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By ~tudymg the effechve potential and renormahzatmn group for quasl-super-renormahzable 
models at is demonstrated the models can undergo spontaneous s?~mmetr'y breaking m a manner  
consastent with stablhty A relation among ratms of masses as seen to hold at the minimum of the 
potentml 

1. Introduction 

In a recent paper [1] we introduced the notion of quasl-super-renormahzable 
theories as those models obtained from finite, globally supersymmetnc theories by 

adding arbitrary soft-breaking terms (scalar masses, ferlmon masses, and cubic 
scalar couphngs) The gauge coupling constant IS not renormahzed in such models, 
while the masswe parameters in general require infinite counterterms, the soft 

breakings can be chosen to leave the theories flmte, but as these finiteness relations 

are not enforced by any known symmetry, such a choice, we argued, would involve 

an unnatural fine tuning of parameters For example, one could take any field 

theory which has a fixed point and choose the couphng constant to take on precisely 

the value at that point, whereupon the theory has a zero beta function, but one 

would not imagine one had a sensible finite theory, as a slight deviation from ttus 
metastable value would cause the parameter to run with the scale In ref [1] we 

showed that the fimteness relations among the soft breaklngs correspond to an 

infrared attractive hypersurface in the space of the couphng constants and masses, 
and that a small deviation from finiteness grows with energy so that in the 
ultraviolet hmat there is no memory of these relations Such globally supersymmetnc 

theories are therefore unappealing as prototypes of a fundamental theory that would 
be expected to be finite in the high energy regime But they do have an interesting 
feature since an arbitrary set of soft breaklngs tends to converge toward the fixed 
hypersurface in the infrared, relations among masses - in particular, between boson 

and fermlon masses - may emerge naturally in the low-energy effective field theory 
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[2] Thus quasl-super-renormahzable models offer Intriguing possibilities for model 
building 

In this paper  we discuss the effective potential for quasl-super-renormallzable 
models Spontaneous symmetry breaking (SSB) does not occur in the models u hich 
are arranged to be finite [6] - m certain directions the potential due to cubic and 
quartic terms is flat, so broken symmetry states can be degenerate with the 
unbroken phase Adding negative masses-squared, the usual signature of sponta- 
neous symmetry breaking, causes the potentml to be unbounded from below. 
destablhzlng the theory But in non-finite models the mass parameterb run with the 
scale, and a scalar mass-squared may change sign, engendenng symmetry breaking 
without destabihzatlon As in softly-broken supergravl D modeN [3] the ma~s could 
be posltwe in the ultraviolet (stabilizing the ground state) but negative m the 
infrared (driving spontaneous breaking of the gauge symmetr))  

We first discuss, in the next section, the one-loop contribution to the effective 
potential As with the Coleman-Weinberg analysis of SSB b,~ radiative correcuons 
[4], this perturbatwe analysis suffices to establish the phenomenon uhen the 
normalization scale is chosen appropriately In sect 3 we consider the renormahza- 

t lon-group-lmproved effective potential and demonstrate that SSB is compatible 
with stability, in fact, the effectwe potential grows at large scales Finally, m sect 4, 
we conclude with a summary of the possible role for quasl-super-renormalizable 
models 

2. The effective potential 

The model we are studying is the softly broken N = 4 supersymmetnc Yang-Mills 

theory 

! F F ~  v i 

' ' x , ]  - v , ,  (2]) 

A trace over gauge indices is implied The theory contains six spin-zero fields, four 
Majorana fermlons, and one massless gauge boson All fields are in the adjolnt 
representation of the arbitrary gauge group A' = A ' " T " ,  [T" ,  r ~'1 = ~] ~h~ T~, Tr T " T  I' 

= C~3 ~h We can write the potential as 

~ 0 =  1 2 (22)  
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Here, t, j ,  k = 1,2, 6 and K ,  L = 1, ,4, are indices for an erstwhile SU(4) or 

0 (6 )  global symmetry*  imposed by supersymmetry but broken by eq (2.2) 

The  effective potential is, to one-loop order and m the Landau gauge, 

where 

Vef f = V 0 -1- VI ,  

1 M 2 
V 1 = 64~r~StrM41n I T  (2 3) 

The supertrace, Str, is the sum over bosons minus the sum over fermlons, weighted 

by the number  of hehclty states 2 J  + 1 This form of the effective potential assumes 

a renormahza t lon  scheme where polynomial  terms are absorbed into the counter- 
terms, and one should subtract from it the value ~t takes when all coupling constants 

vanish (so V I is zero for a free theory) The vector, fermlon, and scalar mass 

matrices are 

2 . a b  
( M v )  = ~ ' " ~ < ~ ' " - <  g J J 9 / ,P / , ,  

A/¢+A/t ~.h 3 ~ 6  _ <~m < , F , + m ( )  (~ ' .F* ' .FIKLe~B=(m 2 ) g] dt)t(nlflF ov K L  ot[t l,, L c~fl 

2 ace  bde  ~ d 1+ y + g S  if ,~,,~)(r r ) , .  ~ ,  

2 x a b  

~_ abe  ~de ~. d f f c),~,} ( 2 4 )  

(In eq (2 3) the trace over Dirac indices has already been factored out ) 

We are interested in the flat directions of the tree potential,  in the absence of soft 

breaklngs,  m 2 = m f =  c,j~ = 0, the potential V 0 is zero only when [co,, Os ] = O, i e 

when the fields are in the Cartan subalgebra of the group In a fiat direction, 

therefore, the fields d~, can be taken as diagonal in the above mass formulas Even 
so, the terms linear in the fields in the scalar and fermlon mass matrices will not  be 
diagonal,  making the effective potential very difficult to evaluate in general The 

Q S R  nature  of  the theory, however, provides us with a convenient technique for 
approximat ing  the effective potential, because in the absence of soft breaklngs V 1 

*Tha~ notat ion is related to that of ref [1] as follows If x, ~ z = 1 , 2 , 3  then q, ,= 4 , ,  q5 ~ = B , ,  

+ 11"l l+3,  = ( , ,  r ~ l = a K l . ~ f l ,  = j ~ l ( l y 5 ) a  fl Here  a a n d  fl are the six ma t r i ces  tha t  s p a n  the 
space of real traceless antxsymmetrlc 4 x 4 matrices, forming a homomorphism between the funda- 
mental  representations of 0(6) and SU(4) and have an algebra similar to that of the Pauh matrices 
[ a ' , a ' ] =  2e'~:a",[,8",fl~] =-2e'~efl: [ a ' , f l ~ ] = O  
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vanishes, suggesting we expand the supertrace about the s y m m e m c  theorTy an 
expansion that will be vahd when the fields are large compared to the massive 

parameters  in the theory 

The analysis of the effective potential wdl demonstrate  that for approprmte, but  

not very restncUve, chomes of the parameters, the theory is stable [5] and allows for 

spontaneous  symmetry breakmg vm a Coleman-Wemberg-hke mechanism 

Symbohcal ly,  wrmng (cf eq (2 5)) 

M 2=  m2+ T ÷  M e' (2 5) 

for either the fermion or scalar mass matrix, wqth M 2' the matrix for the supersym- 

metric theory and T the hnear term, we expand m the breaking terms 

StrM41n M 2 = StrM41n M 2' 1 + -~/E, 

m e +  T)  
= S t r M 4 1 n M 2 ' + S t r M 4 1 n  1 +  Me ' 

= S t r M 4 1 n M 2 ' + S t r ( m 2 M ' - ' +  ] T-~) + O ( ~ )  ( 2 6 )  

(Note  Tr M 2 ' T  = 0 = Tr TM2 ' ln  M 2', by symmetry of the mamces  ) 

The second hne follows if [me + T, M 2'] = 0, which ue  udl  now demonstrate  

Consider  eq (2 4) Because we are working m a flat dlrecuon the M 2' mamces  are 

&agonal  m the group space ln&ces in the adjomt representation, (T u / "  = - i f  "f'', 

so f " ~ 7  baN¢¢a = (T '  T a ) . hq~  a, lying in the Cartan subalgebra of diagonal matrices 
By the same reasoning the linear (T)  terms are dmgonal m group space Then one 
checks that [T, M 2'] = 0 m the remaining radices, for the scalar matrix, the totally 

an t l symmetnc  objects c,~a, contracted with ~ ,  'adl rather commute  past 8,, or gl,~e 

zero when contracted wxth another field m M s ' ,  and for the fermlons one finds, 

using cdc~ ~ = fi'fi~ = - 6  '~ and the commutat ion relations for ~ and fl matrices (see 

prewous footnote), that + ' is M v M  v propomona l  to the umt matrix m the K, L 
mdlces Th~s last statement also gwes [m~, + ' M F My] = 0 It is not true m general that 
[m2, M~ ' ]  = 0, but under the trace the only order Ce c o n t n b u u o n  to (2 6) from thts 
commuta to r  is T r M 4 ' [ l n  M : ' , ( M  2') lm2], which is zero 

Then using S t r M 4 ' l n  M : '  = 0, 

I/~rf= V0+ 6~2~2Str ( { m :  M 2 ' } + T 2 ) l n ~ + ~ T 2 + m e M  2' ( 2 7 )  

This form can also be obtained from evaluating directly the sum of one-loop 
graphs, mser tmg up to two breaking vertices m each graph, (but ff one absorbs the 
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polynomials from the expansion into the counterterms one will be using a different 
renormallzatlon prescription from eq (2 3)) The supertrace is over fermlons and 
scalars only An important result of this approximation ~s that the leading behavior 
of the effectwe potential ~s of order ~2, so the theory appears stable in the directions 
where the cubic and quartlc terms vamsh, as long as the signs of the masses are 
chosen to be positive when the theory is renormahzed at large scales The full 
justification behind this point involves the renormahzatlon group, as described in 
sect 3 

We now search for a lmnlmum of the potential (other than the origin) For 
simplicity let us examine only the ~.3 direction, 1 e q)., = ~.8,3 a choice which, 
because of the exphclt breaking of the original 0(6) symmetry by the soft-breaking 
terms, prowdes a loss of generality, yet which will demonstrate that a global 
mmlmum away from the origin does exist somewhere in field space, for as 
V.ff(0) = 0 the fact that Veff< 0 for some ~ mdlcates the existence of such a 
minimum, prowded Vef r >/ 0 as ~ goes to infinity 

In the (flat) ~.8,3 direction, take the directional denvatlve of eq (2 7) b? 
multiplying ~ by a scale factor ~ and finding ~ 0 V/O~ Because of homogeneity the 
derlvahve on all terms except the logarithm gives us twice the original expression, so 
if we choose the renormahzatlon point /, by requmng that V I = 0 at the mlmmum, 
d~m m ,  of the potential, these terms vanish, leaving to 

OV~fr , ) 2 ( 1 )  
K~-"-K ((~mln)=(m')33(g~ a q- 64~r~ 2Str[ 2m:M2'+ T2], (2 8) 

where we have used the fact that m 2 '  IS &agonal in the chosen direction, and have 
assumed for simplicity that the m 2 m a s s e s  are dmgonal Employing eq (2 4), 

Str[2mZM 2' + T 2 ] = C2( G)g 2 [2Tr m 2 - 2(m 2 )33 - -  8(Tr m r + m r4m r3 

1,] 
+,nr2mri ) + 75(c,s3)_ ( ~ . ) 2  (2 9) 

Recalhng that Str m 4 1s related to the beta-functions through the renormahzatlon 
group equation (see eq (3 1)), it is not surprising that the above factor, which ~s 
S t rM 4 -  St rm 2, can be re-expressed in terms of the beta function for the scalar 
mass (m2)33 From ref [1] (in the present notation) 

g2C2[ 1 ] (210)  
]~,,G - 16-~? 2 T r m 2 -  8(Wrmr + rnr4mr3+ mqmf2) + 7 c u 3 c ,  13 
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and therefore 
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1 
647r 2 Str [2m2M2'  + T z ] : ~[ f t .& - y (  m 2)33] ( ~ " ) 2  (2 11) 

with y = 2 g 2 C 2 ( G ) / 1 6 7 r  2 The minimum condition (2 8) becomes 

(2 - ~, )( m 2 )33 + fl,,& = 0, (2 12) 

which IS the promised relation among masses The term proport ional  to y as of 
higher order at the minimum (where ( m 2 ) ~  as of order g 2  so y(m2)3~ IS of order 

g4) and will be dropped 

To see that this is indeed a relative minimum in the direction being considered, 

we calculate 

Vef~(0m,n) : [/~m>~,]((~mm) 2, 

Veff((# . . . . .  ) = _ ¼[B.&](q ) ...... )2 (2 13) 

There is a min imum if /? > 0 (whereupon m~ 3 < 0. as expected) As the relation 

(2 12) is a restrlctlon only on ratlos of masses, and not absolute masses, the scale of 

the m l m m u m  can be chosen larger than any values of the parameters, as required 

for the approximat ion to be vahd We therefore have a Coleman-Wexnberg-llke 
mechanism of dimensional transmutation, with ratios of masses and massive cou- 

phngs  playing the part of dimensionless couplings The relatlon at the minimum 

trades in one of the free ratios of masses for one less free ratio and an arbitrar'~ 

scale, q~tnm 

3. The improved effective potential 

In order  to know if the relation (2 12) is consistent with a stable theory we need to 
compare  a calculation of the effective potential made at two widely separate 

scales the scale of the minimum and an arbitrarily large scale representing the 
behavior at infinity The large logarithms which then occur in eq (2 3) when the 
fields become large, apparently causing a breakdown of per turbauon theory, are 
controlled by redefining the renormahzat ion scale, /~, leading to a new and renor- 

mahzataon-group-lmproved effective potential In pamcula r  ue  require that the 
scalar mass (m2)3~ be able to run with scale so that it is positive at large ~2 but 

becomes negative as it approaches the chosen scale of the minimum 
The renormallzatlon group equation obeyed by the exact effective potential as 

0 0 0 ) 
(3 1) 
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(there is no gauge parameter in Landau gauge), where Xp is the set of masses and 
massive coupling constants The anomalous dimens~on, which is the same for all the 
fields because of the 0(6) symmetry of the unbroken theory, depends only on the 
gauge couphng g. to one loop we have y = 2gZC2/161r 2 The solution to this 
equaUon is therefore simplified because of the QSR feature fl, = 0. so the anomalous 
d~menslon is a constant 

The equatmn ~s solved using Cauchy's method of characterlsucs The solution can 
be written as 

w~th 

at Tt ~ V ( O ~ ' . X p . , ) =  I?[e: e . q(X, t )  l 

/z 
t = - I n - - .  

/% 

m 

~Xp(Xq, t)=~p[Xq(X,t)],  (3 2) 

where V is any funcnon and /% is an arbitrary value at which the mmal  conditions 
are defined 

Xp(X,0) =Xp, 

~[~°,,X~(x.0)] = ~( , . , .  %) = v(,°,, x,,. ~0) (3 3) 

The solution is checked by inserting it into (3 1) and using the deducible equation 

8X aXq _ 0 
8Xp 8t 

For field magnitudes on the order of/~o we already have a one-loop approxima- 
tion to V~f r. Let ~ '  be a value of the field at which Vef f lS equal tO the tree potential 

v(+;', x~, ~o) = Vo(,;') (3 4) 

The choice of ff~' selects out a direction m field space We fred an expression for the 
potentml at all scales in th~s pamcular  direction by using dlmensmnal analysis 

v(~,~,, x~, ~o) : ~4v(~',  x~/~, g, ~o/~), 

and then employing the solution (3 2) at these values of ~. X. and /~. and using the 
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fac t  t ha t  g, does  not  run  

= e " ,  , ) . . ]  

t = - l n ( / ~ o / ~ ) / / , ~ )  = In ~ (3 6) 

So as  we sca le  a long  this & r e c t l o n  the resul t  ~s 

1: ( ~ > ' .  X,/ , ,)  } = e4t}~>[~{;'e vt, X i( Xe ', t). ,V]. 

t = In ~ (3 7) 

A s  the r u n n i n g  c o u p h n g s  are h o m o g e n e o u s  m the mass ive  p a r a m e t e r s  [1] we have,  

~ : , ( ) t , ~ , t ) = k  '~PXp(~k,I), 6 p = d l m e n s l o n o f  Np 1 o r 2  

If  ,5~' is c h o s e n  to be  a f lat  d i rec t ion ,  the t ree p o t e n t i a l  r educes  on ly  to the mass  

t e rm  

v(,~,o, X, t*o) = i e c_ , > , -~ " '  _ -~ m71(X t)g, oe#o' ( 3 s )  

W e  n o w  seek a m i n i m u m  a long  this d i rec t ion  by d f f f e r en t t a tmg  with  respec t  to ~c 

( e q m v a l e n t l y ,  t ) ,  if we choose  a s ingle 0 ( 6 )  &rec t i on ,  such as qs~'/=,5{{6 '~ the 

a r b i t r a r y  p o m t  q5 o d r o p s  out,  leaving  

2(1 - 7 ) N ~ ( X ,  t )  + fi , , , i ,[X(X" t ) ]  = 0,  ( 3 9 )  

which  at  t = 0 is iden t ica l  to the p rev ious  p e r t u r b a t l v e  resul t  (2 12) if we choose  

~0 = qbmm ( a n d  aga in  d rop  the h ig h e r -o rd e r  7 t e rm)  O u r  in teres t  here  is m the 

b e h a v i o r  of  (3 8) for  large  fields,  t = In K---, ~c Scal ing  up f rom the m i n i m u m  to 

l a rge  f ie lds  one  f inds  the l ead ing  b e h a w o r  of the runn ing  masses  to be. e g ,  

_ ~  2 +  (~,:~ b =  " - - 6 7  m ~ 3 ( t )  -- ( ~":/' 16~r ~' 

a n d  s imi la r  e q u a t i o n s  for  the o the r  sca lar  masses ,  the coefhc~ent  is posm~ e ,  

m d l c a t m g  tha t  for  large enough  fields all masses  will  be  p o s m v e ,  insu r ing  stablht '~ 

T h e  conve r se  is no t  true,  i e .  not  all va lues  of  p o s m v e  masses  at  large  in i t ia l  scale  

t = 0 will  r un  so as to sat isfy  the m i n i m u m  c o n d m o n  at  some  t < 0 The  c o n d i t i o n  
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(3 9), in terms of  these initial values, is 

rn~3= [~ + (y  + ~)et"] -1 

X{[(y+;,l]eb'-~]Str'm2+[(b+la)e2t"+l-~ (b+l)e"'](36~)(C,,~y' 
1(1)  ,2 

+ [  ( b + { ) e 2 h ' - 5 ]  ~ (C3s~ 

(1) ,t _1_[~__ 1 ht ( l + v ) b t e  m] 6 g :  ( C ' s ~ c ( f )  '~ " ge + - -  , (3 10) 

w h e r e  S t r ' m  2 = Str m 2 - -  m~3, and C,s ~ is related to the lmtlal values of the cubic 

couplings, c,s~, by C,s ~ = c,s ~ - c ( f ) u k ,  with c ( f )  the finiteness-condition values [1] 
At  t = 0 any initial values for the parameters other than (m2)33 may be chosen, with 

the allowed values of (m2)33 that will result in a minimum being given by letting t 
on  the r ight-hand side of (3 10) range over all ~alues - oc < t < 0 - with everything 

subject to the further restriction that the scalar masses be posltwe at t = 0. and ff 

.533(t) is less than zero at that value of t (see eq (2 13)) These are rather broad 
restrictions for example, if one chose C,j~ = 0  (flmteness condit ion for cubic 

couplings), these conditions can be saUsfxed for any value of S t r 'm 2 and a range of 

values of rn323 (And we remark again that the necessity that the calculated min imum 
be at a scale higher than any mass threshold is easily achieved for. roughly. 

t = ln(0/q%),  so if the min imum occurs at t ..... we simply select ~0 to be large 

enough  so that  ~mm lS larger than any mass at that value of t ) 

4. Discussion 

The awkwardness  of softly-broken flmte models [7] stem from their artlflClahty in 

arranging breaking parameters to preserve finiteness - this is an unjustifiable exten- 

sion of  the vahd concept  of arranging fermlonic and bosonlc part ic le  content  to 

obtain  cancellations of graphs The natural  minimal extensions of finite globally- 

supersymmetr lc  theories are QSR models Because in QSR models the flnitenes~ 
relations are approached in the infrared regime, the beauty of finite theories, their 
predict ions for mass relations, need not  be completely lost The excitement of finite 
supers t rmg theories has dlmlmshed interest in these kinds of models, since it is 
assumed that, well below the Planck scale, there remains a softly-broken. N = 1 

globally supersymmetrlc  theory. The primary motivation for insisting on N = 1 is 
the desire for mamfestly chtral theories However, should interest turn to left-right 
symmetr ic  models  with soft or spontaneous breaking of parity, it is much less clear 
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which ,  ff any ,  type  of  low-energ~ s u p e r s y m m e t r v  ~ d l  ~urvl~e In such a con tex t  

q u a s l - s u p e r - r e n o r m a h z a b l e  mode l s  of  the k ind  cons ide red  in this and  ou r  p rev ious  

p a p e r  m a y  b e c o m e  phenomenologlca l l ly  m o r e  a t t rac t ive  
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