Nugclear Physics B284 (1987) 473-487
North-Holland, Amsterdam

FERMIONS IN A TIME-PERIODIC SU(2) BACKGROUND:
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Isospinor fermions are studied 1n the presence of a covariantly constant, time-pertodic SU(2)
background field The eigenfunction spectrum 15 derived Part of the modes termed transverse,
decouple from the external field The non-trivial content 15 given by the so-called scalar-longitudi-
nal modes, which are quasi-doubly-periodic functions of time

1. Introduction

Since the work of Schwinger [1] there has been great interest in electromagnetic
processes 1 external fields Many authors [2] have studied in detal the abelian
constant unmiform field and the plane wave field, where the one-particle Green
functions for matter fields can be solved exactly The most celebrated result 1s that a
constant electric field can create real pairs and therefore the vacuum 1s unstable In
general one 1s also imterested n the properties of the mass and polarization
operators of an electron and a photon n the external and radiation fields Indeed
the problem of calculating synchrotron radiation of photons 1s essentially equivalent
to extracting the imaginary part of the second-order elastic scattering amplitude of
the electron [3]

Very few of these results have been generalized to non-abehan gauge theories,
despite the role they have played in the theory of elementary particles in recent
years To avoid confusion we try to elucidate this point An impressive body of
results has been obtained in the non-abehan theory but almost all of them nvolve
abelian-like configurations which are solutions of the Maxwell equations embedded
within the non-abelian Lie algebra with a fixed onientation Therefore in this class of
problems 1t 1s relatively easy to diagonahze the part of the lagrangian quadratic in
quantum fluctuations with respect to color Basically once the direction V' of the
external field 1in color space 1s given we only have to find the subalgebra of SU(N )
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whose elements commute with V' and the orthogonal complement What 1s missing
15 a complete analysis of the problem for a genuinely non-abelian solution Given
such a configuration what are the states which diagonahze the lagrangian” For
mstance 1 an external SU(2) field with both neutral and charged components an
electron can scatter and transform nto a neutrino and what we want are the full
propagators (to all orders 1n the external field) for ee, v» and er transitions Also we
would like to compute electroweak or even strong synchrotron radiation (e = W +»
or q— ¢+ g) in non-abehan background fields Even if they turn out to be
negligible effects for present day phenomenology their interest 15 connected with the
quest for going beyond the framework of perturbation theory The problem with
non-abehan theory 1s that we have very Iittle available information at the level of
classical solutions The most obvious candidate would be a constant field £y} The
classification of these fields 1s due to Brown, Coleman and Weisberger [4] who have
proved that they can be produced either by an abelian vector potential linear m +*
or by a constant non-abehan vector potential For the second case Brown and
Weisberger [4] have been able to calculate the vacuum polarization induced by
matter fields However as noticed by these authors the constant vector potential 1s
not covariantly constant, 1e is not a solution of the classical equations ot motion
The question we address 1s the following Can we find a covarantly constant
non-abelian vector potential which retains as manyv as possible of the characteristics
of the constant external field of QED, and what can be said about non-abehan
processes around 1t? In order to solve the classical equations of motion we restrict
ourselves to the SU(2) case The main result of our paper can be summarized as
follows There 15 a covanantly constant, time-periodic SU(2) vector potential which
gives rise to field strengths variant under space translations and also under
combined space and gauge rotations We discuss 1ts properties m sect 2 In sect 3
1sospinor fermions are introduced 1n the background field and the general structure
of the eigenfunction spectrum 1s studied In particular the set of eigenmodes will be
shown to separate into two distinct classes, transverse and scalar-longitudinal
Transverse modes and their decoupling from the external field are discussed 1 sect
4 and finally in sect 5 we analyze the non-trivial content of the scalar-longitudinal
sector which gives rise to quasi-doubly-periodic solutions These will be bound on
the real r-axis only for a particular set of values of p, the canonical three-momen-
tum modulus, showing forbidden and permitted zones of propagation

2. A periodic SU(2) field

We consider the classical equations of motion for an SU(2) gauge field

D:hf;l";:o. (2 1)
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where

FL=0,47—0,4,+ ge””‘AﬁA;, (2 2a)
D’j’" = 8“”8” + ge*PA; (2 2b)
In order to solve them we make the following ansatz

A5=0, Af=N(1)8] (a,b=1,2,3) (23)

The corresponding field strengths will be
F, =N8¢, Ff = gh\?eebe (24)

Defining the current ;= beF,,’,’L we find
=0,  gi=—(N"+2g°N)8; (25)

Aj as given 1n eq (2 3) 1s covanantly constant for

2

d
A= —2g2N (2 6)

Introducing 7= af and A = Bf with the choice & = V2 g8 we recogmze mn eq (2 6) a
special case of an elliptic equation, whose solution 1s a Jacobi elliptic function [5]

B 1/2 ,
>\(z)=(—) cn((2gB)1/“t\ %) (27)
g

where B =gf? In the following we extensively use the theory of elliptic functions
All the results quoted are from ref [5]
The function cn 18 a doubly-periodic function of ¢ with periods 4K and 2K + 2:K
where
r()
K=W=l85407, (28)
with poles at B,,=2mK+ (2n+ 1)K and zeros at a
Therefore for t real A(¢) has a period 7 and 1t 1s bounded

22K

B\1/2
T=w~ |7\(1)|<(;) (29)

=2m+ DK+ 2mK

mn
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Since cn’*(7) = (1 — cn*r) the fields may be cast mto the form
Ef=—V2Bsnrdnrdf= +B(1—cn'r) "8y,
B = Bcn'rd), (2 10)

where from now on 7= \/@ ¢t and we drop the v? from the arguments of cn The
fields are manifestly invanant under space translations and also under stmultaneous
space and gauge rotations They are the mmimum extension to the non-abelan case
of the constant field of QED since static, uniform configurations are not solutions
of the classical equations of motion Despite the fact that the fields are time
dependent we have

Y [(E“) + (B*)’] = 3% = const (211)

For gB <1 the fields are approximately constant in an interval dr such that
\/ﬁAt« T where they reduce to Ef =0 and B; = B§; We notice that this
solution 1s regular everywhere in Minkowsk: space but cannot be continued to
euchidean space where 1t would serve the role of interpolating field between
three-dimensional constant boundary values In fact in euchdean space the con-
tinuation of cn(r) 1s the Jacobr elliptic function ne(x,) which shows poles at the
zeros of cn which can be real

Solutions to the Yang-Mills equations of the elliptic type are well known in the
literature [6] but they were mntroduced 1n an attempt to construct finite-energy
classical configurations while here we are primarily concerned with the generahza-
tion of the constant field problem It should also be noticed that most of these
solutions lead to a complex vector potential, a feature we want to avoid n the
present case

According to ref [4] our solution diagonalizes the matrix 44 A” Ths will define
the gauge where we are working

Finally besides the solution we have exphcitly constructed there are other
examples when the matrix 4¢ A” has a lower rank

3. Introducing fermions

Having introduced a particular example of an SU(2) external field we move to the
problem of studying the behavior of matter fields in this background Consider for
definiteness the case of spin-1, 1sospin-5 fermions The conventions we use are
Y, =7 {Y"y"}=28" and Y3 =v,Y2¥;¥s If ¥ 1s an 1sospinor the corresponding
Dirac equation in the presence of the external field will be

3V — Ligds W =0 (31)
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The approach we follow n analyzing the predictions of the model can be termed the
“eigenfunction” approach We mtend to utilize the Dirac wave functions to calcu-
late processes in the external field Transition amplitudes are computable to first
order in g but to all orders n the field, after which we square the amplitude and
sum over final states There are other approaches based on Schwinger’s source
theory which eliminate the need for using wave functions but we have not pursued
this 1ssue

Since we are using massless fermions 1t will be convenient to work with states of
definite churahity y>¥; g = + ¥z The Dirac spiors are written 1n terms of upper
and lower components

P )
Y=|"_ (32)
¥
and with our conventions a left-handed fermion corresponds to ¢ = -y = —¢

From now on we concentrate on this case and drop the subscript L Sinular results
will be valid for nght-handed fermions ™ =4 " =1 The Dirac equation becomes

19, +16%(9,— Light, )y =0, (33)

where o“ (7¢) are the usual Pauli matrices acting on spin (1sospin) indices The
external field A(t) does not depend on space coordinates and therefore the canoni-
cal three-momentum 1s conserved We write

Y(x, 1) =e"x(1) (34)
Eq (3 3) becomes

d

lg;x—o”(pa—%g?\n)x=0 (3.5)

Following Jackiw and Rebb: [7] we introduce

Xu=(ns+nu’ra)\m(72)mm (3 6)

where 5 15 a spin index and : an 1sospin index The degrees of freedom are now
described 1n terms of a scalar mode 7, and a vector mode n It 1s wrrelevant to
further distinguish between different indices and for this reason we denote by 7 all

the Pauh matrices Using the relation 7,7 = — 1,7, (T = transpose) we get
d
'S -T“pa)(ndn“n)— sghr(n +n'n, )7, = 0 (37)

In order to diagonalize this equation we mtroduce the set of matrices 7( p) As
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usual we write
po=yvilpFmw).  p=Ipl

Given the unitary transformation U( p)

U,=U,=N
P+ p-
012:+\/5N . Unz‘ﬁN > (38)
P+ ptp.
with N~ 2=2p/( p+ p.), we define
(p)=U"(p)rU(p) (39)
It follows
pri(p)=1 p,. p)=1 & ,. (3 10a)
where
é, é=9,. é,Xé =¢ €. (3 10b)
with pé, =p The vector mode n 15 convenently projected in this frame
=76+ 2 me,.
=12
mor=mr(p)+ X nir(p) (311)

=12

By equating the coefficients of 1 and 7¢(p) 1n eq (37) we obtamn two separate
systems of equations relative to the SL (scalar-longitudinal) and T (transverse)
modes. terminology introduced by Akhoury and Weisberger [4]

d

1—n. — ~ 3oy =0,

3T Pm T g

d 1

rg et 28An =0, (3 12a)

d
zani +ipn; + 380, = 0.

d
lani—zpni+%gkn1=0 (3 12b)
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Solutions of the Dirac equation are classified as follows
Xs.=(ns+n.éy )7,

X.= 2 mé T, (313)

1=1,2

and from egs. (3 12) we see that the field equation operator does not mix the two
sectors The properties of this splitting can be described in terms of helicity
operators

T8 X, TOPX=X,é (314)
xgr and x , satisfy the relations
2RI = = XsL+ 2EPMIPOPRY | =Xy (315)
This allows us to introduce projection operations Py and P,
Py, =31 F Zemysem) (316)
For an arbitrary spinor x we have
Py X =Xs1- P x=x. (317)

Having classified the solutions of eq. (3.1) according to their properties under the
action of the helicity operators (3 14) we proceed to the actual construction of the
eigenfunctions.

4. The transverse sector

Egs (3 12b), which describe the time evolution of transverse modes, can be
rewritten as

1 1 1
1— 7’; +1gA nj -pm 7); =0 (41)
dz\n} M i
To solve the above we use eignstates of T,
1
M) 1
(nz)_ni(i’) “a
L

Thus

d
(za+§g)\$p)n+=0. (43)
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which can be mtegrated to give
lnni=¥lpt+§lgfdfr)\(fr) (4 4)

The 1ntegral 1n the above equation 1s easily evaluated in terms of the Jacob: elliptic
function dn

gfdt}\(t)=arcos(dnfr), T=+2gB1t (45)

It 15 convenient to introduce the angle 6(1) = %arcos(dn 7), which by virtue of the
periodic properties of dn 7 obeys the mequalities 0 < 8(1) < {7 The two solutions
1n the transverse sector are

YT =exp{p xFipr+10(1)}(é, £1é,) 7m,. (46)
ESPmIIJf: i\bi (4 7)

Since the only dependence on the external field 1s contained 1n the phase # we have
shown that transverse modes decouple from A;; As a matter of fact there 15 nothing
pecuhar to the explicit form of A(¢) mn this decoupling which works also for
constant vector potentials Part of the eigenfunction spectrum corresponding to
parallel components of spin and 1sospin with respect to the momentum p decouples
from the background in the gauge A{=0. A;=2A8; The same effect can be
understood from another point of view Consider the “longitudinal™ subgroup
generated by

U, =exp(—tig\ & 1) (48)
We only need to work with infinitesimal transformations It is easy to show that

(49)

-

UL‘l’f = (1 + %gAL)ll/

and that transverse and scalar-longitudinal modes are not mixed As a consequence
we can always choose a gauge where | or ¢ decouple explicitly

5. The scalar-longitudinal sector

Egs (3 12a) are much more complicated to solve than the corresponding trans-
verse equations First we introduce a(r)=e"*"" Thus

d LgA 51
13,4~ T8 (51)
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Next we use the following substitution

1
m=agL. = h, (52)
Egs (3 12b) become
4 d _O
la dt¢L p¢5— ?
d 4
laqbs—pa q)L:O (5 3)

We look for a solution ¢, =¢, ¢, =1(a*/p)}d/dt)¢ Thus we are led to the
second-order differential equation

2

d
+2igh—¢ +p'o=0 5.4
30T 2gh b+ P (54)
Since from eq (2 7). A(t) =(B/g)"/%cnt with 7 = /2gB 1 we can rewnte the same
equation as
d: d ,
—o¢+V2ient—¢+4%=0, (55)
dr dr
with 2gBg> = p? Before entering the details of the solution we summarize a few
properties of the function cn In a shorthand notation we wnte cnt=cn(7, VF{)
which 1s a doubly-periodic function of 7 with periods 4K,2K + 2:K where K 1s
given by eq (28) Due to the periodicity we can discuss all properties of elliptic
functions 1n the so-called fundamental period parallelogram which for enr 1s
T={(4K+ 792K+ 2:K), 0<¢{,m<1 Anrreducible set of poles 1s given by

B'=B,,=2K+iK, residue 12 |
B=By=4K+iK, residue —1y/2 | (56)

while an irreducible set of zeros is given by ey, = K and a;,=3K After those
preliminaries we study the singular points of the second-order differential equation
(55) They are 1=’ and 7= B and their congruent points The corresponding
exponents are 0 and 3 for 87, 0 and —1 for B8 Since they are unequal integers we
can apply the Hermute, Picard, Mittag-Leffler, Floquet theorem [8] which states that
eq (55) possesses a fundamental set of solutions which are in general doubly-peri-
odic functions of the second kind Therefore we look for a solution of the form [§]

¢(T)=e’":(7_a)

—(T—_—B—)f('r), (57)
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where B=4K +:K, a and b are constants to be determuned and o(7) is the
weilerstrassian o-function f(7) 1s an elliptic function

As shown below the ¢(r) so constructed 1s doubly-periodic of second kind
Considerations following the value of the exponents relative to the singular points of
the equation suggest we try f=1

To prove that ¢(7) as given 1 eq (5 7) 1s actually a solution of eq (5 5), we need
to use the other two welerstrassian functions P(7) and {(7) Briefly, P(7) 1s an
elhptic even function with a double pole at 7= 0

1
P(T)=_,+O(’Tz) (58)
)
¢(7) 1s an odd function defined by P(7)= —{’(7) Notice that

d
()= alno(’r),

1
()= —+0(7?), o{7)=1+0(7%) (59)

T

All the elliptic functions considered 1n this section have the same pernods of en T,
namely 4K,2K + 2:K
¢(7) and o(7) are not elliptic functions but instead

Sr+4K)=§(7)+28(2K) =¢(7) + 27. (5 10a)

o(r+4K )= —exp{29(7+2K)}o(r1). (5 10b)
and similarly for the other period It follows that on the real axis

p(1+4K)=exp{4b+2n(B—a)}o(r) (511)

and ¢(7) 1s a quasi-doubly-periodic function An important property which follows
from the defimition of ¢ 15

%¢=[b+§(v—a)—§(r—ﬁ)]¢ (512)
Eq (55) becomes
{(lb+¢(r=a)=§(r=B)] = P(r—a) + P(r~B)
+V2ient[b+{(r—a)={(r—B)]}o=—g’¢ (513)

Let us consider the function defined by the left-hand side of the previous equation
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fla,b. 1)
{fla.b.7)+q*}o=0 (514)

cnt, P(r—a), P(r—B) are eliptic functions Also the difference {(7—a)—
{(7 — B) 15 an elliptic function which means that f 1s eliptic There are in principle
three poles for f(7) The pont r=a 15 a pole for {(7r—a) and P(7—a) while
7= 1s a pole for {(r—fB), P(r—B) and cn7 and finally at =", cnt has a
pole However given the Laurent expansions for the functions P, { and cn we easily
verify that 7= f 1s a regular point for f(7) Vice versa. 7= a 1s a single pole with
residue

R,=2[b-¢(a-B)] +V2icna (5 15a)
and 7= B’ 1s another single pole with residue

Rg==2[b+{(B —a)—¢(B —B)] (5 15b)

Thus f(7) 15 an eliptic function of order 2 and as a consequence R, + Rg =0 This
can be proved by expressing cnt 1n terms of {-functions We have

ent=cna+u2[{(r=B)—¢(r=B)+¢(a—B)~(a=B)] (516)
Taking the limit 7 — 8’ 1n the above expression gives
fLiena=¢(a~B)~¢(B ~B)—¢(a—B). (517)
which indeed shows R, + Ry =0 If we require the conditions
b=¢(a—B)~ticena, (5 18)

it follows that f(r) 1s an elliptic function with no poles which by Liouwville’s
theorem 15 a constant With b given by eq (518) we can fix a such that f= —g?
and a solution to eq (5 5)1s obtained To vernify the correctness of our procedure we
have computed

filay=f(B,a).  fla)=f(B'sa), fila)=fla,a). (519)
with the following results
fila)=—1tcn’a—P(a—B),
fla)y=P(a—B’)-P(B' —B).

f;(a)=1ten’a+3P(a— B) — W2 sna dna (5 20)



484 G Passarino Fervuons tn a time-pertodic SU(2y bach ¢round
P

When we write —i/2sna dna this 1s equivalent to rena = + ypyi(l —cn'a)t?

which again has periods 4K.2K + 2:K By mspection f, 1s regular at « =8 and

shows a double pole with zero residue at « = 8’ The same 15 true for f, and f, and

moreover f(B)Y=/f(B)=/,(B)=0 Therefore they are elliptic functions of the

argument @ with the same pertods. a double pole at a = B’ with the same principal

parts Since they have the same value at the point ¢ = 8 they are the same function
A solution to eq (5 5) 1s specified by

¢(f)=e”c(:((%;—)). (5 21a)
B=4K+ K

where
B =2K+ K. e; = P(2K) (5 21c)

P 1s elliptic of order 2, which means there are two zeros 1n the fundamental period
parallelogram The corresponding two values for ¢ from eq (5 21b) give a funda-
mental set of solutions to eq (55)

For instance for ¢* =0 we find a solution ¢ =K and correspondingly b= 27
with n given by eq (510a) In general for ¢”+ 0 we have to invert an elliptic
function

a=B +P e, —qg°) (522)

At this point we want to check that for gB — 0 solution (521a) goes into a
free-particle wave function Since ¢° — co, 7 — 0 1n this limut, with g7 = pt we have
from eq (5 21b)

I

B'—a ~ —. (523)
gB—0 g
which gives
P(B'—a) ~ —¢° (5 24)
gB—10)

For g% — o therefore a =’ and {(B’ — B8)1s fimite It follows

b ~ ‘v’%'tcna~1q (525)

gB— o
Also o(—B’) and o(B’ — B) are non-zero giving from eq (5 21a)

o(7) s ()conste”” (5 26)
4B —
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Consider now our solution ¢(7) on the real r-axis From eq (511)

¢(7+4K) =exp{4b+2n(B—a)}o(r)=S¢(7), (527)

for |S| # 1, ¢ increases without bound 1n one of the directions 7 — =+ 00, a situation
which has a close resemblance to Bloch’s spin-waves The condition that ¢ be
bounded on the real 7-axis defines the permitted zones, very much as for a
Schrodinger equation 1n a periodic potential The modulus of the canonical three-
momentum cannot assume arbitrary values but has to satisfy the following relation

Re[2§(a——ﬁ)—n/§cna+(,8—a)n]=O, (5 28)

where 8=4K +:1K, n=¢2K) and a(g?) 1s given m eq (522) Collecting our
results we find for the SL modes

nL=CXP{bT+10(T)}:—§—:%;—;, (5 29a)
ns=§nL[b+§(T—a)—§<T—B>]. (5 29b)

which gives an additional constraint. Only solutions with Im g # 0 are acceptable
since 7=a 1s a pole for ng

In nverting eq (521b) we can use one of the several expressions for the
P-function For instance when |e; — g?| > 1 we use

1 \V2
B'—a=u+0(u’), u=( q) . (5 30)

€1 —q°

where the coefficients 1n the expansion are given up to terms O(u**) See Abramowitz
and Stegun, ref [5] On the contrary for ¢* small, 1e p? small and gB large we use

-¢>=Yc,u", u=(K-a), (531)
where the coefficients C,, are given explicitly up to M =7

6. Conclusions

Non-abelian gauge theories have a rich non-perturbative structure and 1t seems
very natural to extend the external field method to them, with the hope of
improving upon ordinary perturbation theory Almost all of the non-abelian exter-
nal field problems considered so far involve abehan-like background configurations
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where the analysis simplifies considerably For instance such a field induces a
vacuum polanzation which 1s immediately related to the vacuum polarization of
QED 1nduced by the analogous Maxwell field

Our major purpose in this paper 15 to start an exploration of simple aspects of
non-abehan gauge theories Vacuum polarization in uniform non-abelian fields has
been extensively analyzed by considering the effects of a constant (non-abehan)
vector potential on quantized matter fields Since this configuration 1s not co-
variantly constant we have mvestigated the possibility of modifying it by allowing
for a ume dependence in the vector potential As a result we have obtamed a
time-periodic non-abelian background consisting of a triplet of collinear chro-
momagnetic and chromoelectric fields which are invariant under space translations
and such that any space rotation can be undone by a gauge transformation

After we introduce quantized matter fields the analytical structure of the problem
becomes highly complicated and to unravel the physical content of the theory 15
necessarily a multistep program In this paper we have decided to concentrate on
solving the eigenfunction spectrum for an 1vospinor fermion in the external field
This we consider the basic block in approaching a solution to the questions raised n
the introduction since n principle when one has the eigenfunctions then perturba-
tion theory in g at all orders in the field follows by application of standard
techniques

In solving the eigenfunctions for the 1sospinor fermions we have found that part
of them, namely those corresponding to transverse modes (with respect to the
canonical three-momentum), decouple from the background in the sense that a
gauge can be chosen where they are free-particle wave functions On the contrary
the scalar-longitudinal sector of the theory has a non-trivial content, consisting of
quasi-doubly-periodic functions 1n the ~complex plane Wave propagation of these
modes 15 therefore constrained by requiring them to be bounded on the entre 7-axis,
which n turn gives rise to permitted zones very much in the same spirit of solving a
Schrodinger equation 1 a periodic potential The actual form of these zones. 1¢
those values of p*/gB for which the eigenfunctions do not increase indefinitely for
t — + oc, requires the inversion of a weierstrassian elliptic function, and we give few
examples of suitable expansions valid in different regions of the parameters

I wish to express my gratitude to M Veltman for the hospitality at The University
of Michigan This work was supported in part by the US Department of Energy
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