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Isospmor fermlons are studied in the presence of a covanantly constant, time-periodic SU(2) 
background field The eagenfunctmn spectrum is den~ed Part of the modes termed tranb~erse, 
decouple from the external field The non-trivial content xs given by the so-called scalar-longltu&- 
nil modes, which are quasl-doubl~-perlodlc functions of time 

1. Introduction 

Since the work of Schwinger [1] there has been great interest m electromagnetic 
processes in external fields Many authors [2] have studied in detail the abehan 
constant uniform field and the plane wave field, where the one-particle Green 
functions for matter fields can be solved exactly The most celebrated result is that a 
constant electric field can create real pairs and therefore the vacuum is unstable In 

general one is also interested in the properties of the mass and polarization 
operators of an electron and a photon in the external and radiation fields Indeed 
the problem of calculating synchrotron radiation of photons is essentially equivalent 
to extracting the imaginary part of the second-order elastic scattering amplitude of 
the electron [3] 

Very few of these results have been generahzed to non-abehan gauge theories, 
despite the role they have played in the theory of elementary particles in recent 
years To avoid confusion we try to elucidate this point An impressive body of 
results has been obtained in the non-abehan theory but almost all of them involve 
abellan-hke configurations which are solutions of the Maxwell equations embedded 
within the non-abehan Lie algebra with a fixed orientation Therefore in this class of 
problems it is relatively easy to dlagonahze the part of the lagranglan quadratic in 
quantum fluctuations with respect to color Basically once the direction V" of the 
external field in color space is given we only have to find the subalgebra of SU(N)  
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whose  e lements  commute  with V and the or thogonal  complement  Wha t  is missing 

is a comple te  analysis  of the p rob lem for a genuinely non-abehan  solut ion Given 

such a conf igura t ion  what  are the states which &agonal ize  the lagrangian ~ Fo r  

ins tance  in an external  SU(2) field with both  neutral  and charged componen t s  an 

e lect ron can scat ter  and t ransform into a neutr ino and what  we want  are the full 

p r o p a g a t o r s  (to all orders  in the external  field) for ee, vv and ev t ransi t ions  Also we 

would  like to compute  electroweak or even strong synchrot ron  ra&at lon  (e ~ W + v 

or  q ~ q + g) in non-abehan  background  fields Even if they turn out to be 

negl igible  effects for present  day  phenomenology their interest  is connected  with the 

quest  for going beyond  the f ramework of pe r tu rbanon  theory The p rob lem w~th 

n o n - a b e h a n  theory is that we haze very htt le avadable  mformat~on at the level of 

classmal solut ions  The most obvious cand ida te  would be a constant  field Fj, The 

c lass l f i canon  of  these fields is due to Brown, Coleman and Welsberger  [4] who haxe 

p roved  that  they can be p roduced  either by an abehan vector potent ia l  l inear in -,~ 

or  by a cons tan t  non-abehan  vector potent ia l  For  the second case B r o a n  and 

Wmsberger  [4] have been able to calculate the vacuum po l a nz a non  reduced by 

ma t t e r  fields However  as not iced by' these authors  the constant  xector potentml  ~s 

not  coxarmnt ly  constant ,  ~ e is not  a solut ion of the classmal equat ions ol morion 

The  quest ion we address  is the following Can we hnd  a coxanant ly  constant  

n o n - a b e h a n  vector  potent ia l  which retains as many  as possible  of the character is t ics  

of the cons tan t  external  field of QED,  and what  can be said about  non-abehan  

processes  a round  it ° In order  to solve the classmal equat ions  of mouon  we restrict  

ourselves to the SU(2) case The main  result of our paper  can be summarized  as 

follow ~ There  is a covanan t ly  constant ,  t~me-peno&c SU(2) x ector  potentml  w h~ch 

gl~es rise to field strengths m v a n a n t  under  space t ransla t ions  and also under  

c o m b m e d  space and gauge rota t ions  We discuss its p ropernes  m sect 2 In sect 3 

l sosp inor  fermlons are in t roduced in the background  field and the general s t ructure 

of  the mgenfunct lon  spectrum is s tudmd In par t icu lar  the set of elgenmode~ xx dl be 

shown to separa te  into two &snnc t  classes, t ransverse and scalar- longi tudinal  

Transverse  modes  and their decouphng from the external  field are &scu~sed m sect 

4 and f inal ly in sect 5 we analyze the non-tr ivial  content  of the scalar- longi tudinal  

sec tor  whmh gwes rise to quas i -doubly-per iodic  soluuons  These will be bound on 

the real t-aMs only for a par t icular  set of xalues ol p, the canomcal  three-momen-  

tum modulus ,  showing forbidden and permi t ted  zones ol p ropa ga uon  

2. A periodic SU(2) field 

We consider the classical equanons of motion for an SU(2) gauge field 

D " h E  ~' - 0 (2 1 ) 
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where 

. . . .  b,Ah--, (2 2a) F/, v = O~,A~ - O.A~, + ge . A ~ ,  

D~ b = 8'~hO. + ge~'bA; (2 2b) 

In order  to solve them we make the following ansatz 

A ; - - 0 ,  A ; = X ( t ) 8 ~  ( a, b = 1 . 2 , 3 )  ( 2 3 )  

The  corresponding field strengths will be 

r0~h = X'8~, F;~ = gXZe "m (2 4) 

Defining the current  j~' = D f ~ F ~  we find 

j ~ = 0 ,  j ; =  - (X" + 2gZ)k3)6~ ( 2 5 )  

A~ as given in eq (2 3) is covarlantly constant  for 

d 2 
d T ) t  = - 2g2~ 3 (2 6) 

In t roducing  ~- -- c~t and X = /~ f  with the choice a = ~-g/~ we recognize in eq (2 6) a 
special case of an elliptic equation, whose solution is a Jacob1 elliptic function [5] 

X ( t ) - -  cn ( (2gB)  t . ~ ) ,  (2 7) 

where B = g/~ z In the following we extensively use the theory of elliptic functions 
All the results quoted are from ref [5] 

The  funct ion cn IS a doubly-periodic function of t with periods 4K and 2K  + 2 tK  
where 

r 2 ( ~ )  
K -  - 1 85407, (2 8) 

4~rl/2 

at / ~ . , . = 2 m K + ( 2 n + l ) l K  and zeros at c~ .... = ( 2 m + l ) K + 2 m K  

r IX(t)  I ~< (2 9) 
( g B ) ~ / 2  ' 

with poles 
Therefore  for  t real X(t) has a period T and it is bounded 
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Since c n ' e ( r ) =  ½(1 - c n 4 r )  the fields may be cast into the form 

El," = - v~-B sn r dn rS/," = _+ B ( 1 - cn% )1 '~-6~;, 

a _  n a 

B 1, - B cn~rSh, (2 10) 

where  f rom now on r = 2 ~ B  t and we drop the V'½ from the arguments  of cn The 

fields are mamfes t ly  mvar lan t  under  space t ransla t ions  and also under  s imul taneous  

space and gauge rota t ions  They are the m m l m u m  extension to the non-abehan  case 

of  the cons tan t  field of Q E D  since static, uni form conf igurat ions  are not  solut ions 

of  the classical  equatmns of mot ion  Despi te  the fact that  the fields are t ime 

dependen t  we have 

~ [ ( E ~ )  e + ( B " )  2] = 3 B ~ ' = c o n s t  (2 11) 
t /  

F o r  gB << I the fields are approx imate ly  constant  in an interval At such that  

2¢~At<< T where they reduce to E 2 = 0  and B~=BSf, We notme that  tins 

so lu t ion  is regular  everywhere in Mlnkowski  space but  cannot  be cont inued to 

euchdean  space where it would serve the role of In terpola t ing field between 

th ree -d imens iona l  constant  bounda ry  values In fact in euchdean space the con- 

t lnua t lon  of  cn ( t )  is the Jacobl  elliptic funct ion nc(:~4) winch shous  poles at the 

zeros of cn winch can be real 

Solu t ions  to the Yang-Mll ls  equanons  of the elhptic type are well known m the 

l i te ra ture  [6] bu t  they were in t roduced  m an a t t empt  to construct  fimte-energ~ 

classical  conf igura t ions  while here we are pr imar i ly  concerned with the generahza-  

t ion of  the cons tan t  field p rob lem It should also be not iced that most  of these 

so lu tmns  lead to a complex vector  potentml,  a feature we want  to a~o,d m the 

p resen t  case 

Acco rd ing  to ref [4] our solut ion d lagonahzes  the mat r ix  A" A ~' This ~111 dehne  

the gauge where  we are working 

F ina l ly  bes ides  the solut ion we have explicit ly const ructed there are other  

examples  when the matr ix  A" A b has a lower rank 

3. Introducing fermions 

Having  in t roduced  a par t icu lar  example  of an SU(2) external  field we move to the 

p r o b l e m  of s tudying the behavior  of mat te r  fields in this background  Consider  for 

def in i teness  the case of spin- 12, isospin- l~ fermlons The convenUons we use are 

7, + = y;~, {~,;'. 7 ~ } = 28 ;'~ and ~,5= .)/1~/2~3.}/4 If '/" ,s an l sosplnor  the cor responding  

Dl rac  equa t ion  In the presence of the external  field will be 
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The approach  we follow in analyzmg the predictions of the model can be termed the 

"e lgenfunc t lon"  approach We intend to utilize the Dlrac wave functions to calcu- 

late processes in the external field Transmon  amplitudes are computable  to first 

order  m g bu t  to all orders m the field, after which we square the amphtude  and 

sum over final states There are other approaches based on Schwlnger's source 

theory winch ehmmate  the need for using wave functions but we have not pursued 

tins ~ssue 
Since we are using massless ferrmons it will be convement  to work with states of 

def lmte  chtrallty @'/q. R = -+ '/'L,R The Dlrac splnors are written in terms of upper  

and lower components  

q. = q.- (3 2) 

and with our  conventions a left-handed fermlon corresponds to + = - q , + =  - +  

F r o m  now on we concentrate on tins case and drop the subscript L Slmdar results 

will be valid for r ight-handed ferrmons ~b = + + =  ~b The Dlrac equation becomes 

t O t~+ lOa(Oa - ~_lg~'ra)t~=O, (3 3) 

where o u (~-u) are the usual Pauh mamces  acting on spin (xsospln) indices The 

external field X(t)  does not depend on space coordinates and therefore the canom- 

cal th ree -momentum is conserved We write 

Eq (3 3) becomes  

+ ( x ,  t )  = e ' P ~ x ( t )  (3 4) 

d 
l ~ t  x -- I~a( pa -- l g~kTa)X = 0 (3,5)  

Fol lowing Jacklw and Rebbl [7] we introduce 

x,,  = (n .  + . . . .  (3 6) 

where s is a spin index and t an lsospln index The degrees of freedom are now 

described m terms of a scalar mode ~ and a vector mode ~1 It ~s irrelevant to 
fur ther  distinguish between different indices and for tins reason we denote by • all 

the Pauh  matrices Using the relation r2rT. = - % r  2 (T = transpose) we get 

(d ) 
l d t  --"i"aPa (~s + ~a"ra) - lg~k,l-a(~s-~ ~hTh)q-a= 0 (3 7) 

In  order  to dlagonahze tins equation we introduce the set of matrices ~-~(p) As 
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I 

P + = V ' J ( P , - T - l P , ) ,  P = ] P l  

Given the umtary transformation U(p)  

U H = U22 =- N ,  

{Ji2 = + / 2 N  p+ , U, 1_ = -~ /2N P-P~ 
p + p_. P + p: 

with N 2 = 2 p / (  p + p__), we define 

• " ( p )  = u + ( p ) . ~ " u ( p )  

p r ~ ( p ) = ~  p ,  rJ e ( p ) = , r  812 ,  

(3 s) 

It follows 

where 

(3 9) 

(3 lOa) 

with p8  3 = p  The vector mode ~1 Js convemently projected in this lrame 

~l=r/L83 + ~'. ~7'~e,, 
t = [ 2  

'q 'r='qk'r3(P) + E ~2%(P) (311) 
z=12 

By equating the coefficients of 1 and +"(p)  in eq (3 7) we obtain two separate 
systems of equations relative to the SL (scalar-longitudinal) and T (transverse) 
modes, terminology introduced by Akhoury and Wmsberger [4] 

d 
X l ~7  "q, -- p rl l -- 5 g rl,--:0" 

d 
t~t t~L--pT/,+ ~g~,~L=0, (3 12a) 

d 
,v-,7~ +,p,7~ + ~ x ~  = 0, 

O t  

d 
t dt~2 - - zp~/~ + ,gX~2 = 0 (3 12b) 

F, 8 , =  8,, ,  8, X 8j = e,1~8 ~ , (3 lob) 
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Solutions of the Dlrac equation are classified as follows 

XSL = ( '0S + TILe3" q')'/'2" 

x i = E ~ ,  ~_ ,  (313)  
z=l ,2  

and from eqs. (3 12) we see that the field equation operator does not mix the two 
sectors The properties of ttus splitting can be described in terms of hellclty 
operators 

'~SpmX ~ e3 'TrsXst' ~:~'s°spmx ~ Xrje3 " ~T (3 14) 

XSL and X ± satisfy the relaUons 

"~spmz~ls°spXnXsL = - - X s L ,  Zspm~:~xs°spmx ± = X • (3 15) 

Thts allows us to introduce projection operations PSL and P I  

PSL, ± = 1(1 ~ z~spmvlsospm) (3 16) 

For  an arbitrary spxnor X we have 

PSLX = X S L ,  P ± X  = X ± (3 17) 

Having classified the solutions of eq. (3.1) according to their properties under the 
acUon of the helloty operators (3 14) we proceed to the actual construction of the 
e~genfunctlons. 

4. The transverse sector 

Eqs (3 12b), which describe the time evoluuon of transverse modes, can be 
rewritten as 

() 11 
To solve the above we use eIgnstates of •2 

r/2 =r/_+ 

Thus 

1) 
-p~'21~2 = 0  (41)  
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which can be integrated to give 

l n ~ + =  -T-tpt+  ,gfd, (44)  

The integral in the above equation is easily evaluated in terms of the Jacob1 elhptlc 
function dn 

g f  dtX(t)=arcos(dn'r), "c=v~gBt (4 5) 

It is convenient to introduce the angle O(t) = ~2arcos(dn ~-), which by virtue of the 
LTr periodic properties of dn ~- obeys the inequalities 0 ~< O(t) <~ ~ The two solutions 

in the transverse sector are 

~b~_=exp{tp x~tpt+zO(t))(Y1+,62) ~r~, (46)  

v s p m ~  + __ ~ -  -+~i (4 7) 

Since the only dependence on the external field is contained in the phase 0 we have 
shown that transverse modes decouple from A~ As a matter of fact there is nothing 
peculiar to the explicit form of X(t) in this decouphng which works also for 
constant vector potentials Part of the elgenfunction spectrum corresponding to 
parallel components of spin and lsospm with respect to the momentum p decouples 
from the background in the gauge A~= 0, A~ = X6~, The same effect can be 
understood from another point of view Consider the "longitudinal" subgroup 
generated by 

UL=exp( - -~ , lgAL~ 'r) (48)  

We only need to work with infinitesimal transformations It is eas~y to show that 

UL@ + = (1 ~- ~,gAL)~ + , (4 9) 

and that transverse and scalar-longitudinal modes are not mixed As a consequence 
we can always choose a gauge where }~_ or +2 decouple exphcltly 

5. The scalar-longitudinal sector 

Eqs (3 12a) are much more complicated to solve than the corresponding trans- 
verse equations First we introduce a(t)= e ~e~t~ Thus 

d 
l - - a = - 4 g X a  (5 1) 

dt - '  
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Next  we use the following substitution 

481 

Eqs (3 12b) become 

d 
ta 4 dtq~L - peo s = O, 

d 
l~dPs--pa4dpL = 0 (5 3) 

Thus we are led to the We look for a solution ~L=~, ~s=  l ( a4 /p ) (d /d t )d?  

second-order  differential equation 

d 2 d 
d t  2 ~ + 2tgX ~tt q5 + p2~ = 0 (5.4) 

Since f rom eq (2 7), X ( t ) =  (B /g ) I /2cn ' r  with r = v f ~ B  t we can rewrite the same 

equat ion as 

d 2 d 
d'r 2~5 + v/2l cn ' r  ~-d?tar + q2qb = O, (5 5) 

with 2gBq 2 =p2  Before entering the details of the solution we summarize a few 

propert ies of  the function cn In a shorthand notat ion we write cn~-= cn(~' ,V~) 

which is a doubly-periodic function of  • with periods 4 K , 2 K +  21K where K is 

given by eq (2 8) Due to the periodicity we can discuss all properties of elliptic 
funct ions in the so-called fundamental  period parallelogram which for cn r is 

= ~ '4K+ ~ ( 2 K +  2IK),  0 ~< f, ~ < 1 An irreducible set of poles is given by 

B '  = 8 1 0  = 2 K  + tK,  residue l~/2, 

/~ = /~20 = 4K + tK,  residue - t~2 ,  (5 6) 

while an irreducible set of zeros is given by a00 = K and %0 = 3K After those 
prehmlnarles  we study the singular points of the second-order differential equation 

(5 5) They  are r = B '  and r = B and their congruent  points The corresponding 
exponents  are 0 and 3 for B' ,  0 and - 1 for B Since they are unequal integers we 
can apply the Herrmte, Plcard, Mlttag-Leffler, Floquet theorem [8] which states that 

eq (5 5) possesses a fundamental  set of solutions which are in general doubly-peri-  
odic funct ions of  the second kind Therefore we look for a solution of  the form [8] 

eO("c ) =eh'°( 'r -a)  f('r), (5 7) o(,-B) 

1 
7/L = a~L ,  ~s = ~--2ffs (5 2) 
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where /? = 4 K +  tK, a and b are constants to be determined and o(~-) is the 
welerstrassian o-function f (~)  is an elliptic function 

As shown below the 0(~-) so constructed is doubly-periodic of second kind 
Considerations following the value of the exponents relative to the singular points of 
the equation suggest we tr~y f =  1 

To prove that q,(~-) as given in eq (57) is actually a soluuon of eq (55), we need 
to use the other two weierstrassian functions P(~)  and ~(~-) Briefly, P(~)  is an 
elliptic even function with a double pole at ~" = 0 

1 
P(~-) = ~ + O(~ -2) (58)  

~'(~-) is an odd function defined by P(~-)= -~"(~')  Notice that 

d 
~'(~-) -~ - - l n o ( ~ ' ) ,  

dt 

1 
~'(-r)= - + O ( ~ - 3 ) ,  o (~- )=~-+O(~  -5) (59)  

T 

All the elliptic functions considered in this section have the same periods of cn ~-, 
namely 4K, 2K + 2tK 

~(~-) and o(~-) are not elliptic functions but instead 

~'( ~" + 4K ) = ~'(~-) + 2~(2K ) = ~( ~- ) + 2~. (510a)  

o(~-+ 4 K ) =  - e x p ( 2 ~ ( . c + Z K ) } o ( ~ ) .  (510b)  

and similarly for the other period It follows that on the real axlb 

q~(~'+ 4K)  = exp(4b + 2 ~ ( f i -  a)}O(~-) (511)  

and ~(~-) is a quasi-doubly-periodic function An important property which follows 
from the definition of ~ is 

d 
~ 0 =  [ b + ~ ' ( ~ ' - a ) - f ( ~ ' - f i ) ] ~ ,  (512)  

Eq (55) becomes 

{ [b + p) 

+ ~ - , c n T [ b  + ~'(~-- a)  - ~ ' (~-  fi)] }O = - q %  (513)  

Let us consider the function defined by the left-hand side of the pre~ious equation 
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f (a ,  b, "r) 

( f ( a ,  b,'r) + q 2 } , ~ =  0 (5 14) 

cn~'. P( ' r -a ) ,  P( . r - f i )  are elhptlc functions Also the difference ~ ' ( ~ ' - a ) -  

~'( ~- - fl) is an elhptxc function which means that f is elhptlc There are in principle 

three poles for f ( r )  The point 1"=a  is a pole for f ( ~ ' - a )  and P( ' r -a )  while 

~-=f l  is a pole for f ( .r- f l ) ,  P( ' r - f l )  and cnT and finally at ~ = f l ' ,  cn~- has a 
pole However  given the Eaurent  expansions for the functions P, ~ and cn we easily 

verify that ~" = fl is a regular point  for f(~-) Vice versa. T = a is a single pole with 
residue 

Ra= 2 [ b - f ( a -  fi) ] + ~-tcn a (5 15a) 

and ~- = / 3 '  is another single pole with residue 

R ~ , = - 2 [ b + ~ ' ( f l ' - a ) - f ( f l ' - f l ) ]  (5 15b) 

Thus  f(~-) is an elhptlc function of order 2 and as a consequence R. + R B, = 0 This 
can be proved by expressing cnT In terms of f-funct ions We have 

c n ' r = c n a + , v ~ [ ~ ( ' r - f l ' ) - f ( ' r - f l ) + f ( a - f l ) - f ( a - f l ' ) ]  (516 )  

Taking  the hmlt  ~" --~ fl '  in the above expression gives 

f ? f 2 1 c n a = ; ~ ( a - f l ) - ~ ( f l ' - f l ) - - f ( a - f l ' ) ,  (5 17) 

which indeed shows Ra + R B, = 0 If we require the conditions 

b= f( a -  fl) - V~-2 tcn a, (518 )  

It follows that  f ( T )  is an elliptic function with no poles which by Llouvllle's 
theorem is a constant  With b given by eq (518) we can fix a such that f =  _ q 2  

and a solution to eq (55)  is obtained To verify the correctness of our procedure we 
have computed  

f l ( a ) = f ( f l ,  a), f 2 ( a ) = f ( f l ' , a ) ,  f 3 ( a ) = f ( a , a ) ,  (519 )  

with the following results 

f l (a)  = - ½cn2a-  P ( a -  fi), 

f z ( a )  = P ( a - f l ' ) - P ( f l ' - f l ) ,  

/ 3 ( a )  = 1 " _ _ ~ c n - a +  3P(a fl) l~2snadna (5 20) 
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I t(1 - cn4a) 1'2 W h e n  we wri te  -t~[2~na dna this is equivalent  to t c n ' a =  ± V'- 

which again has per iods  4K, 2 K  + 21K By m s p e c n o n  )'1 IS regular  at a = fi and 

shows a doub le  pole  with zero residue at a = f l '  The same is true for f :  and /3 and 

moreover  ) ' l ( f i ) = f 2 ( f l ) = f ~ ( f l ) = 0  Therefore  they are elhptlc funcnons of the 

a rgumen t  a with the same periods,  a double  pole  at a = f l '  with the same pr incipal  

pa r t s  Since they have the same value at the poin t  a = fl they are the same function 

A solu t ion  to eq (5 5) ~s specified by 

~( 'c)  e h ~ ° ( ~ - a )  = (5 21a) 

where  

fl = 4K + tK ,  

b = f ( a -  f i)  - ~,"~ , c n  a ,  

P ( f i ' -  a)  = e ~ -  q~-, (5 21b) 

f l ' =  2 K  + IK,  el = P ( 2 K  ) (5 21c) 

P is e lhptm of order  2, which means  there are t u o  zeros In the fundamenta l  per iod  

pa ra l l e log ram The cor responding  two values for a from eq (5 21b) gwe a funda-  

menta l  set of  solut ions to eq (5 5) 

F o r  ins tance  for q2 = 0 we find a solut ion a = tK and cor respondingly  h = - 27 

with ~ gwen by  eq (5 10a) In general  for q 2 ~  0 we have to revert  an elhpttc 

func t ion  

a = f l ' ± P  l ( e l - q 2  ) ( 5 2 2 )  

A t  th~s po in t  we want  to check that  for gB ~ 0 solut ion (5 21a) goes into a 

f ree-par t ic le  wave function Since q2 ~ ~ ,  7 ~ 0 m this hm~t, with q'r = p t  we have 

f rom eq (5 21b) 

l 
/ ~ ' - .  ~ - ( 5  2 3 )  

~,B~O q 

whach gwes 

P ( f l ' - a )  ~ _ q 2  (5 24) 
~B ~ 0 

F o r  q2_~ ~ therefore  a = B '  and  f ( f l ' - f l )  is finite It follov~b 

,'T b ~ - ~ , 2 t c n a - t q  ( 5 2 5 )  
g B ~  

Also  o ( - f l ' )  and  o ( f l ' -  fl) are non-zero  giving from eq (5 21a) 

qS(~') - cons te  'm ( 5 2 6 )  
~B~O 
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Consider  now our  solution ~(T) on the real r-axis F rom eq (5 11) 

~(~" + 4 K )  = exp{4b + 2~(/~ - a ) } ~ ( T )  - Sq,(~-), 
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(5 27)  

for I s I ~ 1, ~ increases without bound in one of the directions • ~ + ~v, a situation 

which has a close resemblance to Bloch's spin-waves The condit ion that ~ be 

bounded  on the real T-axis defines the permitted zones, very much as for a 

Schrodmger  equation in a periodic potential The modulus  of  the canonical three- 

m o m e n t u m  cannot  assume arbitrary values but  has to satisfy the following relation 

R e [ 2 f ( a - / 3 )  - t ~ - c n  a + ( / 3 -  a ) ~ ]  = 0, (5 28) 

where /3=  4 K +  tK, ~ = f ( 2 K )  and a (q  2) is gwen in eq (5 22) Collecting our 

results we find for the SL modes 

~ L :  e x p { b r  + 10(-r)} ' (5 29a) 

l 

7/s= p B L [ b + f ( ~ ' - - a ) - - ~ ( T - - / ~ ) ] ,  ( 5 2 9 b )  

wluch gaves an additional constraint. Only solutions with Im a :g 0 are acceptable 

since r = a is a pole for ~s 
In  invert ing eq (5 21b) we can use one of the several expressions for the 

P- func t ion  For  instance when lea - q21 >> 1 we use 

B'-a=u+O(uS), 

where the coefficients in the expansion are given up to terms O(b/45 ) See Abramowltz  
and Stegun, ref [5] On the contrary for q2 small, 1 e p2 small and gB large we use 

m )2, (5 31) _ q 2  = ~ c m u  , u = (1K--  a 
HI 

where the coefficients C M are given exphcltly up to M = 7 

6. Conclus ions  

N o n - a b e h a n  gauge theories have a rich non-perturbat ive structure and it seems 
very natural  to extend the external field method to them, with the hope of 
improving upon  ordinary perturbat ion theory Almost  all of the non-abehan  exter- 

nal field problems considered so far involve abellan-llke background configurations 
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where the analysis slmphfles considerably For instance such a field induces a 

vacuum polarization which is lmme&ately related to the vacuum polarization ol 

QED induced by the analogous Maxwell field 

Our major purpose m this paper is to start an explorauon ol simple aspects of 
non-abellan gauge theories Vacuum polarization m umform non-abehan fields has 

been extensively analyzed by considering the effects of a constant (non-abehan) 

vector potential on quantlzed matter fields Since this configuration is not co- 

vanantly constant we have investigated the posslblhty of modifying it bv allo~mg 
for a time dependence m the vector potential As a result we have obtamed a 

tlme-perJo&c non-abehan background consisting ol a mplet ol colhnear chro- 

momagnetlc and chromoelecmc fields which are lnvanant under space translations 

and such that any space rotation can be undone by a gauge transformation 

After we introduce quantlzed matter fields the analytical structure ol the problem 

becomes highly comphcated and to unravel the physical content of the theory is 

necessarily a multlstep program In this paper we have dectded to concentrate on 

solving the mgenfunctmn spectrum for an lsospmor fermlon m the external field 

This we consider the basra block m approaching a solution to the questions raised m 

the introduction since in principle when one has the e~genfunctJons then perturba- 

tion theory m g at all orders in the field follows bx application of standard 

techniques 
In solving the elgenfunctlons for the ~sosplnor fermlons we have found that part 

of them, namely those corresponding to transverse modes (~lth respect to the 

canomcal three-momentum), decouple from the background m the sense that a 

gauge can be chosen where they are free-particle wave functmns On the contrary 
the scalar-longitudinal sector of the theory has a non-trivial content, consisting of 

quas>doubly-penodlc functions m the t-complex plane Wa~e propagation ol these 

modes is therefore constrained by reqmrlng them to be bounded on the entire t-axis, 
which in turn gives rise to permitted zones very much m the same sprat of solwng a 

Schrodlnger equation in a peno&c potential The actual form of these zones, ~e 

those values of p 2 / g B  for whmh the elgenfunctlons do not increase mdefimtely for 
t --+ _+ ~c, requires the mversmn of a wemrstrassmn elhptm function, and ~e give fe~ 

examples of statable expansmns valid in &fferent regions of the parameters 

I wish to express my gratitude to M Veltman for the hospitality at The University 

of Michigan This work was supported in part by the US Department of Energy 

References 

[1] J Schwlnger Ph~s Re~ 82 (1951)664 
[2] G K  Sawldy, Ph_~s Lett 71B (1977)133 

S G Matmyan and G K Sa~wldv, Nucl Phy~ B134 (1978)539 
G A Batalm, S G Matmyan and G K Savvady, So~ J Nucl Phys 26 (1977) 214 
H Pagels and E Tombouhs, Nucl Phvs B143 (1978) 485, 



G Passarmo / Fermtons m a ttme-penodtc SU(2) background 487 

J Ambjorn and P Olesen, Nucl Phys B170 (1980) 60, 
H Leutwyler, Nucl Phys B179 (1981) 129, 
N K Nielsen and P Olesen, Nucl Phys B144 (1978) 376, 
G A Batahn, E S Fradkln and S M Shvartsman, Nucl Phys B258 (1985) 435, 
J Ambjorn and R J Hughes, Ann of Phys 145 (1983) 340 

[3] V I Pdtus, Ann of Phys 69 (1972) 555 
[4] L S Brown and W I Welsberger, Nucl Phys B157 (1979) 285, 

R Akhoury and W I Weasberger, Nucl Phys B174 (1980) 225 
[5] R Erdelyl et al ,  Higher transcendental functlon~ vo| 2, Bateman Manuscript Project (McGraw-Hill 

1953), 
E T Whittaker and G N Watson, A course of modern analys~s (Cambridge Um~ Press 1978), 
H Abramowltz and I Stegun, Handbook of mathematical functions (Dover 1970) 

[6] J Cervero, L Jacobs and C R Nohl, Phys Lett 69B (1977) 351, 
R Casalbuom, G Domokos and S Kovesa-Domokos, Phys Lett 81B (1979) 34 

[7] R Jacklw and C Rebbl, Phys Re~ D13 (1976) 3398 
[8] E L Ince, Ordinary differential equataons, (Dover 1956) 


