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The structure theory of standard modules of afline Lie algebras, given by 
J. Lepowsky and R. L. Wilson in [LW], is stated for representations of afTme 
superalgebras. As an application, the standard modules of level one for the 
superalgebras A““(0, 24, A’*‘(O, 2/- 1) and their afftne subalgebras A$:‘, A$‘, are 
constructed explicitly. These modules are realized as the tensor product of sym- 
metric and exterior algebras with an irreducible representation of a certain finite 
2-group. The alline superalgebra acts on this space by tensor products of vertex 
operators, operators of Clifford type, and elements of the 2-group. As a corollary, 
the spin representations of the Lie algebras 8, and D, are obtained from the 
2-group representation. cc> 1988 Academic Press. Inc. 

INTRODUCTION 

This paper gives a construction of certain irreducible representations of 
the afhne superalgebras AC4)(0, 24 A(*)(O, 21- 1) and their subalgebras 
A$?), A(*) *,-, The representations are of fundamental highest weight, and are 
precisely those on which the unique central element (suitably normalized) 
acts as unity. 

Relative to a particular Heisenberg subalgebra i’, the representations 
decompose as 

where the first factor is the symmetric algebra on iL and the second is the 
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vacuum space {u E VI ?‘, . u = 0). In the “super” case the vacuum space has 
the structure 

Q=L@M, 

where L is an infinite-dimensional exterior algebra and A4 is a represen- 
tation space for a finite 2-group 9’. The superalgebra is represented on 

V=Y@LQM 

by the tensor product of vertex operators on the first factor, Clifford-type 
operators on the second, and elements of P7 on the third. In the non-super 
case the picture is much the same, except that the vacuum space is now 
just M. 

The space M also affords a construction of the spin representations of 
the Lie algebras B, and D,. These algebras are represented by elements of 
the group algebra on 9’. 

The paper draws heavily on two sources, [K2] and [LW]. In [K2] 
Kac introduced and classified the affme superalgebras. In Section 1 we 
review basic facts about superalgebras and include that classification 
theorem; this has the dual purpose of setting notation and establishing a 
context for what follows. In [LW] Lepowsky and Wilson introduced the 
Z-algebras, of which we make free use here. The Z-algebra approach was 
extended to the afline superalgebras in [G] through some minor 
alterations. In Section 2 we state the central result of that theory 
(Theorem 2). While the paper’s main result (Theorem 3) could probably be 
written down without reference to Theorem 2, we include this general 
theorem because it is convenient to use, and because we hope to refer to it 
in future work. Since the presentation of Section 2 so closely follows that of 
[LW], we refer the reader to that paper for proofs and more thorough 
motivation. 

In Section 3 we realize the algebras Ac4)(0, 21) and A(*)(O, 21- 1) by 
writing down their Chevalley generators in terms of the underlying linite- 
dimensional algebra A(0, n) and its Cartan automorphism. (The sub- 
algebra fixed by this automorphism is B, or D,, n = 21 or 21- 1, respec- 
tively.) This information is necessary in Section 4, where we construct the 
representations and calculate their highest weights. 

The representations given here were first constructed (in much different 
fashion) in [FF]. Essentially the same construction of A$;), A$;‘, has 
appeared in [FLM], where, more generally, the twisted affme algebras ?J 
are constructed for 9 a Lie algebra of type A, D, or E. 
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1. PRELIMINARIES 

We review basic material concerning superalgebras, particularly those of 
afhne type. For the original exposition, see [Kl] for the finite-dimensional 
theory and [K2] for the infinite-dimensional theory. 

We take the complex numbers @ as ground field. An algebra A is called 
a superalgebra if it is graded by the additive group Z/22. Thus 

A =A,@A, 

and multiplication of homogeneous elements respects the grading. Given 
acA, a=0 or 1 (mod2), write 

degAa) = a, 

the (iZ/2Z-) degree of a. Elements of A, are called even, elements of A, odd. 
A homomorphismf: A -+ B of superalgebras is a homomorphism of algebras 
such that 

a =0 or 1 (mod 2). A Lie superalgebra (LSA) is a superalgebra g with 
product, denoted by a bracket [ , 1, satisfying 

[a, b] = -( - l)@[b, a] 

and 

Ca, Cb, cl I= C [a, 61, cl + ( - 1 Y”[b, [a, cl 1, 

for all aE gr, b E gg, CE g, a, B =0 or 1 (mod 2). In particular go is an 
ordinary Lie algebra and gi is a go-module. An associative superalgebra 
may be given the structure of LSA with bracket 

[a,b]=ab-(-l)“@ba, 

for aeA,, beAD. 
Let V be a vector space over @, V = V0 @ V, some decomposition. Then 

End V= (End I’),@ (End V),, 

where 

(End ~),={a~End Vla.VgC Vsr+B,B=O, 1 (mod2)1, 
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c( = 0 or 1 (mod 2). This makes End V into an associative superalgebra. We 
denote the associated LSA by /(I’) or 1( V,,, Vi). The notion of represen- 
tation or module of an associative or Lie superalgebra should now be clear; 
in either category a homomorphism 4: V+ I” is assumed to be graded in 
the sense that 4 . I’, c V&, where 6: Z/22 -+ 2/2;2 is a bijection. The analog 
for I( V0, I’,) of the trace form is called the supertrace form and is defined as 
follows: given A = (; 2) E 1( VO, V,), set 

str(A) = trace a-trace d, 

given A, BE I( V,, V,), set 

(A, B) = str( AB). 

To an n x n matrix A and a subset r c { 1, . . . . n} of indices one associates 
the contrugredient LSA g(A, t) as in [Kl]. This algebra is characterized in 

PROPOSITION 1. Let g be a Lie superalgebra, t, c go a commutative sub- 
algebra, e,, . . . . e,, f,, . . . . f,, elements of g, and let LTV = {cc;, . . . . a,” } c b, 
n= {a,, . ..) a,,} c b* be linearly independent sets such that 

Ce,, Al = 6,iu:, 

Ch, eil = (ai, h > ei, [h, hl = - (ai, h > fifi, 

h E 5, i, j = 1, . . . . n. Suppose that ei, f, (i= 1, . . . . n) and b generate g as an 
LSA, and that g has no nonzero ideals which intersect IJ trivially. Finally, set 
A = ((a;, a,))i;;:~, and suppose that dim h = 2n - rank(A). Then g = g(A,r), 
the LSA associated to the pair (A, t). 

(Proposition 1 appears in the “non-super” context as Proposition 1.4 in 
CK31.J 

The pair (A, r) is called a generalized Cartan matrix (GCM) if it satisfies 

aliEZ, a,<& for all i, j; 

1, if iET 
aii = 

{ 2, if i$r; 

a,#0 if and only if uji # 0, for all i, j. 

In view of the second condition we may dispense with T in the notation 
when A is a GCM. The algebra g(A) is then called a Kuc-Moody 
superalgebra. (We remark that the matrix A is normalized so that its trans- 
pose is again a GCM. This varies slightly from the original exposition 
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[K2], and causes some statements (and notably the Dynkin diagrams) to 
differ from those appearing in the literature.) 

When A is a symmetrizable GCM (i.e., DA is symmetric for some inver- 
tible diagonal matrix D), the associated Kac-Moody superalgebra enjoys a 
satisfactory representation theory culminating in the Weyl-Kac character 
formula [K2]. Much more can be said, however, about the representations 
of g(A) when A is also positive semi-definite of corank one. The algebra 
g(A) is then called affirze, and its Dynkin diagram appears on one of the 
following lists. The diagrams consist of I+ 1 nodes; the ith node is clear if 
i$ r and dark if iE T. The ith and jth nodes are connected by 
max(laJ, la,J) segments. If la,,1 > la,;l, an arrow points to the ith node. The 
integers written next to the nodes give the coefficients of linear dependence 
of the corresponding columns of the matrix. 

The representation theory of the afline (super)algebras is particularly 
rich due to the realization of these algebras as (essentially) central exten- 
sions of loop algebras. We review this realization below. 

TABLE Affl 

Aj” 

A’,” -0 Fh’ ) 
1 1 

o--...-- E $” 
I 2 2 2 

E&” 

0 C*r 

I 2 3 

-w 
I 2 3 4 2 

--LM 
1 2 3 4 3 2 1 

--+-L- 
I 2 , 4 5 6 4 2 
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TABLE AN2 

A’2’(0,21-1) .-... 
2 2 

A’2’(0, 3) --cg 
I 2 I 

P’(2) .-. 
I I 

TABLE AK3 

203 

TABLE All-4 

A’4’(0, 21) .+ a- A@‘(O, 2) - 
I I 1 I 1 L 

Let g now denote one of the finte-dimensional Lie algebras of type 
A-G, or one of the LSA’s A(m, n), B(m, n), C(n), D(m, n), D(2, 1; c(), 
F(4), or G(3). (With the exception of A(n, n), which has a one-dimensional 
center, these are all the simple, finite-dimensional, contragredient LSA’s: 
see [Kl, Theorem 33.) In this paper we are especially interested in A(0, n): 
this is the subalgebra of I( V,,, V,) of elements of supertrace zero, where V, 
is one-dimensional and V, is (n + 1)-dimensional over @. 

Let v be an automorphism of g of order m; write 

9 = 1 Lx(i) (1.1) 

for the decomposition of g into eigenspaces for v. Let @[t, t-r] be the 
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algebra of Laurent polynomials in an indeterminate t, and let g(v) be the 
subalgebra of g 0 C[t, t ~ ‘1 given by 

g(v)= c g(imodm)@ti. 
ien 

This is an LSA with induced Z/22 grading (deg, t = 0) and bracket 

for xEg( rmodm)r YEg(jmodm), i, jEZ. We define an extension g(v) of s(v) 
by a one-dimensional center and “degree” operator d: 

~=fi(v)=g(v)@@c@@d, (1.2) 

where deg,(c)=deg,(d)=O, and the bracket is given by 

[c, x0 t’] = [c, d] = 0, 
[d, x0 t’] = ix@ t’, (1.3) 

[x0 t’, yo t’] = [x, y] 0 t’+‘+ i6,,p,(x, y) c, 

for xEgCi,,dm), YEgClmodm), i, jEZ, where ( , ) is the (super)trace form 
on g. 

The correspondence between the algebras g(v) and the affine 
superalgebras g(A) of Tables Aff-Aff4 is given in the following theorem of 
Kac ([K2, Proposition 1.21). 

THEOREM 1 (Kac). Let g(A) be a Lie superalgebra from tables Affl-Aff4 
with Dynkin diagram LCk’, and let g be a finite-dimensional Lie superalgebra 
of type L. Then for every node pS of Ltk’ with numerical mark a, there exists 
an automorphism v of g of order m = ka, such that 

(i) g(,,, is a contragredient Lie superalgebra of type LCkJ- {p,}; 

(ii) g(A) z B(v). 

2. LEPOWSKY-WILSON STRUCTURE THEORY OF REPRESENTATIONS 

In this section we restate a structure theorem of Lepowsky and Wilson in 
the context of afhne superalgebras. By giving the equivalence of two 
categories (defined below) the theorem reduces the construction of 
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representations of afflne superalgebras fi to the construction of spaces Q 
with operators Z,(b) (in Z, /I a root of g) satisfying relations of the form 

where [,, c2 are indeterminates, c(i) and d(i) are doubly infinite formal 
series, and (typically) a(i) and b(i) are binomial series. While the general 
form of these relations may appear at first to offer no simplification of the 
original problem, in particular cases the relations admit pleasing solutions 
which serve both to eludicate the structure of the algebra at hand and to 
connect this theory with many areas of mathematics and physics. 

The equivalence theorem as we state it appeared in the “non-super” 
context in [LW]. It was extended to the “super” case in [G], where a 
construction of the basic modules of the superalgebra C’*‘(2) was given. 
We refer the reader to [LW] for the proof; the extension to the super case 
is rather straightforward. 

As in Section 1 let g be a simple, kite-dimensional, contragredient LSA. 
Let v be an automorphism of order m, isometric with respect to the 
(super)trace form ( , ). Let t be a v-invariant Cartan subalgebra; we 
identify t with t* via the form ( , ) and denote by @c t the set of roots of 
g relative to t. For each BE @ choose a nonzero root vector xp. Define 
structure constants E(CL, fl) for CI, fl E @ such that c( + /3 E @ by 

C-h, -Ql = 44 m x,+,1. (2.1) 

Define constants ~(p, /?) for b E @, p E Z/mZ by 

(2.2) 

Recall from Section 1 the decomposition (1.1) of g into eigenspaces for v, 
and the construction (1.2) of the affine superalgebra 8 = B(v). We will 
consider also the subalgebra 

where 
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with respect to the Z-gradation of 3. From the bracket definition (1.3) it is 
clear that ?’ is a graded Heisenberg subalgebra of G. 

Let V= V, @ V, be a Z/2Z-graded vector space; let [, [, , iZ, . . . be com- 
muting indeterminates. Denote by V{ [, , c2, . ..} the space of formal (doubly 
infinite) Laurent series in cl, c2, . . . with coefficients in V, i.e., the space of 
series 

c v,,,...cg~~~~ i,.iZ,...E L 
with vili2...~ V. Note we allow infinitely many coefficients to be nonzero 
regardless of whether the i, are greater or less than zero. We give 
V{ [, , cZ, . ..} a Z/2Z-grading via the coefficients. Given a map rc: V+ V 
denote again by rc the induced map V([r, c2, . ..} -+ I’{{,, iZ, . ..}. 

Given x E CJ, write x = Zit z,,,,z xCij for the decomposition of x into eigen- 
vectors for v, and set 

x(i) = 1 (X(imod m) 0 0 ii. (2.3) 
is/z 

Also of importance are the series S(i), (OS)([) E C{ [}: 

S(i)= c ii> (OS)([) = 1 iii, (2.4) 
IEL ieL 

The equivalence theorem concerns modules in the category %$, by 
definition the category of @modules V such that 

(i) c acts by the scalar k on V, 
(ii) dacts diagonally on V, so that V= LI,, c V,, where V,= {ue VI 

d.v=zv}, 

(iii) for every z E C, there exists iO E N such that for all i > i, one has 
vz+i= (0). 

Fix k E C * and let ( V, rc) E gk, where rc: 6 + End V is the map giving the 
representation. For each fi E @ define series in (End V){ [} by 

where x0([) is given by (2.3). We will sometimes write 

-m L n) = 1 Z,(P, x) ii. 
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Because of the truncation property (iii) of V, these are well defined 
elements of (End V){[}. Writing any of these four series as Y = C Yici, we 
have Yj homogeneous of degree i with respect to the gradation (ii) of V 
defined by d. 

As ?‘-module. 

where 

Q,= {DE VI?, .u=O}, 

the i’-oacuum space of V. One shows that the operators Z,(p) commute 
with the action of ?’ on V and hence preserve Q. They also satisfy certain 
(rather complicated) relations (2S(iv-vii) below) which in some sense 
characterize V as @module. This motivates the definition of the category 
gk which follows. 

Let 

an abelian Lie subalgebra of B. (Recall t C0j is the subset oft fixed by v.) Let 
S be the set 

S=bu(Zx@). 

An S-module is a H/2H-graded vector space 

w= W,@ w,, 

together with a b-module structure 

g: b-+End W 

and a map 

Z:Zx@-+End W 

(h B) l-b Z,(B) 

such that Z,(p) is an even (resp., odd) operator on W if and only if /I is an 
even (resp., odd) root of g. (One says a root fi is euen or odd if the root 
space ga lies in go or g, , respectively.) Given an S-module W, set 

ZM 0 = 1 W) ii~ (End W)K>. 

iGZ 
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For k E C*, denote by CSk the category of S-modules (W, 6, 2) such that 

(2.5) (i) a(c)=k, 

(ii) W= LI ztC W; with respect to o(d), 
(iii) for all z E @ there exists i, E N such that for all i > i, one has 

WZ + i = (0), and such that for all /I E @, 
(iv) Z,(p) has operator degree i on W with respect to the 

gradation (ii), 

(v) for aEfco), Cm -w, [)I= (% P) -WA 0, 
(vi) for p E WC WA ~“0 = V(P, D) Z(v”B, 0, 

where w is a primitive mth root of unity, fixed for the discussion. Finally 
we require that the Z,(p) satisfy the generalized (anti-)commutation 
relations 

(vii) for all a, b E @, 

where C’ is over p E ZlmZ such that vpa + 1 E @, xl’ is over p E E/ml? such 
that vpa + fi = 0, and d,, = deg,(x,) for y = a, /I. Recall that the constants 
-$a, P) and rl(p, P) are given by (2.1) and (2.2), respectively, and the series 
W) and (W(l) by (2.4). 

We define a functor Q: qk + &. Given (V, rt) in qk with k # 0, set 

Q(V)=O,, 

a(b) = XL(b) IRV’ for bEb, 

z;(P) = zi(Pv n, IRv* for iEZ, /?E@. 

Given a morphism J V -+ V’, one has f(Q ,,) c By’ ; set 

Qu-)=flnv 

For the proof that (a,, g, Z) is in ak we refer the reader to [LW, 
Theorem 3.10, Proposition 4.73. 
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We now define the “reverse” functor A: 9k + Vk. Set 

?+ =b@?+ = c i;. 
lb0 

Denote by C(k) the one-dimensional ?+-module on which c acts by the 
scalar k and i + @ tcoj @ Cd acts trivially. Consider the induced ?-module 

K(k) = u(‘i)CQ+, C(k). 

By the Poincare-Birkhoff-Witt theorem we may identify K(k) with the 
symmetric algebra Y(i _ ) as i-module. Let ( W, p, Z) E &. Then 

Ind(W)=Y(?-)@, W 

is a i-module with action 7~ given by 

n(c) = k, rc(d)=d@l +l@d, 

K(U) = 1 @a(a), for LIE tcoj, 

7r(h)=h@l, 

Note that Ind( W) inherits a Z/2Z-gradation from W, and that in 
End(Y(?-)){[I the series E’(b,[) are defined for each BE@. The 
representation 71 of i extends to a representation of 8 on I/= Ind( W) by 
setting 

~xp(i)=E-(-B,i)E+(-B,1)0Z(B,i); 

in fact (V, rc) is in Vk (see [LW, Proposition 5.33). Hence we may define a 
functor A: & -+ G$ by setting 

A( W, 6, Z) = (l’, n) = (Ind( W), 7-c). 

For a morphism g: W + W’ in &, let 

A(g): Ind( W) + Ind( W’) 

be the induced map. We can now state 

THEOREM 2 (equivalence theorem of Lepowsky and Wilson). For 
k E @*, the functors 

Q: %?k + Lz& 

ff:LSk+%$ 

define exact equivalences of categories. 
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3. REALIZATJON OF Ac4)(0,21), ~(~'(0, 21- 1) 

In this section we give an explicit realization (A la Theorem 1) of 
Ac4’(0, 2Z), A’*‘(O, 2f- 1) as the affine algebras associated with the linite- 
dimensional superalgebras A(O,21), A(0, 21- 1) and their Cartan 
automorphisms. We will need this information to identify the represen- 
tations constructed in Section 4. 

Let n = 21 or 21- 1, g = A(0, n). Let /3,,, p,, . . . . /?, be the positive simple 
roots of g, with j3, the odd root; denote by @ the set of roots of g. It is con- 
venient to choose the root vectors xir as follows. Regard g in its natural 
representation by (n + 2) x (n + 2) matrices of supertrace 0. Let xa, be the 
matrix with (i, i + 1 )-entry 1 and other entries 0; choose xeP, similarly. For 
an arbitrary root b= +/3,f~;+, f ... &Pitk, set 

xp= Cx*~,Cx+/?,+, ... b+p,+k-,5 X*p,+J *.,I]. 

If p is positive, xp has a 1 in the appropriate position, and if B is negative, 
the nonzero entry is 1 if the height of D is odd and - 1 if the height of p is 
even. Complete the basis of g by setting 

h, = diag( 1, 1, 0, . . . . 0) 

hi = diag(O, . . . . 0, 1 
(i+ 1)’ 

- 1, 0, . ..) O), 

i = 1, . . . . n. Denote by t the Cartan subalgebra spanned by h,, . . . . h,. For the 
invariant form on g we take 

(a, b) = -(l/4) str(ab), 

a, b E g. 
Define a Cartan automorphism v of g by 

vxfi=x-/I, p even or B odd negative, 

vxp= -x-p, /? odd positive, 

vi,= -1. 

The automorphism v has order 4. We set 

xg+x.-p, P even 
Wp’ 

xp+wx-fl, B odd positive 

Ws= xfi-x-/3> /3 even positive 
Xp-0X-p /3 odd positive, 
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where w is a primitive fourth root of unity. The eigenspaces for v are 

9(0)=wn{wpl~evenl~ 

g(,,=span{wl,)boddpositive}, 

g,z, = span( (WB 1 j? even positive} u {hi 1 i = 0, . . . . n}). 

gc3) = span{ W, 1 /I odd positive}. 

We identify gco, as B, (n = 21) or D, (n = 21- 1) by writing down a 
Chevalley basis. Recall the definition of the structure constants E(CI, fl), 
defined when tl, 8, M + j E @: 

It is easily seen that for even roots IX, p one has 

where 6, equals one if y E @ and zero otherwise. 
We will use the following shorthand: for the simple positive roots fli 

write w,=wi; for /?=fi;+ ... +fli+k write w~=w~,~+~. From (3.1) it is 
clear that span{ wij i odd, 1 < idn} is a Cartan subalgebra of gco,. We may 
distinguish a root of gco, by the l-tuple (6(w,), 6(w,), . ..). 

At this point we consider the cases n = 21 and n = 21- 1 separately. First 
suppose n = 21. Set 

6, = (0, . ..) 0, 1 ) 1, 0, . . . . O), i= 1, . . . . I- 1, 
(ii 

6, = (0, . ..) 0, 2). 

The 6; are roots of gco, with root vectors 

Ys, = ( - w2i - W2l~ 1,x + w21,2i + 1 + W2r ~ 1,2r + , n 

,,l-&,=(W2i-W2j - l,Zi+ w2i,2i+ I - w2i& 1,2i+ l)/23 

(3.2) 

i= 1, . . . . I- 1, 

ys,= w21-- 1.2/+ W2IY 

y-s,= w2I- w2/- 1,2/. 

Relative to our choice of Cartan subalgebra of gto,, the positive simple 
roots are 
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i= 1, . ..) 1. Finally, put 

Ei = Y,, , Fi= Y-y,, i= 1, . . . . I- 1, 

Hi=(-1)‘~i(W*j-1+W2i+1), i= 1, . . . . I- 1, (3.3) 

H, = 2w21- I. 

Then the set { Ei, Fi, H,) i= 1, . . . . 1} is a set of Chevalley generators for 
g(o) = BP 

Now suppose n = 21- 1. Let 

6; = (0, . ..) 0, 1 9 1, 0, . . . . O), i= 1, . . . . I- 1, 
(1) 

6, = (0, . ..) 0, - 1, 1). 

The root vectors y,, are given as in the previous case for i= 1, . . . . l- 1, and 
we set 

y,,= (-WZl- 3,21-2+ w21-3,21-1 + w21-2- w21-2,21-1 J/2 

Y-6,= (w2,- 3.2162 + w2/-3,2/-1 + w2/-2 + w2/-2,2/--1 J/2. 

As before, the positive simple roots are given by 

yi= (- 1)‘~‘6,, i= 1, . . . . 1. 

A set of Chevalley generators for gcoj z D, is given by 

Ei= Yy,, F; = Y py,, i= 1 , . . . . 1, 

Hi=(-1)‘pi(w2ipI+~2i+1)T i= 1 ) . ..) I - 1, 

H,= ~2,- I- ~21-3. 

(3.2’) 

(3.3’) 

Consider now the spaces g(,) and g(,) as g,,,-modules. For cz, /?E @ with a 
even and B odd positive we have again the relation 

cwm wpl =L+&T PI %+p+&-A-4 B) WB-a. (3.1’) 

(Note that if P+c(E@ then Pka must be positive.) We remark that the 
same relation holds with wg replaced by W8, hence that wB H Ws gives an 
isomorphism of g(,, with gc3, as gfo,- modules. From (3.1’) it is evident that 
gclj is an irreducible gcoJ -module with highest weight vector 

Uhigh=WO+(-l)lWO,lEg~l) 

and highest weight A,, where 
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i=l , . . . . 1. We set 

V -wo-(-lYwo,~~~~l)~ low - 

v h,gh = @O + ( - 1 )’ @O,l E g(3), 

Eo = v,,w/@~ FO = chigh/&, H,=(-1)/w,. 

Now in ~(v)=(C:I~g~;)Ot’@[t, t-‘])@@c@@d, we set 

cc; = Hi@ 1, e,= Ei@ 1, fj= F;@ 1, i = 1, . . . . 1, 

and 

UO ” =H,@l+c/2, e,=E,@t, fo=Fo@t-‘. 

Let h = span{ u; , . . . . a;, d}, and define ai E h*, i = 0, . . . . I by 

( ui, cijv ) = aji, <ui, d) = die, 

(3.4) 

(3.5) 

(3.6) 

where A = (ali) is the Cartan matrix for Ac4’(0, 21) or A”‘(O, 2f- 1). One 
checks that the hypotheses of Proposition 1 are satisfied; it follows that 
6 = G(v) is isomorphic to Ac4’(0, 21) or Ac2’(0, 21- 1). The element d defines 
the gradation 

dege,= -degf,= 1, 

deg e, = deg f, = 0, i=l 1. 9 . . . . 

The subalgebra a c g generated by {xka,I i= 1, . . . . I} is (of course) 
isomorphic to A,; the corresponding subalgebra 5 = 6(v) c G(v) is 
isomorphic to A$) or A$’ , . 

4. VERTEX OPERATOR REPRESENTATION OF A(4)(0, 2Z), ,4(2)(0, 2Z- 1) 

From the equivalence theorem of Section 2 we know that to construct a 
representation of G it is enough to find a space Q with operators Z,(b), 
i E Z, /I E @, satisfying the relations (2.5). In this section we do this explicitly 
for Ac4’(0, 21) and A’*‘(O, 2Z- 1). Denote by Ai the fundamental weight 
(/ii, a; ) = 6,; the representations constructed are irreducible of highest 
weight A, in case n = 21, and the direct sum of the irreducible represen- 
tations of highest weights ,4_, and A, in case n = 21- 1. These represen- 
tations have been constructed (in different fashion) by Feingold and 
Frenkel [ FF]. 
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As a byproduct we obtain constructions of the irreducible represen- 
tations of (the subalgebras) A#‘, A::,, of highest weights (respectively) 

The ?-vacuum space Sz turns out to be the tensor product of an exterior 
algebra with a finite-dimensional representation space (which I call ZM,,) of 
a certain 2-group; the space M, is the vacuum space for the representations 
of the affme subalgebras above, and also provides a construction of the 
spin representations of gCoJ (x B, or D,). 

As a first step we define a finite group Pn with generators po, . . . . p,, - 1 
and relations 

Pf= 1, 

PzPi+l= -Pi+lPi, 

PzPj=PjP, when Ii-j1 > 1, 

- 1 central, 

i,j=O ,..., n. For BE@, say fl= &(pi+Bj+i + ... +Bi+k), set pg= 
pipi+ r.. . P~+~. With our choice of root vectors for g (Section 3) we have 
the following 

LEMMA 4.1. Suppose a, /?, a + /3 E @. Then 

p,ps=4aJh,+8~ 

unless both a and /3 are odd with a positive, in which case 

P,P~= -44 D) P~+B. 

ProoJ The proof is a straightforward exercise, on noting that 

C*Bo, * -(Pa+ ... +ml = -X-(8,+ .” +&)’ 

C*-ao, x Do+ +fl&l =*fi,+ ‘.. +B.k) 

whereas for any i, k > 0, 

[X&B,’ * TM+ ... +8,+&J =*+u%+,+ “‘+B!+k)’ 1 

It is easy to identify the representations of 9$. The order of P” is 2”+‘. If 
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n = 21 then the elements f 1 and +p,, p2 p4 . . . pn constitute their own con- 
jugacy classes; every other class has two elements. There are then 2”+’ + 2 
classes; as 22’+ 2 = 2*’ + 22’ + 1 + . . . + 1 (2”+‘-many l’s), there are two 
irreducible, non-abelian representations of Y2,: call them M,, and M2,. If 
n=21-1, there are 2”+‘+1 classes; as 22’f1=22’+1+ . . . +l (,“+I- 
many l’s), there is a unique irreducible non-abelian representation: call it 
M 2,P , . Note that dim M,,_ , = dim M,, = dim M2, = 2’. 

Regard Pn _, c Pn as the subgroup generated by p, , . . . . pn. We have two 
splittings + : 9, -+ 6&, given by 

Pi- PI, i= 1 ) . ..) 21, 

POW I!IPzP‘l...P*/. 
(4.1) 

The two 2’-dimensional representations of P2, are given by the composition 
%:I-+%,-I -+ U(M,,_ ,). On the other hand, we have 

M,,- 1 = Indz;:; M,,-, 

=(10M,,-,)O(~oOM2,-2) 

=M,,-,OM;,-2 (4.2) 

as .$P2,- ,-space. This describes the representations M, inductively. 
We leave the group Pn for the moment and introduce an exterior algebra 

with operators. Let z2,+, , r < 0, be indeterminates, and let 

L=~{z2,+,Ir<O) 

be the exterior algebra on the zi. Define operators Zi, ie Z, on L by the 
conditions 

z,, = 0, ieZ, 

Z *r+I’Z=~2,+1 AZ, z E L, r < 0, 

and for r>O, s, < ... <s,<O, 

Z 2r+ I .ZZr,+ I A ... A ZZs,+l 

0, if 2r + 1 # -(2si + 1) for all i; 

= 

t 
20(2r+l)(-l)‘+kz2,,+, A ... AgS,,+l h ... A z2$,+,, 

if2r+l= -(2s,+l)forsomek,l<k<j. 

This gives 

{Z 2r+l, Z2s+lj =24-lYP+ l)~2r+I,--(2s+1)~ r, se Z, (4.3) 
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where as usual {a, b) stands for the anticommutator ab + ba. We introduce 
formal variables [, cl, c2 and write Z(c) = C Z,[‘. Then (4.3) may be 
written 

(-m1),Z(i*)}=2~ 1 (-1)‘(2j+l)(i,li,)“+’ 
jtZ 

= (D6)(d,/i*)- uw-d,/i*). (4.4) 

(Recall (OS)(i) = CieL 4’.) 
We can now define the vacuum space Q and its operators Z,(B). Set 

f2=L@M,. 

For an even root p set 

Z,(P) = (a)(1 0 Pp) 

zi(B) = O7 i > 0. 

For /I odd positive set 

zica, = MZi@ Pah 

Z( -8, i) = -Z(B, 43, 

where in general Z(y, [) = C Z,(y) c’, y E @. 

(4.5) 

ieZ, 
(4.6) 

Recall from Section 2 the definitions of S-module and of the category !&. 
Note that since the automorphism v of Section 3 fixes no points of t, the 
algebra b is just Cc @ Cd. We give Q a b-module structure by setting 

a(c) = 1 
m 

o(d) -zi, A . .’ A z,~ = 
( > 

- C ij (zi, A . . . A z;,). 
j= 1 

LEMMA 4.2. (52, Z) is in 9,. 

Proof We must verify relations (2.5) with k = 1, m = 4. Relations 
(i j(iv) are immediate, (v) is empty since tCoI= (0), and (vi) is easily 
checked case by case, using (4.9) below. The generalized (anti-) 
commutation relations have the form (u, p E @): 

n (1 -~-p~,li2Pp”~~)‘4 Z(& Cl) Z(B, id 
p E L/4L 

- ( - 1 p4 
pEt4z (1 -w-pr*II1) (“pp3cr)‘4 a/% 12) Z(R iI) 

= ca, 1’ rIoA co 4VP% P) Z(vP@. + B,12) 6(~-prlli2) 

+ (W-g, xp) 1” rl(P, a)(DJ)(d,K*), (4.7) 
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where C’ is over p E Z/42 such that vpc( + j3 E @, C” is over p E h/4! such 
that vpa + /I = 0, and d, = deg,(x,) for y = LX, /I Denote by z(c(, /I) the right 
hand side of (4.7), and. by l(cr, /?) the left hand side. Set 

f(i)=(l-12Nl+~2)-1; 

since v(p) = v3(p) = -p and v’(b) = fl for all fl E @, we have 

4cG P) =f(illi2P’B)‘4 Z(@Y Cl) zm 12) 

- ( - 1 ldadb f(i*li 1) (1m’4 Z(B, 12) au, i 1). 

We need the following data: 

0 1 2 3 

q(p,b):p /iz$z..;z 6 

(x-,, x,)= (- 1)*@‘+‘/4, 

for all positive roots u of g, where II(IX) is the height of ~1. 

P; = ( - 1 )M + 1 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

for all LX E @. Recall from Section 3 our choice of form on g: (a, 6) = 
-($) str(ab), a, b E g. Relative to this form the positive simple roots of g are 
fi,, = -4ho, pi = 4hi, i= 1, . . . . n, where h,, . . . . h, is the basis of t given in 
Section 3. Hence if one of ~1, /I is even, we have 

if ff-/?E@ 
if CL+/?E@ 
if cl=fl 
if cr=-/I 
otherwise, 

whereas if u and /? are both odd we have 

if u+/?E@ 
if CL--PE@ 
if o! = *p. 

(4.12) 

(4.13) 
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The following identities are also helpful: 

f(i,li*)-‘+f(12/1,)~‘=~(1,/12)+~(-i,/12) 

f(i’/i*)+f(12/1,)=~(~i’/i*)+~(-~i,/12) 

f(i,/12)~2-f(i21i,)-2= (06)(1,/12)+ (D~)(-i,li*) 

(4.14) 

fK,/12)* -fK2mZ = (06)(d,/12) + W6)(-d,li*). 

We also use 

LEMMA 4.3. Let V be a vector space over C, and let f (c,/c2) = 
C v,i;i:‘~ V{i,, l,> b e such that for some n E Z, either vii = 0 whenever i or 
j>n, or v,=Q whenever i orj>n. Let aE@, a#O. Then 

&d,li2)f(i,, 12)=S(ai,li2)f(i,, ai,) 

=4ailli2)f(ap112, i2). 

(Lemma 4.3 appears in [LW] as Proposition 3.9.) 
We introduce some notation: set 

1, B even 
Z(c), /I odd positive 
- Z(w[), j3 odd negative. 

Then we may write uniformly for b E CD: 

-w, 0 = (f, m i) 0 Pp. 

Now we check the relations (4.7) case by case, starting with 

1. cr = +p, a even. 
From (4.5), (4.7)-(4.12) we have 

44 a) =.f(i,li2)2 Z(a, iI) a4 i2)-f(i2/5d2 Z(% i2) Z(K i,) 

= ciwcr,/r*,’ -fK2/id2) 10 PZ 

=(-1) h(a)+ ‘(Mf(~,/12)2 -f(izliI)2) 

=(-1) h’“‘+‘(~)((DS)(-oil/r2) + W)(d,/i*)) 

(by (4.14)) 

= *(a, a). 

The case CI = -/?, c( even, is similar. 
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2. a + fl E @, a even. 
Assume a -t 0 E 0. We have 

/(a, /J) =f(iJi2)-‘(+)(10 P,)($)(W, i2)O Pp) 

-f(i*liJIMw~ imPmu @Pm) 

= (f)(f(iJi&’ +f(izK1)-‘) da, P)(b) WY 52)@Pcr+p 

(since &(a, fl) = --E(/?, a) when one of a, fi is even, and by Lemma 4.1) 

= ($)(S(l,K,) + a( -i,/id) da, P) Z(a + A 12) 

(by (4.14)) 

= 44 PI. 

The case a - /? E @, a even, is similar. 
3. afbe@, a odd, fl even. 

The case a-b E @ is a bit trickier, so we’ll do that. Then much as in the 
last case, we find 

4a, P)= (a)(6(wr,li,)+6(-o,/i,)) 4-aa, B)(i) Y(a, i~)@p-,+~ 

Now if a is positive, Lemma 4.3 gives 

f(a,p)=(a)(6(oil/iz)-6(-wi1/12))&(--tl,B)(b) Y(-412)Opp-., 

since Y(a, [) is an odd function when a is odd; similarly if a is negative, 
Lemma 4.3 gives 

44 P)= ($)(6(-o~,/i,)-G(oi,/i,))~(--, P)(t) Y(-a, 1d@P~-~. 

In either case, (4.9) gives 

4a, B) = (9(L Co &m -‘il/iz) + ~(3, a) &~-~11/5d) 4 -4 B) Z(B - a, 12) 

= *(a, 8). 

There remain the cases in which both a and /I are odd roots. When a # &B 
these are a bit more tedious than the foregoing. First we check the case 

4. a = 8, a odd positive. 
Since (a, a) = 0 for odd a, the “correction terms” are trivial and we are 

left with an ordinary anticommutation relation: 

44 a) = Z(a; i,) Z(a, C2) + Z(a, 12) Z(a, iI) 

=(~)(z(i,)z(r*)+z(5*)z(i,))oP2, 
=(-1) *(l)+ ‘(ik)((~~M~i,/i,) - W)(-d,/L)) 
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(by (4.4) and (4.11)) 

= k(c(, a). 

The remaining cases of the form CI = +/3, c( odd, are similar. The last case 
that we check is 

5. tx - /I E CD, CI odd positive, /? odd: 
We must have /J positive as well, so Y(a, [) = Y(/3, [) = Z(c). Also 

(a, /?) = -4, hence 

4% PI =f(illi*)-‘(~)~Z(il)OP~)(Z(i*)0P~) 
+f(iJi, 1 -‘(i9Mi*) 0 Ps)(Z(i,) 0 PA. 

Since -a is negative, ~~~,~=s(--,B)p-.+p= -s(--/K~)P-.+B by 
Lemma 4.1, hence l(cr, P) equals 

On the other hand, 

4a, 8) = (26) 4-4 /N&Xlli2) -&-d,/LMl OP,-.I. 

Hence we must show 

f(i,liz)-’ at,) Z(12) --s(i2/i,)r’ Z(i2) al,) 

= 2w 1 (- 1)‘(&/[2)q+‘. 
iez 

This holds if and only if 

z Z2s+,-Z2s+,Z2r+, 2r+ 1 

+ c Zz(r-k)+,Z2(S+k)+, - 2 c Z2(s-k)+,Z*(r+k)+, 
k>O k>O 

=2~(-1)‘~2r+1,~(2s+,). (4.16) 

Suppose r 2 s; put m = r-s. Extract the first m terms of the first sum in 
(4.16): the remaining terms cancel those of the second sum. If 2r + 1 # 
-(2s+ l), then the left hand side of (4.16) is a finite sum of anticom- 
mutators which are all zero, by (4.3). If 2r + 1 = -(2s + l), then 2r = 
m - 12 0, and the left hand side of (4.16) equals 
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j=r 

{Z 2r+l9 z23+d+2 c {Z*(r-,)+l,ZZ(,--r)--L} 
/=I 

=2w(-1)’ 2r+1+2C(-l)j(2(r-j)+l) 
( > 

=24--l)‘, 

by (4.3), as desired. The case r < s is similar. 
The remaining cases are similar to this last one, and we omit their 

verification here. This completes the proof of Lemma 4.2. 1 

From Lemma 4.2 and the equivalence theorem we obtain a g-module 
(V, 7~) in %?,, with underlying space 

v=v(iL)osz. 

=Y(?.-)O(LOM,). 

The space Q is precisely the vacuum space Jz, for the action of the Heisen- 
berg algebra 1’ on V. We remark that for n even, the Yn-space M, may be 
replaced by ML, yielding a G-module isomorphic to V. The action of 1 on V 
is given by 

71(c) = 1, n(d)=d@l+l@d, 

n(h) = h @ 1, hE?- @I+, 

while for each fi E @ and i E Z, the element (x~)(~, @ t’ acts as the ith coef- 
ficient of 

E-(-P, i) EC(-A i)O-m 0. (4.17) 

Recall from Section 3 that 3 contains a subalgebra ?I isomorphic to AL2); 
we study V as &module. Let t, be the subalgebra of t generated by h’ = 
Cj:;( - l)‘(n + 1 - i) hi, and let t, be the Cartan subalgebra of a generated 
by h,, . . . . h,. Denote by Q0 the set of roots of a (equivalently, the set of 
even roots of g). Since (hi, h’) =0 for i= 1, . . . . n, the vacuum space of 
9’(?-) as &module is Y(?,-), hence ~(i_)=Y(?1~)@9’(?2-) as 
$-module. Similarly, the vertex operators E’(j?, 0, fi E QO, act (with 
respect to this decomposition) on 9(x-) as 10 E’( +fi, 0. The algebra i( 
is spanned by i2 and the coefficients of A’(& i), /I E QO. The latter act on 

as the coefficients of 

loE~(p,i)E+(B,1)010(a,~,. (4.17’) 
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Consider then the S-module 

The &vacuum space of W is simply M,; the Z-algebra associated with this 
h-module is just the group algebra on .!S$ _ r = (pr , ,.., p,), which acts on 
M,, by restriction of the action of LZ?~ = (po, . . . . p,). 

Recall that M, remains irreducible under g”‘,- r via (4.1) when n is even, 
and that M, decomposes into the sum M, _, @M:, _, when n is odd (4.2). 
By the equivalence theorem, W is irreducible under 5 when n is even and 
decomposes into two irreducible ii-modules when n is odd: 

By a theorem of Kac (see [K3], Prop. 9.3), we know that W (n even), 
W,, W, (n odd) are highest weight modules; to identify these highest 
weights we consider the representation of a(,,) = gcO, afforded by the space 
M,. Regard a~,) c 6 via the map a H a @ 1, a E a(,,. The algebras a(,, and 6 
share the Chevalley generators ei, fi, i= 1, . . . . n; the remaining Chevalley 
generators of 6 are 

4 = Ce,, %lP, f b = -c.L folP 

Now ei, i= 1, . . . . n, acts on 1 @M, as follows. Recall 

e,=EiOl =~(~r+~~,, 

where the yks, are given by (3.2) and (3.2’). For /? E @,, we have 
wcl = 2(x0)(,,; the element (x~)(~), in turn, acts on 1 @M, as the constant 
coefficient of E- ( -8, {) E+ ( -/3, c) 0 (4) pg. To this action the series 
E+( -p, [) contributes only the identity, whence (x~)(~) acts on 1 @M, as 
1 @ ($) ps. Following (3.2), (3.2’), define operators Y,,, on M, by 

Y& = ( -p2i - P2, - 1,2i+ P2i,2i+l + P2i-1,2i+1)/4 

y-6,= (P2i- P2i- 1,2i + PZi,2i+ 1 - PZi- 1,2i+ lI/43 

i= 1, . . . . I- 1, 

Yd, = (Pzr- 1,21+ P2J2 

y--s,= (P21- P21-11,2,Y2~ 

if n = 21, and 

y6,= (-P21-3,21-2 + bL3,21- I + h-2- PZI-2.21- 1)/4, 

y ( -6, = PZI- 3,21- 2 + PZI- 3.2/- I + P2/-2 + P2lL 2,216 I l/4, 
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if n = 21- 1. Then the association 

p(q)= Y(-l,f+s,, 

p(F;)= y-(-,ps,, i = 1, . . . . 1, 

223 

(4.18) 

defines a representation (M,, p) of a(,,. Note that 

P(Wp) = (4) Pg, BE @o. (4.19) 

We claim this representation is irreducible when n is even, and the sum of 
two irreducible representations when n is odd. For simplicity consider the 
case n = 21. If p is not irreducible, then it is the sum of at least two highest 
weight modules: let ur and u2 be two independent highest weight vectors. 
In the S-module W the vectors 1 @ui, i= 1,2, are eigenvectors for 
a ; ) . ..) a; ) hence also for cr;, since a;, . . . . a,“, c are linearly dependent. 
Moreover 10 u1 and 10 u2 are killed by eb, which has positive operator 
degree. It follows that 10 U, and 10 u2 are independent highest weight 
vectors in W, which contradicts the fact that W is irreducible (and so a 
highest weight module). 

Recall that dim MZ, = 2’, dimM,,P,=dimM,,-,+dimMz,P,= 
2’- ’ + 2’- ‘. The only irreducible representations of B, and D, of dimensions 
2’ and 2’- ‘, respectively, are the spin (resp., half-spin) representations, i.e., 
those of highest weight 1, (resp., A,- i or AI), where (Li, Hi) = 6,, i, j= 
1 ) . . . . 1. 

Denote by A,- i and /i, the fundamental weights of 6 (and by abuse of 
notation, of 3 as well): 

( Ai, a,” ) = 6,, i=l- l,l, j = 0, . . . . 1; 

let W(A;) denote the corresponding irreducible representations of Li. At this 
point we may conclude that p is irreducible of highest weight ;1, when n is 
even, and the sum of two irreducible representations of highest weights 
I ,- i or A,, n odd. We find the G-module Win a similar situation. From the 
argument showing that p is irreducible, we have that if u is a highest weight 
vector in (M,, p) then 1 0 u is a highest weight vector in W, From 
(3.3))(3.6) we have 

a0 ” =;-(a: + ... +rw;~l+cr;/2), n even, 

(4.20) 

a0 ” =;-(a; + ... +cr,v_,+ol/Y,/2+a,“/2), n odd. 

It follows that cc; . 10 u = 0, regardless of whether A,-, or 2, occurs in 
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A4 *,- ,. Hence WZ W(A,) if n is even, and Wz W(/ii)@ W(/l,), i,j=/- 1 
or I, if n is odd. 

We now show that when n = 21- 1, both A,- I and 1, occur as highest 
weights in M,. From this it follows that M, is the spin representation of 
D,, and that 

WC% W(A,- ,)O W(A,). 

From (3.3’) and (4.19), we have 

PIHi)= (-l)‘-‘(P*;- I + PZi+ A/2~ i= 1, . . . . I- 1, 
(4.21) 

P(ff,) = (PZl- I - P2/- 3n 

Also, note that (3.4) (3.6), and (4.19) give 

~;IM,=((-wPl+w2. (4.22) 

As Pn”,- ,-module, M, = M, _, 0 p&4,-, . Without loss of generality, we 
may assume that M,- , has highest weight A,: let u be a highest weight 
vector, and let U’ = pou. Then from (4.21) and (4.22) we have 

p,u=(-l)‘-54, p, u’ = ( - 1)’ U’, 

PZi- ,u= (-I)‘-‘& p*iP’u’= (- l)‘-iu’, 

i=2 3 . . . . 1. Then from (4.21) again, it follows that U’ has weight A,- 1,. Now 
if ML-, ( =poM,,- ,) were also of highest weight A,, then I, would be a 
sum of roots of a,,,, which is false. Hence M:,-, must be of highest weight 
*i-1. 

We are now able to identify the g-module V. First, write L = L, @ L, for 
the decomposition of the exterior algebra into elements of total even and 
odd degree, respectively. Denote by 2 the subalgebra of End(Q) generated 
by the Z,(p), BE Cp, ieZ. It is immediate from (4.5) and (4.6) that if n is 
even, the S-module Q is irreducible, and that if n is odd, 

where 
Q,=LoOM,-,+L,OM:,-,, 

f2,=L,OM:,-.,+L,OM,-, 
(4.23) 

are irreducible S-modules. From the equivalence theorem we have that 

V=Lqc)@Q, n even, 

v=(~(?~)oo,)o(~(i.~)osz,), n odd 
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are decompositions of V into irreducible &modules. Denote by V(A,) the 
irreducible @modules of highest weight A i, i = I - 1,l. Let n be even, u E M, 
a highest weight vector for s,~). Put u=lOlOuEV=~(?~)OLOM,. 
Clearly v generates V as Q-module; we have e, . u = 0 since e, has positive 
operator degree, and e, . u = 0, i = 1, . . . . 1, since u is a highest weight vector 
for gcO). From (3.5), (3.6), and (4.20) it follows that u has highest A,, 
whence 

I/z V(A,). 

Similarly if n is odd, we have 

v= V(A,- ,)O WI,). 
We summarize the results of this section as follows: 

THEOREM 3. Let M, (and Mk, zfn is eoen) be the representations of the 
2-group YE given by (4.1) and (4.2). Write n = 21 or 21- 1. 

(i) The representation (M,, p) of gCoJ= B, or D,, gicen by (4.18), is 
isomorphic to the spin representation. 

(ii) For n = 21, the 6 ( = A$))-module 

w= Y(T,&)@ M, 

is irreducible, of highest weight A,. For n = 21- 1, the Ci ( = AL:, ,)-module W 
is the sum of two irreducible modules, one of highest weight A,_ I and one of 
highest weight A,: 

The action of; on W is given by (4.5) and (4.17’). 
(iii) For n = 21, the Cj ( = AC4)(0, 21))-module 

V=5q~)@Q=Y(?~)@L@M, 

is irreducible, of highest weight A,. For n = 21- 1, the Cj (= AC2)(0, 21- l))- 
module V is the sum of two irreducible modules, one of highest weight A,-, , 
the other of highest weight A,: 

v= (Y(i~)osz,)o(Y(?~)osz,), 

where Q0 and Sz, are given by (4.23). The action of i on V is given by (4.5) 
(4.6), and (4.17). 

Theorem 3(ii) is subsumed by Corollary 3.2 of [FLM]. 
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