose the renormalization point g by requiring that ¥, =0 at the minimum,
¢ Of the potential, these terms vanish, leaving to

Weir

S () = ()

K )2Str[2m:Mz’+ T, (28)

647>

where we have used the fact that M’ 1s diagonal 1n the chosen direction, and have
assumed for simphcity that the m? masses are diagonal Employing eq (2 4).

Str2m’M* + T?] = CQ(G)g2[2Tr m? = 2(m?)s; — 8(Trm? + mym,,

1 s
+memg ) + ?((113)_ (rko*)

2

(29)

Recalling that Str M* 1s related to the beta-functions through the renormalization
group equation (see eq (3 1)), it 1s not surprising that the above factor, which 1s
Str M* — Str m?, can be re-expressed in terms of the beta function for the scalar
mass (m*>);; From ref [1] (1n the present notation)

8°C ) . 1
- 1677'2 2Tem” = 8(Trmf+ mf4mf3 + mflmfz) + ?Cu}cz/} (2 10)

B
3
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and therefore

1 )
6—47?Str[2m“M“’ + T = _15[,8”1:‘1 - y(m“)33](x¢“)'. (211)

with y = 2g%C,(G) /167" The mmimum condition (2 8) becomes
(Z—Y)(’712)33+Bm%120’ (2 12)

which 1s the promised relation among masses The term proportional to vy 1s of
higher order at the mmimum (where (m°)y; 1s of order g-, so y(m*~)4; 1s of order
g*) and will be dropped

To see that this 1s indeed a relative mimimum 1n the direction being considered,
we calculate

Vit (Sen) = [ Bo | ($rmn) ™

I/eff(¢m1n): _«lt[Bm:u](qum)l (2 13)

There 1s a munimum if 8> 0 (whereupon m3; <0, as expected) As the relation
(2 12) 18 a restriction only on ratios of masses, and not absolute masses, the scale of
the mmimum can be chosen larger than any values of the parameters, as required
for the approximation to be valid We therefore have a Coleman-Weinberg-like
mechanism of dimensional transmutation. with ranios of masses and massive cou-
plings playing the part of dimensionless couplings The relation at the mimimum
trades 1n one of the free ratios of masses for one less free ratio and an arbitrary
scale. ¢

min

3. The improved effective potential

In order to know if the relation (2 12) 1s consistent with a stable theory we need to
compare a calculation of the effective potential made at two widely separate
scales — the scale of the mmmimum and an arbitranly large scale representing the
behavior at infinity The large logarithms which then occur 1 eq (2 3) when the
fields become large, apparently causing a breakdown of perturbation theory, are
controlled by redefining the renormalization scale, p. leading to a new and renor-
malization-group-improved effective potential In particular we require that the
scalar mass (m?);, be able to run with scale so that it 1s positive at large ¢ but
becomes negative as 1t approaches the chosen scale of the minimum

The renormalization group equation obeyed by the exact eftective potential 15

ad dJ

dJ
By e = V(97N ) = 0 31
4o Bp(ﬂp Ly (o N, u) (31)
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(there 1s no gauge parameter in Landau gauge), where A, 1s the set of masses and
massive coupling constants The anomalous dimenston, which 1s the same for all the
fields because of the O(6) symmetry of the unbroken theory, depends only on the
gauge coupling g, to one loop we have y=2g?C,/167> The solution to this
equation 1s therefore simplified because of the QSR feature 8, = 0, so the anomalous
dimension 18 a constant

The equation 1s solved using Cauchy’s method of characteristics The solution can
be written as

V(e N, p)=V]o“e " A (A 1)].

with
t= —lnf—,
Mo
d _ -
EAP()\q,t)=BP[>\q(>\,t)], (32)

where V 1s any function and Lo 18 an arbitrary value at which the mitial conditions
are defined

A (N0) =7,
V[ a A, (X0)] = P02 A,) = V(9 X tg) (33)
The solution 1s checked by mserting 1t into (3 1) and using the deducible equation
X, o

A e
B"()axp dat 0

For field magnitudes on the order of u, we already have a one-loop approxima-
tion to V. Let ¢ be a value of the field at which Vi 1s equal to the tree potential

V(68 N, o) = Vol(o@) (3 4)

The choice of ¢ selects out a direction 1n field space We find an expression for the
potential at all scales in this particular direction by using dimensional analysis

V(kog A, o) = V(66 A, /k, 8. po/K ).
Ap/x‘=‘(m,zj/xz.mf/x,c,,,\/x). (35)

and then employing the solution (3 2) at these values of ¢. A, and p, and using the



470 M B Ewmhorn, G Goldberg * Spontaneous sy numetry breahing

fact that g does not run

V08N, /k. g/ ) = Vo ™ A, (A/x. 1), g]
t=—In(p,/c)/py=Inx (36)

So as we scale along this direction the result 1s

bkl Ay ) = eJ”L;)[qbg‘e Y’,XL/(Ae ). g] .

t=Inx (37)
As the running couplings are homogeneous in the massive parameters [1] we have,
7\[,(%. Kot)= k*‘sl’xp(k.l). 8, = dimension of X =1 or2

If ¢§' 15 chosen to be a flat direction, the tree potential reduces only to the mass
term

(kg Aogrg) = Lo PR (A 1)aga 38

We now seek a mimimum along this direction by differentiating with respect to &
(equivalently, 7). if we choose a single O(6) direction, such as ¢¢' = ¢ud'" the
arbitrary point ¢, drops out, leaving

201 —y)m (A 1) + B,z [AMA.1)] =0. (39)

miy

which at =0 15 1dentical to the previous perturbative result (2 12) if we choose
¢y = ¢n (and agamn drop the higher-order y term) Our interest here 15 1n the
behavior of (3 8) for large fields, t=1Inx — o Scaling up from the minimum to
large fields one finds the leading behavior of the running masses to be. e g,

1 2 2 ap - 12g1(‘1 B
48‘22 [((1//\’ +(L1/’§) ]e - b‘ 1677-2 —6'Y

mis (1) ~

and similar equations for the other scalar masses, the coefficient 15 positive,
indicating that for large enough fields all masses will be positive. insuring stability
The converse 1s not true, 1e. not all values of positive masses at large initial scale
t =0 will run so as to satisfy the minimum condition at some ¢ <0 The condition
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(39), 1n terms of these mitial values, 1s

mi= 24 (v+ 1]

4

1
x {[(v +i)er = ifsum? + {(b+ 1)e i - (b + 1>e"’]( %gz)(c,n“

+[(b+;>e2b'—%](l—;g—z)(c3]k>z

1
+[4— fe o (14 y)bre”] ( 62 )(C,,Ac(f),,A)} , (3 10)

where Str’m?* = Str m* — m3,;. and C,,, 1s related to the mmtial values of the cubic
couphngs. ¢, ,, by C, y = ¢, , = c(f), 4 with ¢( f) the finiteness-condition values [1]
At t = 0 any mmtial values for the parameters other than (m?),, may be chosen, with
the allowed values of (m?),, that will result in a minimum being given by letting ¢
on the right-hand side of (3 10) range over all values — 20 <r <0 ~ with everything
subject to the further restriction that the scalar masses be positive at 1= 0, and 1f
3,(¢) 18 less than zero at that value of 7 (see eq (213)) These are rather broad
restrictions  for example, 1f one chose C,, =0 (finiteness condition for cubic
couplings). these conditions can be satisfied for any value of Str’m* and a range of
values of m3; (And we remark again that the necessity that the calculated minimum
be at a scale higher than any mass threshold 1s easily achieved for. roughly,
t=1n(¢/¢y), so if the mmmum occurs at ¢, we simply select ¢, to be large
enough so that ¢, 15 larger than any mass at that value of 7)

mn

4. Discussion

The awkwardness of softly-broken finite models [7] stem from their artificiality in
arranging breaking parameters to preserve finiteness — this 1s an unjustifiable exten-
sion of the valid concept of arranging fermionic and bosonic particle content to
obtain cancellations of graphs The narura/ minimal extensions of finite globally-
supersymmetric theories are QSR models Because in QSR models the finiteness
relations are approached n the infrared regime, the beauty of finite theories, their
predictions for mass relations, need not be completely lost The excitement of finite
superstring theories has diminished interest in these kinds of models, since 1t 15
assumed that, well below the Planck scale, there remains a softly-broken. N =1
globally supersymmetric theory. The primary motivation for msisting on N=1 15
the desire for manifestly chiral theories However, should interest turn to left-right
symmetric models with soft or spontancous breaking of parity, 1t 1s much less clear
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which, if any, type of low-energy supersymmetry will survive In such a context
quasi-super-renormalizable models of the kind considered in this and our previous
paper may become phenomenologically more attractive

We wish to thank E Rabinovicr for extensive discussions and for collaborating
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Department of Energy
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