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ABSTRACT 

A CONSISTENT method for the analysis of bifurcation instabilities in shells of arbitrary thickness has been 
proposed. The advantages of this method, as compared to the classical approach followed so far, are the 
independence of the results on the nonlinear shell theory employed as well as the possibility of finding the 
dependence of the critical load and eigenmode on the shell’s thickness up to any degree of accuracy desired. 

A brief description of the general method, which is asymptotic with respect to the shell’s thickness, is 
followed by its application to the case of an internally or externally pressurized infinite cylindrical tube for 
which an analytical solution of the resulting asymptotic problem is possible. Critical loads and modes 
compare very favorably with a numerical solution of the exact three dimensional problem even for relatively 
thick tubes. The presentation is concluded with a short discussion on the application of this technique to 
the general wrinkling instability problem in metal forming. 

1. INTRODUCTION 

BUCKLING IS a well known instability associated with the loading of thin walled 
structures. The term “buckling” here is a generic one and incorporates all abrupt 
changes in the deformation pattern of a shell, occurring in the course of a loading 
process. In mathematical terms the corresponding phenomenon is called “bifurcation” 
and it involves the loss of uniqueness in the solution of the (always nonlinear) 
governing equations for the pertaining boundary value problem describing the defor- 
mation of the structure in question. Although the first buckling studies in solids go 
back to Euler, the proper mathematical foundation for the theory of structural stability 
as a bifurcation problem is a much more recent achievement and it is essentially due 
to the works of KOITER (1945) for the elastic case and HILL (1957, 1958) for the more 
general case of rate independent solids. Consequently, the terms bifurcation and 
buckling are considered completely equivalent in the rest of this work. 

Using the general method introduced by KOITER (1945), in the vast majority of 
shell stability analyses up to date, the following procedure is invariably employed: 
first a nonlinear shell theory is adopted which is subsequently linearized about the 
critical load thus yielding a (nonlinear) eigenvalue problem whose solution gives the 
buckling load and the corresponding eigenmode. The shortcoming of this approach 
is the theoretical possibility of an infinite variety of critical loads and eigenmodes 
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for the same physical problem, due to the great wealth of nonlinear shell theory 
approximations existing in the literature. Although for shells with instabilitjes in the 
small strain elastic region of their constitutive response, the difference in the buckling 
results due to the choice of different nonlinear shell theories is negligible (as cal- 
culations presented subsequently in this paper will indicate), one does expect sig- 
nificant effects of the choice of nonlinear shell theory approximation in results involv- 
ing bifurcations at rather high deformations and strains in the solid, as for example in 
problems associated with sheet metal forming applications (e.g. puckering, wrinkling, 
etc.). 

It is the purpose of the present investigation to propose a consistent alternative 
method for the calculation of critical loads and eigenmodes in a shell bifurcation 
problem in a unique way, once the shell geometry and material constitutive equations 
have been determined. The proposed method will also provide the critical loads and 
eigenmodes as functions of the shell’s thickness to any desired degree of accuracy, 
information which is impossible to obtain using the aforementioned nonlinear shell 
theory-dependent approach. 

In place of the classical approach, in which a two dimensional nonlinear shell theory 
(derived from the three dimensional governing equations of the solid) is linearized 
about the critical load, the present method starts from the bifurcation equations of 
the three dimensional shell-like solid (which have been obtained by linearization about 
the critical load of the same three dimensional governing equations for the nonlinear 
solid in question) and subsequently takes the limit as the shell thickness h tends to 
zero, following a multiple scale asymptotic technique in the spirit of the approach 
introduced by DESTUYNDER (1980) for the derivation of linearly elastic shell theories. 
A graphic presentation of both procedures (classical and proposed) is depicted in 
Table 1. 

In view of the considerable algebraic complexity of the theory for the case of an 
arbitrary shell, only a brief exposition of the general method is given. The presentation 
proceeds with the application of the theory to the buckling instability of an infinitely 
long cylindrical tube under internal and external pressure, a problem for which a 
general analytical three dimensional solution does not exist. An asymptotic (in terms 
of E = In (outer radius/inner radius)) analytical solution for the critical load and 
eigenmodes is presented for a hyperelastic as well as for an elastoplastic material. 
Results are compared with some recent numerical investigations on the subject due 
to HAUGHTON and OGDEN (1979) and CHU (1979) for the internally pressurized 

elastic and elastoplastic cases respectively and TIMOSHENKO and GERE (1961) for the 

(classical) externally pressurized linearly elastic cylinder. The asymptotic method used 

here predicts several interesting features of these problems that have only been found 
numerically thus far. In addition to the analytical asymptotic calculations, finite 
element computations have been carried out for the cylinder of arbitrary thickness. 
Results indicate a remarkable agreement between the numerical and asymptotic values 
of the critical loads for thickness to radius of curvature ratios up to 20% even when 
only the first one or two terms in the pertaining asymptotic expansions are considered. 

Finally, the presentation is concluded with some interesting remarks about the 
general formulation of the theory for an arbitrary shell and its applications to sheet 

metal forming problems. 
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TABLE 1. Schematic representation of the classical and proposed approach for thin shell 
b~~kl~~~ problems 

CRITICAL t.OAD 
CRlTIW MODE 

r 1 1 

I 
3-D NONllN~R 3-D STABILITY 
SOLID EQUTNS. FOR CRtTiCAL 

PRoposED APPROACH 

2. PROPOSES METHOD 

As discussed in the introduction, only a brief description of the proposed method 
will be outlined here. For an arbitrary rate independent solid, with external loads 
increasing proportionally to a scalar load parameter I, the necessary conditions for 
a bifurcated solution at some point I = I,, is the existence of a nontrivial solution to 
the homogeneous incremental equilibrium equations, which can be written as 

(f%, Lv) = 0, (2-l) 

where L. is a linear operator (containing the solid’s incremental moduli and depending 
on the prebifurcation solution and hence on 2) operating on the bifurcation eigenmode 
21, while 6v is any arbitrary function ~longing to the same function space as v, say Y, 
with V appropriately chosen in order to satisfy automatically the essentiat (homo- 
geneous) boundary conditions for the eigenmodes. In addition the (0, -> symbol in 
(2.1) denotes the duality pairing of V and its dual V’. The weak fo~ulation of the 
bifurcation equations is to be employed in this section in view of its notational 
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compactness. One should also mention at this point that in the case where the operator 
L is selfadjoint, as is most often the case in nonlinear elasticity or rate independent 
plasticity problems, a quadratic (in v) functional F(I1; u) can be found whose first 
variation yields (2.1) ; namely 

FE ;(v,Lv), 6F=Oo(6v,Lv)=O. (2.2) 

It should also be noted that a desirable feature for the bifurcation functional F is that 
it is positive definite for values of the load parameter smaller than the lowest bifurcation 
load. For more details on the subject the interested reader is referred to the review 
articles of BUDIANSKY (1974) (for the nonlinear elasticity case) and HUTCHINSON 
(1974) (for the rate independent plasticity case) and the references quoted therein. 

For a shell-like structure, L and v are functions of x, y as well as E where x denotes 
the mid-surface coordinate(s), y denotes the thickness coordinate and F denotes the 
ratio of the shell’s thickness (initial or current depending on the formulation of the 
problem) to another characteristic length. Although in the asymptotic analysis of 
linear three-dimensional shell-like structures, two small parameters do appear 
naturally (see DESTUYNDER, 1980), namely the thickness to characteristic mid-surface 
length ratio E and the thickness to minimum mid-surface radius of curvature ratio ye, 
in the present study only one small parameter thin walled structures are to be 
considered. This assumption does not impair the problem’s generality since in the 
majority of the applications considered, the reference (undeformed) mid-surface of 
the shell remains fixed while the corresponding initial thickness tends to zero. Hence 
the nonlinear (in L) eigenvalue problem (2.1) (or (2.2)) has a solution of the form? 

2 = L,,(E), v = v(x,y; E). (2.3) 

The proposed method consists of adopting the following transformation of variables 

and asymptotic expansions 

V(X,Y,E) = ~(X,5)+E:(X,5)+C23(X,5)+... 

A,,(&) = &+&A, +E?&+...; 5 3 y/E, 
(2.4) 

which, upon substitution to (2.1) and collection of terms of like order in E, yields 

(6v, L,i)= 0; L, = L(x,<;O,&), 

(&,Lol) = - ((~v,~~~~)+~'(bv,~~*P)); 

aL aL 
-- =~(x,c;o,ao), fj; =~(J,:;om. 
I% 0 0 

(2.5) 

Assuming for simplicity that the eigenmode i is unique, the following mode ortho- 
gonality condition is used 

7 Note that the operator L is of the form L = L(x, g ; E, A). 
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(I,L,E) = (i,L,h) =O for iB 1, (2.6) 

which in turn can be employed for the determination of the i,‘s. Hence, from (2.5)2 
with the help of (2.6) one gets 

(2.7) 

The above procedure gives in a straightforward and unique (for a given three-dimen- 
sional boundary value problem) fashion, the critical load and eigenmode of a shell- 

like structure, as a function of its thickness. 
It can be shown (but the proof will be omitted in this work in view of the 

cumbersome notation needed) that the specific dependence of L on E implies that 

the lowest order term r? in the eigenmode expansion depends only on the midsurface 

coordinates, i.e. i = i(x) as is also the case in the classical approach (i.e. the buckling 
mode of the linearized nonlinear shell theory) although the two different approaches 
are expected to produce in general different results. Moreover, if the first nontrivial 
term in the expansion for Lt is the zeroth order one then a membrane mode prevails 
while if a higher order term (usually E* or higher) is the first non-trivial term, the 
corresponding bifurcation is of the bending type. In the following sections a non- 
trivial problem is treated analytically and a wide range of possible types of shell 
bifurcations are examined using the general method proposed here. 

As explained in the introduction, the particular attraction of the pressurized cylinder 
example treated here is the possibility of an analytical solution for the resulting 
asymptotic problem. Our purpose is not to provide just another solution to the 
classical pressurized cylinder stability problem (on which there is already a substantial 
amount of literature whose review is not relevant for this work) but to illustrate a 
novel method using this relatively simple example. 

3. APPLICATION TO THE PRESSURIZATION PROBLEM OF AN 

INFINITE CYLINDER 

Attention is focussed on the influence of the wall thickness on the bifurcation 
behavior of an infinitely long incompressible cylinder of current (and initial) inner 
and outer radii ri, r. (and Ri, R,) respectively. In addition to its full three-dimensional 
character, this problem possesses a prebifurcation stress state which is not constant, 
(thus precluding a 3-D analytical solution), but a rather involved function of position. 
Both external and internal hydrostatic pressure loadings will be investigated. Two 
different constitutive equations will be employed ; an elastoplastic power law type 
material and a rubber-like neo-Hookean one, in view of their entirely different 
behavior in the internal pressurization case. 

t Assuming of course that d is proportional to the midsurface strains (or stresses) in the shell 
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Problem formulation 

A brief derivation of the governing equations, that fits the framework of the general 
formulation in Section 2, is presented here. Assume a body whose prebifurcation 
stress and strain distributions are known functions of the monotonically varying load 
parameter 1”. Bifurcation occurs if, at some value of the load parameter A,,, for a given 
increment in load 2 (i.e. for a given increment of the boundary prescribed loads) the 
solution to the rate problem for the solid ceases to be unique. In the following, an 
updated Lagrangian formulation of the problem will be adopted with the reference 
configuration taken to coincide with the current one at the onset of bifurcation. 
Convected curvilinear coordinates 0’ will be employed in the general formulation of 
the incremental equilibrium equations withg’jdenoting the contravariant components 
of the metric tensor. An index preceded by a comma (,i) indicates covariant differ- 
entiation with respect to the corresponding variable (0’) while a quantity surmounted 
by a dot ( ‘) stands for differentiation with respect to a monotonically increasing time- 
like parameter (usually R if/z increases or - jW if ,? decreases during the loading process). 

At bifurcation, at least two different solutions to the incremental equilibrium prob- 
lem are possible and if A( ) denotes the difference of two such solutions (for a given 
field quantity), the incremental equilibrium equations 

(Ati’ +&AZ& ),, = 0 (3.1) 

have to be satisfied at the interior of the solid, while on the part of the surface that is 
subjected to a hydrostatic pressure p the corresponding boundary conditions are 

(Ati” + ~~~Az$)rz, = p( g”g’” - ,@‘gk’)Atik,,yl,, (3.2) 

with n the outward normal to the surface in question. 
Fo; the incrementally linear, incompressible materials to be considered here, their 

constitutive law assumes the form 

&j’J = L~J~~AG~,, _ Aig’i (3.3) 

withp the hydrostatic pressure inside the solid and & the tensor ofincremental moduli. 
To complete the set of governing equations of bifurcation, the incompressibility 

condition must also be added : 

Ati; = 0 (3.4) 

It is often convenient to write incremental constitutive laws for finitely deforming 
solids in terms of the Jaumann (or co-rotational) derivative of stress, namely 

V 
gv = ciikl . uk.[ +,4” (3.5) 

and in this case the new tensor of incremental moduli C is related to the tensor L in 

(3.3) by 

LM = ciN_ $tglko/’ + gilajk + g//aik + g/koil). (3.6) 

The incremental theories to be considered are rate independent and consequently 
the incremental moduli & (or c) depend on the current stress and deformation state 
and possibly on some internal variables too, but are independent of rate quantities 
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(in the elastoplastic material case the total loading branch of the incremental moduli 
tensor will be considered). 

At bifurcation, a non-trivial solution (in terms of A@, A;) to the linear (with respect 
to the aforementioned field quantities) boundary value problem (3.1)-(3.4) exists. The 
pointwise formulation of the general bifurcation problem has been adopted here as a 
starting point in view of the unboundedness of the domain of definition of the 
functions at hand for the infinite cylinder. For more details on the formulation of the 
general bifurcation problem for a rate independent solid, the interested reader is 
referred to the original work by HILL (1957,1958) and the review articles of &IDIANsKY 
( 1974) and HUTCHINSON ( 1974). 

For the infinite cylinder problem investigated here, cylindrical coordinates will be 

used with i = Y, f? = 8, i = z. Physical components of tensor fields will be employed 
with the corresponding indices included between angular brackets (( )). 

Without loss of generality (more comments on this subject will be offered later), a 
non-axisymmetric bifurcation eigenmode is assumed to be of the form (for n # 0) 

Ati < ,) = U,(Y) sin (no) sin (oz), 

Ati, 2) = ug (r) cos (n0) sin (oz), (3.7) 

Ati (3> = 21,(r) sin (nf7) cos (0~). 

The goal will be the construction of a bifurcation functional with the properties 
indicated in Section 2 [see (2.2)]. For this purpose the ith equilibrium equation (3.1) 
is multiplied by 6ui (which are also assumed to have 0 and z dependence of the form 
indicated by (3.7)) and the resulting products are summed and subsequently integrated 
in the intervals ri < r < Y,,, 0 < 8 < 271, 0 < z d 271/o. Upon integration by parts, 
employment of the boundary and incompressibility conditions (3.2), (3.4) and change 
of variables from Y to x = In (r/ri), the following bifurcation functional is constructed 

I@; u,, V,) = ; 
iS[ 

’ (C(~~II)-~(~,>)(U,,,)*+~C(~~~~)(~~~~~U, 
0 

-Ur,,)Ur,, +~C(I I~~)(-~~&U,)U,,, + (C<2222) -~c22>)(orie% 

-U,,)2+2C<2233)(0rIexU,-Uv,,)(--or,exU,)+(C<,,,,)--a<,,>) 

x(--riexU,)2+ CcL212) + ( “(11)-~<22) 1 

2 > 
2 (‘~,xx + u,,~ - ayiexuz 

-~ri~‘Uz,,)*+2 
( 

C<1212) - 
~<11>+0(22> 1 

2 > 
2 (&,xx + U,,, - ~~ieXUz 

-OT,eXU,,,)((n*-l)U,-UU,,,+WTieXU,)+ C<r2r2)+6’22)50”1) 
( > 
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+2 C<,313) - ( a(ll>+a(33> 

2 ) 
(wr,e% )o,,, + 

( 

~(33)-~(11) c, ,3,3) + ---2p'--- 
) 

( 

"'li'?~<33))(nl-)'+2(C,,323) -"rt',p) 

( 

c<33)-a(22) 
x (~riexz);)(~,,,+2/‘,-_riexz),)+ cc2323) + - 

2 

x (~),,~+2),--cor~e~v~)~ dx+ p 
I L( 

u,’ + $(o,,,y+o,-corieXuz)2 

X=E 

-2~,(~r,,+~~r) 11 i 9 (3.8) 
X=0 

where [f]: = f(b) - f(a) and E = In (ro/ri) is the current thickness parameter of the 
shell. The Euler equations of the above functional are the bifurcation equations for 
the cylinder corresponding to the nonaxisymmetric mode (3.7) as one can verify. In 
the derivation of (3.8) it was tacitly assumed that in the prebifurcation state the 
material is orthotropic with principal directions (r, 8, z) which are also the directions 
of the principal stresses, conditions which hold true for all the cases to be subsequently 
analyzed. It should also be noted that in view of the nature of the prebifurcation 
solution, the incremental moduli tensor C as well as the components of the stress 
tensor a entering (3.8) are functions of the thickness variable x (and the load parameter 

A of course). 
Following the general method of Section 2, the thickness variable will be resealed 

with the introduction of t 3 X/E where the normalized thickness variable 5 varies 
0 d 5 < 1. The bifurcation functional Zin (3.8) can be simplified further by exploiting 
the only nontrivial equilibrium equation of the prebifurcation condition, namely 

(a(rr)L = ac22)-a(,,), a<,,)@) = -pi, a(,,)(4 = --PO, 

to yield the expression 

(3.9) 

+2A14v&~,~ +2~1,v,~,~,+~,,(v,,)‘+2~,,v,,~,+2~,,V,,V,,+2~,,~,,~,+~,,(~,)~ 
+2~,,v,v,,~+2~35~,~,+~44(vz,~)2+2A45Z)r.5Z)r+A55(Vz)*]d~, (3.10) 

where F = tz31 and the coefficients A, 1 < i, j < 5 are given by 

A,, = c<,2,2> + 
- ( a(ll)--a<22) 1 

2 I- n 2, 

A,, = 0, 



Stability of thin walled structures 

A,3 = E2 

651 

-I” 

( 
c<z323, + 

(7<33)-@<22> (~ri@)2 

) 1 -~- 2 .* ’ 
A,, = E3 c(2323, + 

LT<33) -+(22>_ 

2 ) 

(~@4)2 
___- 

n2 ’ 

A,, = E3 
[ 

q13*3>--q12*2) 
(7(22> -f7<33> 

+ --~ 
2 

+ 
( 

C(1212) + 
~<ll>---a<,,> 1 

2 )I 2 CCfJrie”‘>, 
A3s = E4 c,,,,,, + 

f7<22> -g<33> 
- 

2 ( 

A44 = E’ 
a<1 r> -0<33> 

C<1313> f---y- + 
( 

C<lZlZ> + 
C(11>--“(22) @ww 

) 1 -~- 
2 n2 ’ 
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It is understood that rigid body modes have to be excluded from F. In this particular 
case, from the requirement that the difference in two incremental strain tensors is null. 
i.e., Al?!, = A[:(Zi,,j+z~,,r)] = 0, one deduces that the most general form of a rigid body 
mode for the case of a nonaxisymmetric mode of deformation is 

[(zsin%,zcos%, -vsin%) 

0% ,)r A&,> A&),,. = 
(zcos%, -zsin%, -vcos%) 

(sin 8, cos 8, 0) (3.12) 

[ (cos%, -sin%,O) 

and hence to the variational equation 6F = 0, one has to add the essential boundary 
condition 

v,(O) = 0 for n = 1. (3.13) 

Obviously for the case of an axisymmetric deformation (n = 0), the bifurcation 
functional Fin (3.10) becomes singular and hence a reformulation of the problem is 
required. Starting from the assumption that the (% independent) bifurcation eigenmode 
in this case is of the form 

A6, ,) = wrie-” V(x) sin (oz), 

Ali C2) = W(X) sin (oz), (3.14) 

dV 
Ati,,, = e-zX~cos (wz), 

where the eigenmodes are chosen so as to satisfy automatically the incompressibility 
condition (3.4), and following the same steps as in the derivation of the bifurcation 
functional Fin (3.10) for the nonaxisymmetric case, one can construct the following 

bifurcation functional 

W; V(0, ml=; ’ ~A^,,~v,~5~2+~~~2v,~5v,s+~~,3v,s~~+~22~v.*~2 
s 0 

+2a,,V,V+Al,,(V)2fa44(W,)2+2a45W,6W+a5s(W)21d5, (3.15) 

where the coefficients a, are now given by 

^ 
A,, = C<,313) + ( "<Il)-a<33) ,-4Ee 

2 > ’ 

1 
A12 =E -2 

[ ( 
q1313)+ 

~(II>-c7<33> 

2 > 1 - 4E( e , 
^ 
A13 = c2 C<,3,3) + 

fl<11>--<33> 

2 > 
(OYie-EC)2, 
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^ 
A23 = E3 ~<,122)+~<,,33)-~<1111)-~~2233)-2~(1313)+~<22) 

+o(33) -22a(, ,) 

> 
(corie-F5)2, 

A^33 = E4 C(,,1,)-2C(,122)+C~2222)+2(~<11)-6~22)) (wrC9* 
> 

+ 
( 

q1313> + 
0<33) 2% 1) (ori) 

> I ) 

^ 
A45 = -Ed 

0<11)-~<22) 
C<,2,2) +e2 , 

(J(ll)-g(22) 
C<1212> + -_l_- 

. (3.16) 

In a similar fashion, for the axisymmetric mode of deformation the modes to be 
excluded are the rigid body modes as well as the plane strain axisymmetric mode that 
corresponds to maximum pressure (since a volume controlled experiment is considered 
here) ; namely, 

Hence, the essential boundary conditions for the admissible functions of the func- 

tional J in (3.15) are 

V,,(O) = 0, V(0) = 0, W(0) = 0. (3.18) 

Having established the appropriate bifurcation functionals for the problem, i.e., 
the functionals which are quadratic in the eigenmode and whose first variation (i.e., 
6F = 0 for IZ Z 0, 6J = 0 for n = 0) is the weak form of the bifurcation equations, 
attention is turned to the choice of the load parameter A. 

Two different definitions, according to the type of loading, will be used for the load 
parameter 1. For the case of an internally pressurized cylinder, i.e., p(O) = pi, p( 1) = 0, 
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/z = t-,/R0 (int. press.) 

while for the externally pressurized case, i.e., p(O) = 0, p( 1) = po, 

(3.19) 

J. = r,/R, (ext. press.). (3.20) 

Two additional sets of relations will be also recorded here for future use. Firstly, 
in addition to the current thickness parameter E = In (ro/ri) the initial thickness 
parameter E = In (R,/R,) is defined. From the incompressibility and plane strain 
conditions of the prebifurcation configuration one has 

(3.21) 

which, in conjunction with (3.19) or (3.20) and the definition of the initial and current 
thickness parameters, yields the relations 

.5= -iln(* +<;:!) (int.press.), 

,s=kln(l +‘I;rl) (ext. press.). 

(3.22) 

Secondly, and in a similar fashion as for the initial thickness parameter, a non- 
dimensional initial axial wave number Q is defined by fl = oRi which, with the help 
of (3.22) and (3.19), (3.20) is related to the non-dimensional current axial wave 
number oyi by 

ori = CUeEP” (int. press.), 

or, = RA (ext. press.). 
(3.23) 

Having completed the general formulation of the bifurcation problem one moves 
to the determination of the critical load parameter ,I,, which is found as follows. Let 
,I,, be the minimum (maximum) value of l(or, n; E) over all possible values of ori 
and ~1, where fi(wr, n ; E) is the minimum (maximum) value of the load parameter for 
which the bifurcation functional F(if n # 0) or J (if n = 0) loses its positive definiteness 
under inside (outside) pressurization. This value of ,I,, corresponds to the first insta- 
bility occurring in the cylinder as the loading increases from the initial stress free 
configuration. Also note that the increase (decrease) of 1 away from I = I in the case 
of internal (external) pressurization corresponds to an internal (external) volume 
controlled experiment. One can show without difficulty that the quadratic functionals 
F (or J) in v,, vZ (or V, W) respectively, which are continuous functions of 2, are 
positive definite for II = 1 (stress-free state) while at the point of loss of their positive 
definiteness they satisfy the weak form of the bifurcation equations 6F = 0 (or 6 J = 0). 

The fact that the present formulation covers all possible solutions of the pressurized 
infinite cylinder bifurcation problem, i.e., that the set of eigenmodes considered here 
is adequate for reaching all the eigenvalues of the initial problem stated in (3.1)-(3.4) 
although it can be proved, will not be addressed here as being a technical mathematical 
issue outside the scope of the present investigation. 
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Since interest centers on the dependence of the critical load and corresponding 
eigenmode on the shell’s thickness, the following asymptotic expansions with respect 

to the current thickness parameter E will be adopted 

0, = ~~(5)+E:~(S)+E23,(t;)+... (V= ~(r)+E~(5)+E23(5)+...), 

VZ = j)lz(s)+c:,(s”)+E?:,(@)+... (W= ~(5)+E~(~)+EZ~(g)+...), 

li(Or,,FZ; F) = X,(Ori, n)+&~,(Or,,n)+&‘fi2(Wri,n)f” ‘, 

A,, = &+&A, +&21”z+.... (3.24) 

Here asymptotic expansions with respect to the current thickness parameter E, 
instead of the physically more meaningful initial thickness parameter E will be con- 
sidered in view of the resulting algebraic simplicity. 

The formulation of the cylinder problem will end with the calculation of the zeroth 
order term &(wri, n) = l(wri, n; 0) in the critical load parameter and the zeroth 
eigenmode for an arbitrary material. Starting with the nonaxisymmetric mode case 
n > 1 and expanding the coefficients 2, of the bifurcation functional F with respect 
to E, namely, 

0 I 2 

A. zz ‘&+&ii..+~2A..+... 
11 ?I ?I lJ 1 < i,j< 5, (3.25) 

one obtains, by using (3.24) and (3.25) in the bifurcation equation 6F = 0, the 
following result; by collecting the terms of the like order in E. The 0( 1) term 

gives, assuming A,, # 0, 

0 

V - 0. r,e5 - (3.26) 

Using the above result in the O(E) term of the bifurcation equations gives 

i,,A,& +A$!& = 0. (3.27) 

Continuing pith, the Y(E’) term yf 6F = 0 and employing (3.26) and (3.27), one 

deduces for A I I A 44-(A14)2 # 0, A,, # 0 that 

(3.28) 

Considering subsequently the O(E)) term and making use also of (3.26)-(3.28) one 

has the following relations for Grsti, Lr,<, i,, :z,c, i, 

‘i,‘&< +.i34ir+Li44dz,5 = 0, 
2 _I 3 -0 -0 3 

(3.29) 

A22%,< +A23U,+A25uz = 0, 

while from the O(E~) term of 6F = 0 and after considering (3.26))(3.28) the follow- 

ing two additional relations for i 
I 

r,5c, v,,~, i,, A,., , i, are deduced 
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-qlZ&:C 2 3 +.4,3:,,: 4 3 +A33ir+A,4L;,; +A35iz 4 = 0, 

j2& +;35iir+&11.z = 0. 

(3.30) 

Hence, a non-trivial solution to the homogeneous linear system (3.28)2, (3.29), (3.30) 
exists if the following condition is satisfied : 

4, = 0. (3.31) 

In the derivation of (3.31) it was tacitly assumed that i,, # 0, 2, ,k,, -(A’,,)’ # 0, 

i22a,5 -(j:,)’ # 0 while use was also made of the property that all the iii terms 
entering (3.31), which incidentally are the lowest nonzero terms in the asymptotic 
expansions of each Aij in (3.1 I), are independent of 5 as one can easily show. Since 
each of the aforementioned coefficients is a function of &(orj, n), the solution of (3.31) 
provides the first term in the expansion of the critical load fi(ori, n ; s) as a function 
of the axial and circumferential wave numbers or, and n (n > 1). For the special case 
of n = 1, the essential boundary condition (3.13) has also to be considered in the 

analysis. In this case and from the requirement i, = 0 the O(E~) terms yield (for 

:,, # 0, ~,,~,,4(Al14)2 # 0) 

ALz2i55 - (i2$ = 0, (3.32) 

which is the condition providing &(wri, 1). For the case of n = O?_ a similar asymptotic 
analysis for J = 0 yields the following equation for &(or,, 0) 

a,, = 0. (3.33) 

Once 1, is found, the critical axial (ori) and circumferential (n) wavenumbers i.e., 
those which minimize or maximize-according to the type of loading-&(ori,n) can 
be established. For higher order terms in the expansion for i and their corresponding 
eigenmodes the general expressions for the arbitrary material [analogous to (3.31)- 
(3.37)] are extremely involved. Hence these higher order calculations will be presented 
only for the two specific materials considered in this work, in which case they are 
considerably simpler than the ones required for the general case. It should be noted 
here that for the special case of hyperelastic materials and using an entirely different 
approach based on the nonlinear membrane equations bifurcation equations (for the 
membrane mode) analogous to (3.31) have already been presented in the literature; 
for more information the interested reader is referred to HAUCHTON and OGDEN 
(1979) and the references quoted therein. 

t Note : If a pressure controlled experiyenj is considered i.e., if the essential boundary condition V(0) = 0 

is relaxed, the equation for &(or,. 0) is A, !A,, - (A,,)’ = 0 from which the maximum pressure condition 
is recovered. 
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For the higher order terms a mode orthogonality condition is required. To this end 

the following relations are adopted (i # 0) 

s I 

[$, +&?,] d< = 0 
’ i 0 

for n 2 1 or s VVdc = for n = 0. (3.34) 
0 0 

It is understood that the above selection is not unique. This section will end with a 
remark on the dependence of the critical axial wave number on the cylinder’s thickness. 
From the bifurcation equations 6F = 0 or 6J = 0, one obtains fi(ori, n; E) which, 
expanded-for a given ori and n-about E = 0 yields the expression stated in (3.24)3. 
But at the critical load A,, the corresponding value of the axial wave number 
(or,),(n ; E) satisfies 

8X/i3(wri) = 0 
(wr,),., 

(3.35) 

which provides, in an implicit form, the functional dependence of (wr&., on E, i.e., 
(ori)C,(n; E). From (3.24)1 and (3.35) the expansion of the critical axial wave number 
(cw,)~, about E = 0 gives 

(ori),, = oo+.xO,+...; SLO o=__ 
a& /am0 

dwrJ ' 1 a*~o/awoaOo (3.36) 

while the critical load A,, takes the form 

A,., = &+Ei,+E2&+...; LO = 10b0, n,), 21 = f, Coo, n,), 

A2 = X2(oo, n,) - A 
a&o,, n,)Po, 

2 a2~0(~0,n,)/~f30a~,' (3.37) 

where all the derivatives of Xi are evaluated at ori = oo. 
The specialization of the general asymptotic analysis for the cylinder stability 

problem presented here will be applied subsequently to the two different constitutive 
laws mentioned at the beginning of this section. 

4. ELASTOPLASTIC CYLINDER (POWER LAW TYPE MATERIAL) 

As a model of a rate independent elastic-plastic material the hypoelastic material 
of ST~REN and RICE (1975) will be employed here. The fact that this constitutive 
choice is a reasonable one for metal plasticity will be established next, together with 
the derivation of explicit formulas for the prebifurcation stress state for the pressurized 
cylinder. 

Prebifurcation stress state and incremental moduli 

From the kinematics of the prebifurcated solution (i.e. plane strain and incom- 
pressibility), the principal stretch ratios of a material point, whose distances from the 
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cylinder axis in the initial (stress free) and current configuration are denoted by R and 
r respectively, are given by 

for the case of internal pressurization and by 

a 
1 

= d’ _ [l +a2(e2"-1)1'~2 ” 

dR ie’ 
---, (ext. press.) (4.2) 

for the case of external pressurization. Since in the prebifurcation state, the principal 
axes of strain remain fixed with respect to the material, the final Cauchy stress depends 
on the final logarithmic strain as discussed by ST~REN and RICE (1975) and hence the 
corresponding principal stress-principal strain relation is 

3 S&j 1 
In Ai = ,j -z- (no sum) ; s<i,) = u(ii) - 3 a<kk>6<fj> (4.3) 

s 

where o;,,) and In,& are the principal values of the Cauchy stress and logarithmic 
strain tensors respectively, scjjj are the physical components of the Cauchy stress 
deviator and E, is the secant modulus of the uniaxial stress-strain curve, evaluated at 
the equivalent stress level Fan, with 

(4.4) 

The equivalent uniaxial stress-~strain (G,--E,) relation is here taken to be the power law 

(4.5) 

where ET is the solid’s Young’s modulus, m is its hardening exponent and ov the 
uniaxial yield stress. From (4.5) the secant and tangent moduli, Es and Et, of the 
material are found to be 

(4.6) 

From the only non-trivial equilibrium equation for the prebifurcation state (3.9), 
the following results are deduced for the stress distribution (obviously gcrj) = 0 for 

i#j) 

t Note : The Young’s modulus E should not be confused with the initial thickness parameter E defined 
in Section 3. 
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l”l+(x~s)-0.sln[l+l~(~~(~-~)- I)] 

{~“~/[e’~ - l]} dy, 

o(*2) =o(l,) + (+)(;;r_i (ln~+(x-E)-0.51n[1+i12(e2’“-“‘-1),~””, 
Y 

(7<33) = 
~(ll>+~(22) 

2 ’ Pi = -0.(11)(O), PO = -CJ<,I)(E) = 0 (4.7) 

for the internal pressure case, while for the external pressure loading one obtains the 
following stress state : 

0c22) = 0<,,) - (sOY)($Er (0.51n[1+~2(e2”-l)l-x-ln;1}1/“, 

Y 

C<ll) = 
~<lI>f-~(Z2) 

2 ’ 
pl = -I = 0, PO = -~.(lI)w. 

The incremental moduli C for the ST~REN and RICE (1975) material are 

C(ijk,) =~$[f(a.s,+s,,s,,)-~(l -$)-I. 

(4.8) 

(4.9) 

A minimum requirement for the above solution to be a possible one for an elastoplastic 
cylinder is that the total loading criterion should be satisfied everywhere in the 
prebifurcation state of the solid, i.e., 

S<ij,D<,> 2 0 ; DC,> = (J,/‘n,)bij (no sum), (4.10) 

where Q is the strain rate tensor. From (4.1), (4.2) and (4.7), (4.8), one can easily 
verify that (4.10) is always satisfied. Consequently, since the plastic (or total) loading 
criterion (4.10) holds everywhere in the prebifurcation state of the solid, the critical 
loads to be found from the proposed stability analysis are, at worst, lower bounds for 
the elastoplastic bifurcation problem of a solid whose total loading incremental moduli 
are given by (4.9). (See HILL (1958) and HUTCHINSON (1974) for the pertaining detailed 
theory.) 

For the inside pressurized cylinder made of the power law material, two values of 
the load parameter i are of special interest: the one corresponding to maximum 
pressure and the other corresponding to the loss of ellipticity of the material. The 
value of the load parameter ;1 corresponding to the maximum inside pressure for a 
cylinder of initial thickness parameter E, say 5, is deduced from the requirement 
do<, ,,(O)/dL = 0. Using (4.7), in conjunction with (3.22),, one finds that LP is given 

by 



660 N. TRIANTAFYLLIDIS and Y. J. KWON 

In [ 1 + (12 - I)e’“] .~ 1 + (2; - l)e2E m 

1m-- = i 32 . “P 1 
(4.11) 

Since 3L, is a function of the initial thickness parameter E, a straightforward asymptotic 
expansion about E = 0 yields 

,$ = e”2m (4.12) 

In the present work, of interest in the bifurcation analysis of the solid are the 
bifurcation modes occurring while all the points in the prebifurcation state are in the 
elliptic regime of the material, i.e. before any type of localized deformation failure 
occurs in the structure. For the plane strain deformations of the ST~REN and RICE 
(1975) material, ellipticity is lost when the maximum principal stretch ratio of a 
material point reaches a strain level of max (n,, A,) = exp (w/m) where m is the 
solid’s hardening exponent. Since in the case of the internally pressurized tube, the 
maximum principal stretch ratio is the one in the hoop direction at the inner surface 
of the tube, i.e. n,(O), from (4.1) and using also (3.22), one finds that for the pre- 
bifurcation solution to be entirely in the elliptic range the load parameter ;2 cannot 
exceed a certain maximum value 2, : 

(4.13) 

As one can see from (4.12) and (4.13) the maximum pressure and the loss of ellipticity 
in the prebifurcation configuration do occur at substantial strain levels (for mild steel 
for example m N 4) and hence these phenomena will be of concern only in the 
internally pressurized cylinder case, where the critical strains at bifurcation are of 
comparable order of magnitude. 

Elustoplastic cylinder-internal pressure 

Since the critical strains for the internally pressurized cylinder are expected to be 
well into the material’s plastic region, only values of the hardening exponent m > 1 
will be considered. More specifically, and for reasons to be subsequently explained, it 
will be assumed that m > 2. Given that for most structural metals this inequality is 
satisfied (e.g. brass m z 2.5, steel m z 4) the aforementioned restriction is not very 

important. 
At first, attention is focussed on the determination of the lowest order term in the 

critical load expansion, i.e., &(wr,, n). For n > 1 and using (4.7) (4.9) into (3.1 l), one 
has 
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/&z, = G,(1-2y)T 
(--WY,_) 

n ’ 

2 =G 
44 s 

&y+(&~y)~~ 1 n2 ’ 

661 

(4.14) 

where y z In 1, and the common factor G, s (a,/2~)(2Ei~4,)““(ln &)Oim)- 1 with 
E and (I~ the material’s Young’s modulus and uniaxial yield stress respectively. Sub- 
stituting (4.14) into (3.31), one obtains for n 2 2 the following equation for & 

$p’+y ~~~‘-i)~~(n2-l)~+ 
i 

[n2(~~~~- (iz+~)lp2 

..?(U+~)B’jiY2~~(~-l)(n’-l)+(~-Ib)(n~-1)B 

+[-~~(~6+k)+ 1Z]ii’-n’(5+$)8’) 

+Y3 -8(n2-1)-8(n2-1)j?+2nZ~2+2n2~3 = 0, (4.15) 

where for simplicity the notation /I SE (wrJ2/n2 was introduced. For the particular 
case n = 1, from (4.14) in conjunction with (3.32) the following equation for &, results 
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2.5 

1.5 -m=4 
--In=40 

n 
2 4 6 8 $0 12 14 16 

FIG. IA. Dependence of the zeroth order critical load &, on the nondimensional axial wavenumber Cl for 
various circumferential wavenumbers n for a power law material with hardening exponents nt = 4 and 

m = 10 in the case of inside pressure. 

For the axisymmetric bifurcation modes n = 0, from (3.33) with the help of (3.16) 
and (4.7), (4.9, the solution In& = I is obtained which is una~eptable as violating 
(4.13) (note that for E = 0, In n^, = &~/PI -=c 1). 

The dependence of the critical load parameter & closest to unity, i.e., the minimum 
of the roots of (4. I5), (4.16) greater than unity, on the circumferential (n) and initial 
axial (Q) wavenumbers--recalling from (3.23)2 that or; = R&-is depicted in Fig. 
IA in solid lines for the case m = 4 and dashed lines for M = 10. The absolute 
minimum of & occurs at the plane strain mode s1 = wp; = 0 for all circumferential 
wavenumbers n at &(O, n) = exp (l/m) which is past the value JP(0) corresponding to 
the maximum hydrostatic pressure for the membrane & 0) = exp (1/2m) (see (4.12)) 
but below the loss of ellipticity limit of n,(O) = exp ( ;i- m - l/m) (see (4.13)) for pn > 2 
which justifies restriction on the hardening exponent mentioned earlier. 

Since the absolute minimum of &(sl,~) is attained at Q d 0, and in view of the 
symmetry of x(Q,n; E) with respect to the Q axis, from the continuity of f in the 
neighborhood of E = 0, the absolute minimum of n^(ln. n ; E) will also occur at fz = 0 
and hence in the analysis of the higher order terms in the expansion of fi the plane 
strain condition Q = wpj = 0, 21, = 0 will be assumed. As explained in Section 3, this 
and all subsequent asymptotic analyses will be conducted for simplicity with respect 
to the current thickness parameter E but the results will also be presented in terms of 
the initial thickness parameter E. 

Substituting (4.7) and (4.9) into (3.11) and expanding the bifurcation equation 
i;F = 0 (with Fgiven by (3.10)) about F = 0 following (3.24) one obtains, by collecting 
the terms of the like order in E up to the 0(z6) term, the following results for 
I(O, II ; E), valid for YE 2 1 : 



Stability of thin walled structures 663 

I’ ’ LA-l 
0 2 4 6 8 i0 12 44 46 

FIG. IB. Dependence of the zeroth order critical load f, on the nondimensional axial wavenumber Q for 
various circumferential wavenumbers n for a neo-Hookean solid in the case of inside pressure. 

gum 
X(O,n; E) = e1’m-el(e2’m-1) 

+c2e11m 
[ 

1 n*-1 -_+(e2’~;l)2(;+m)+!q!]+... (4.17) 
m 12 

while the corresponding eigenmode u,(O, n ; E ; 4) is 

[ o+&<+E20+. . . (n = 1) 

Note from (4.17) that the critical circumferential wavenumber is n, = 1 in agree- 
ment with the finite element calculations of Crru (1979) and the experiments of LARSON 
(1979)f who also finds that the critical mode, in internally pressurized copper and 
aluminum tubes, is one of plane strain with n, = I. It should also be remarked here 
that in CHU’S (1979) work, no proof was given to the fact that the critical mode is a 
plane strain one (the corresponding analysis is from the outset a plane strain one) 
while the proposed “shell limit” analysis, which uses the rigid-plastic cylinder’s buck- 
ling mode of STORAKERS (1971), does not predict n, or any higher order term in the 
expansion of the critical load. Using (3.22), into (4.17), one finds, recalling that FZ, = 1, 
the following dependence of the critical load A,, on the initial thickness parameter E 

A. = e”“-Esinh LT 

t See also LAEON et al. (1982). 

sinh(A)[l + (?$+m)el/msinh(A)]+.-. 

(4.19) 
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FIG. 2. Dependence of the zero& order critical load & on the nondimensional axial wavenumber R for 
various circumferential wavenumbers n for both a power law (m = I) and a neo-Hookean solid in the case 

of outside pressure. 

An analogy can be drawn here between the inside pressurized cylinder and the plane 
strain tension test in HILL and HUTCHINSON (1975). la both cases as the thickness 
tends to zero, the fundamental eigenmode is a membrane one (i.e. the corresponding 
strains as E --) 0‘ are nonzero) at which all the wavenumbers n are possible while the 
modes do separate as the thickness increases. 

EJastopEastic cylinder-external pressure 

Since buckling in externally pressurized cylindrical shells occurs at smalI strains, 
with the critical strains tending to zero as the shell thickness vanishes, a hardening 
exponent m = 1 will be assumed for the material in this case. 

The determination of &(wri, n) proceeds exactly as in the previous subsection with 
the characteristic equations for &, being given by (4.15) for II 3 2 and by (4.16) for 
n = 1. Of interest is again the root closest to unity of the above equations, &(or,, rt), 
which is given in this case by the maximum (less than unity) root of (4.15) (n > 1). The 
dependence of n”, on the circumferential (n) and initial axial wavenumber (a), obtained 
by using (3.23)2 into (4.15), is depicted in Fig. 2. As expected from classical analyses 
of the problem (see, for example, TIMOSHENKO and GERE (1961), maxn & = &(O, n) = 1 
for all circumferential wavenumbers n and hence the plane strain mode wi; = 52 = 0 
is the critical one in agreement with the classical analysis of the problem using a 
nonlinear shell theory (see, for example, TIMOSEENKO and GERE (1961)). Using the 
same continuity arguments for d(Q n ; E) as E -+ 0 as in Section 4.2, the analysis for 
the higher order terms in the expansion of fi is performed under the assumption of 
plane strain conditions (I2 = WT, = 0, u, = 0). 

Substituting (4.8) into (3.11) and expanding for n # 1, the bifurcation equation 
6F = 0 (with Fgiven by (3.10)) about E = 0 following (3.24), one obtains by collecting 
terms of like order in E up to the O(E~) term, the following results for i(O, n ; 8) 
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(d-1) 
n^(o,n;E) = 1-a*----- 

3 tn2-4 
12 a -W-+e 

.&2-1)(39n2-31)+ ..,) (4*20) 

1440 

while the corresponding terms in the eigenmode expansion of ~~(0, n ; E ; <) are found, 
with the help of the orthogonality condition (3.34), to be 

f&(0, n; c; 5) = I+&* ~[_r’+~-~]+B1!nli;l![_(3n’+1) 

’ x 

( 

t4 
T_53+i--io +_2 ’ ) d--’ (t2-C ~~)I + .a,, (4.21) 

where in both (4.20) and (4.21) it is assumed that y1 > I. 
From (4.20) it follows that the critical circumferential wavenumber IE, = 2. 

Assuming the Young’s modulus to be unity for simplicity, the corresponding critical 
pressure is found from (4.20) and (4.8), to be (jO)_ = a’(n*- I)/9 ~1: (/z/R)~(~‘- 1)/9 
(where h 3 R0 - Ri, R z (R, + RJ/2) which coincides with the classical stability result 
for the externally pressurized incompressible, isotropic, linearly etastic circular cyhn- 
der as one can see, for example, in TIMOSEIENKO and GERE (1961). 

Expressing the critical load 1, in terms of the initial thickness parameter E, one 
finds from (3.22)2 and (4.20) that 

(n,‘-1) 
A,,= l-E2T- 

E3 (n?-1) 
____- 

12 
Ed (4 - l)($-9) 

1440 
= l-;-;+~+.... 

(4.22) 

Again the analogy is drawn here between the outside pressurized cylinder and the 
plane strain compression test in HILL and H~c~~so~ (1975). In both cases as 
the thickness tends to zero, the fundamental eigenmode is a bending one (i.e. the 
corresponding critical strains, as E -+ 0, vanish). 

5. HYPERPLASTIC CYLINDER (NEO-HOOKEAN TYPE MATERIAL) 

A neo-Hookean constitutive law will be considered here as a model for a rubber-like 
elastic solid. The reason for this particular choice, besides the resulting considerable 
algebraic simplifications, lies in the fact that this material never loses ellipticity and 
that in the internal pressurization case the fundamental solution not only does not 
present a pressure maximum, but it also exhibits a lowest critical load which does not 
correspond to a plane strain solution. 

PrebSfurcation stress state and incremental moduli 

The kinematics of the prebifurcated solution are the same as in the previous section 
and hence the principal stretch ratios & are given by (4.1), (4.2). Recalling that for a 
neo-Hookean material the strain energy density W is given by 
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W= 4G(4-3) = :G(A:+1,2+A32-3), (5.117 

where I, is the first invariant of the Cauchy-Green deformation tensor, and that the 
principal Cauchy stresses for an incompressible hyperelastic material are related to 
W and the hydrostatic pressure p by 

a<,,) = R, !$! - P (no sum), 
“I 

(5.9 

one deduces for the prebifurcation stress state o+~) that 

a(llj = $G (,I,)2 - $ + ln(1,I.j’ i 1 , 
g(22) = a<lr) +G[(A2j2 - (21 j21, 

0<33) = a<lI>+G[(13)2-(~,)21, 

(5.3) 

with A,‘s given by (4.1) for the internal and by (4.2) for the external pressure case. 
Following HILL (1969), the physical components of the incremental moduli tensor 

C are in this case [with W defined in (5. I)] for i +j given by 

C<;zii> = 2G(A;12, C<iij) = 0, (no sum). (5.4) 

Hyperelastic cylinder-internal pressure 

As in the case of the elastoplastic cylinder, the analysis will start with the deter- 
mination of the lowest order term in the expansion of the critical load. For n 3 1 and 
using (5.3), (5.4) into (3.1 l), one obtains 

o_ 1 2_ (n’- I) 
A,, = G-,, A,3 = GT 

.w yn ’ 

2 - G 55 - yn2 + (y+ 1)(ori)2 + (@?x 1 n2 ’ (5.5) 

t Note : The constant G is the material’s initial shear modulus related to its initial Young’s modulus E 
by G = 173. 
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where in this case y = (&,)‘. Upon substitution of (5.5) into the governing equation 
for &,, for the case n > 2, the following equation is obtained (recall also the previously 
used notation fi = (~r~)~/n~) : 

3~(1+~)[n2-l+n2~]+y[3(n2-l)+3(2n2-1)~+(n2-4)~~-2n2~3] 

+y2[-(4n2+2)~-(4n2-t6)~2-n2~3]+y3[-2(n2-l)+(6-22n2)~-33n2~2] 

+y4[-_8(3a2- 1)+/3”]+y’[-(n*- I)+j3] = 0. (5.6) 

In the special cases n = I and n = 0 from (5.5) and (3.32), (3.33), one can easily see 
that no solution for f,, exists. 

The dependence of &, i.e., the smallest of the roots of (5.6) which are greater than 
unity, on the circumferential (n) and initial axial (0) wavenumbers (recalling once 
more that from (3.23), u)ri = Qf), is depicted in Fig. 1B. Note that in this case, 
no instability is possible for the plane strain case (0 = 0), regardless of the circum- 
ferential wavenumber it. The critical circumferential wavenumber n, = 2 while 
& = min,&(Q, n,) = f,(SlO, 2) = 3.981 with the minimum occurring at Q = In, = 
1.792 (corresponding value of ori is o0 = 7.135). Using (4.1), (5.3), (5,4), (3.24) 
into the bifurcation equation 6F = 0 (where Fis given by (3. lo), (3.11)) and expanding 
about E = 0 up to the U(E’) term, as explained in Section 3, one obtains by employing 
also (3.35) [recalling (3.36) and (3.37)] after some laborious but straightforward 
algebraic manipulations 

a,, = 3.981-~29.561+‘..; (OTi)cr = 7.135-~3.513+.... 

The corresponding eigenmode expansions are found to be 

(5.7) 

v,({; (wr,)cr,n,;e) = l-t.a(-6.8795+3.435)++*., 
(5.8) 

ZL(<,(CW-~)~~,~~;E)= -0.908+E(-7.135gf3.563)+~~~. 

Using (3.22), into (5.7) the critical load can also be expressed in terms of the initial 
thickness parameter E as 

A,, = 3.981-E1.865+...; Q,, = 1.792-E0.839+.... (5.9) 

Due to their extreme algebraic complexity the general formulas for &, oi, L,, & in 
terms of W, n will not be recorded here. 

Starting with the dete~ination of &(or, n), which is given by the maximum root 
of (5.6) less than unity, one obtains results very simiIar to the power law case. As can 
be seen from Fig. 2, where n^, is plotted versus the initial axial wavenumber R, only 
for n = 2 and at the vicinity of $2 = 3, the power law and neo-Hookean material 
present their maximum difference and even then this difference is less than 1%. 

Again the plane strain mode is the critical one and by proceeding as in Section 4, 
the expansion of the bifurcation equation 6F = 0 up to the O(E’) term produces 
exactly the same results for the critical loads and eigenmodes as for the power law 
material. [See equations (4.20)-(4.22).] It was found that only after the U(s’) terms in 
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the aforementioned expansions the effects of the constitutive difference are felt in 
the corresponding asymptotic results, 

6. NUMERICAL METHOD AND RESULTS 

For the cylindrical shell of arbitrary thickness, the corresponding bifurcation equa- 
tions (i.e. the Euler equations for the functionals F and J in (3. IO) and (3.15) respec- 
tively) are extremely cumbersome and no analytical solution seems possible for the 
general case. Hence a numerical technique is required for the calculation of the critical 
loads and the corresponding eigenmodes. 

F.E.M. Formulation for arbitrarily thick cylinder 

In contrast with the power series expansion methods usually adopted in similar 
calculations (see HAUGHTON and OGDEN, 1979) and also references quoted therein), 
the Finite Element Method seems to be the naturai candidate for the task in view of 
the variational fo~uIation of the probiem presented in Section 3. The interval 
(0,l) of the normaIized thickness coordinate is subdivided into iV, equal subintervals 
(elements) where depending on the initial thickness parameter E, N, varies between 
2 and 20. For n #O (n = 0) Hermitian cubits are chosen as shape functions for v,(V) 
while a linear interpolation is adopted for v,(W) resulting in a three degree-of-freedom 
per node line structure. A six point Gaussian quadrature is used in the numerical 
integration involved in the construction of the discretized stiffness matrix [K(n)], 
whose positive definiteness in terms of 1 is detected by checking when the minimum 
entry of the diagonal matrix (D) in the Cholesky decomposition of (K) 
[(K) = (~)(~)(~)~; (I,) a lower diagonal matrix] is nonpositive. A straightforward 
bisection method is employed for the determination of the critical load A,,. 

Numerical results 

Starting with the internally pressurized cylinder case, the dependence of the critical 
load A,., on the nondimensionalized axial wavenumber s1 has been investigated for 
different values of the initial thickness parameter E. The results for the power law 
material with hardening exponent m = 4 and circumferential wavenumber n = n,. = I 
are depicted in Fig. 3A, while the corresponding calculations for the neo-Hookean 
material with n = n, = 2 are shown in Fig. 3B. Note that for the power law material 
the minimum for the critical load 3,,, always occurs at the plane strain case St = 0 as 
discussed in Section 4. Also note in the same figure that only in the interval /sZJ < 1 
(approximately) a bifurcation solution exists in the elliptic region of the prebifurcation 
state? (values of i,, below the straight lines i = /ZE in Fig. 3A with LE given by (4.13)). 
The peculiarity of decreasing critical load (for a given Q) with increasing thickness of 

INote: Numerical calculations using the three-dimensional definition for the loss of ellipticity (as 
opposed to the plane strain considerations in Section 4) confirm that A, is the lowest load corresponding 
to the onset of loss of ellipticity in the prebifurcation solution of a cylinder with thickness parameter E. 
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FIG. 3A. Dependence of lowest critical I,, on the nondimensional axial wavenumber 52 for various values 
of the initial thickness parameter E in the case of an internally pressurized power law tube with m = 4. 
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FIG. 3B. Dependence of lowest critical load 1, on the nondimensional axial wavenumber z1 for various 
values of the initial thickness parameter E in the case of an internally pressurized neo-Hookean tube. 

the shell is due to the choice of load parameter adopted here. Had the stretch ratio 
of the innermost fiber been chosen instead, as the load parameter, the corresponding 
critical load would be an increasing function of the tube thickness as intuitively 
expected. 

Unfortunately no direct comparison is possible between the present results in Fig. 
3B and HAUGHTON and OGDEN’S (1979) calculations for the internally pressurized 
neo-Hookean solid, in view of their lack of critical load calculations for the asymmetric 
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FIG. 4. Dependence of the highest critical load 1, on the nondimensional axial wavenumber .Q for various 
values of the initial thickness parameter E in the case of an externally pressurized power law (n? = 1) and 

neo-Hookean tube. 

bifurcation mode case. The apparent discrepancy in the results for the axisymmetri~ 
mode (n = 0) where, in contrast to the present calculations, an axisymmetric bifur- 
cation is predicted by the aforementioned authors, is due to our restrictive boundary 
conditions for the admissible modes in the y1 = 0 case [see (3.18)]. 

Similar calculations for the dependence of the critical load A,, on the nondimensional 
axial wavenumber 52 in the case of an externally pressurized power law (m = 1) and 
neo-Hookean material, for different values of the initia1 thickness parameter E, are 
depicted in Fig. 4. All calculations correspond to a circumferential wavenumber 
n = n, = 2. Note that in agreement with our assumptions in Sections 4 and 5 the 
numerically calculated maximum critical load always occurs in the plane strain con- 
dition 0 = 0. As expected, the critical loads for the neo-Hookean material are for 
E > 0.05 lower than those corresponding to the power law one, in view of the second’s 
softer response (i.e. lower incremental mod&) for a given strain level. 

Finally the comparison between the asymptotic theory predictions and the numeri- 
cal calculations for shells of various thicknesses is shown in Figs. 5-7. The comparison 
of the numerically calculated critical load to its three term O(E*) expansion of 
equation (4.19) in the inside pressure case or five term 0(E4) expansion of equation 
(4.22) in the outside pressure case, is depicted in Fig. 5 for the power law material. 
Figure 6 gives the corresponding results for the neo-Hookean material in which case 
the asymptotic inner pressure critical load is given by the two term expansion O(E) 

in (5.9), while the asymptotic result for the outer pressure case is still given by (4.22). 
Finally the numerically calculated and asymptotically approximated critical axial 
wavenumber Q,,, using the two term O(E) expansion in (5.9),, for the case of the neo- 
Hookean tube are compared in Fig. 7. In all the last three figures dotted lines 
represent finite element results while the solid ones correspond to the asymptotic 
approximations. Note that in all the cases examined above, discrepancies of the order 
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FIG. 5. Comparison between the numerically calculated (--- line) and asymptotically approximated 
(-- line) critical load I,, for the internally and externally pressurized power law tube for different values 

of the initial thickness parameter E. 
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FIG. 6. Comparison between the numerically calculated (--- line) and asymptotically approximated 
(-- line) critical load I,, for the internally and externally pressurized neo-Hookean tube for different 

values of the initial thickness parameter E. 

of 1% or less were found for values of the initial thickness parameter E < 0.2 which 
already corresponds to quite thick shells. 

7. CONCLUDING REMARKS 

The purpose of this work is to propose a consistent and unified approach for the 
analysis of buckling instabilities in shell-like structures of arbitrary thickness. In place 
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FIG. 7. Comparison between the numerically calculated (~-- line) and asymptotically approximated 
(-) critical axial wavenumber !A,, for the internally pressurized neo-Hookean tube for different values 

of the initial thickness parameter E. 

of the classical approach of linearizing about the critical load the governing nonlinear 
shell equations, in the present approach the full three dimensional linearized bifur- 
cation equations for the solid are asymptotically expanded with respect to its thickness. 

The natural selection for the small parameter is the initial shell thickness versus 
some characteristic length of the undeformed middle surface. In the limiting process 
considered, the undeformed middle surface remains fixed as the initial thickness tends 
to zero, thus making the limiting process dependent only on one small parameter. As 
seen from the general formulation which is briefly outlined in Section 2, the method 
results in the solution of a sequence of two dimensional boundary value problems 
whose domain is the reference middle surface of the shell. In view of the significant 
algebraic complication inherent in the general problem formulation for the case of an 
arbitrary shell, the method is illustrated by means of a non-trivial example (namely 
the pressurization of an infinitely long thick cylindrical tube), whose asymptotic 
solution (unlike the full three dimensional one) can be calculated analytically. The 
asymptotic results obtained for the critical load and modes show very good agreement 
with the full scale finite element computations even for relatively thick shells. The 
power of the proposed method can thus be appreciated from the fact that it provides 
new results for a fairly well studied problem and in addition provides analytical proof 
for certain phenomena that have so far been found only numerically. 

Although the purpose of the example is essentially a means of illustration of the 
proposed method (and not of course an exhaustive study of the corresponding boun- 
dary value problem), the theoretical advantages of the proposed method can be appre- 
ciated through this example. These advantages (in comparison with the classical 
approach to the shell buckling problem) are essentially two : the consistency in obtain- 
ing the critical loads and modes independently of the nonlinear shell theory employed 
and the possiblity of obtaining higher order terms if necessary for the thickness 

dependence of these quantities. 
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There are also some practical advantages which are expected from the proposed 
method, especially in sheet metal forming applications where an initially flat sheet is 
plastically deformed between a set of dies in order to form a final product. In view of 
the compressive forces generated in the deforming sheet, wrinkling instabilities are as 
inevitable as they are unwanted. Since the majority of numerical codes dealing with 
sheet forming problems are membrane ones, they cannot predict these instabilities. 
The classical way of dealing with the problem would be the use of a nonlinear shell 
theory which, in addition to being costlier, presents the obvious problem of its 
proper selection. The deeper in the plastic range the buckling occurs, the higher the 
discrepancy of results from theory to theory since the linearization of a different model 
is involved every time. One can show however (the proof being omitted as outside the 
scope of this presentation) that the quantity of practical interest, i.e. the lowest order 
term in the critical load expansion, depends solely on the structure’s membrane 
solution, thus avoiding the costly (and ambiguous) nonlinear shell theory calculations 
by making use of the already existing membrane codes. 

Of course since the issue of shell buckling is a fairly old and difficult one, the present 
work is only a small step in providing a better approach for this classical problem. 
There are numerous related issues, some more practical (there is more than one way 
to formulate the arbitrary mid-surface shell problem in view of the large strains 
involved as one can see from the problem treated here) and some more theoretical 
(concerning the method’s convergence) which merit further investigation and which 
we hope to be able to address in the near future. 
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