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Abstract

It is frequently asked whether imagery differs in a fundamental way from other
Jorms of knowledge representation, specifically the predicative forms employed
in artificial intelligence programs. Frequently suggested distinctions are picto-
rial versus descriptional, and analog versus digital. This paper argues that these
distinctions are not central in understanding the role of imagery in cognition,
and moreover do not correctly capture the difference between visual perception
and language. A distinction is proposed between the representation of images,
on the one hand, and a calculus-plus-proof-procedure form of knowledge rep-
resentation on the other. This distinction is not based upon differences in ex-
pressive power or form, but rather is based upon a distinction between how
these two representations function, specifically how they are used to make
inferences. On this view, an important functional role of imagery is to provide
& non-progf-procedural method for inference, using a constraint satisfaction
mechanism, Images, even the limited class of images here cailed diagrams,
support inference in a way that is distinct from the way predicative representa-
tions support inference. This analysis offers an approach to solving the “frame
problem” of cognitive science.

The notion that mental imagery plays an important and distinct role in cogni-
tion has a long history. Indeed, there was once an extended debate as to
whether any thought was possible without imagery (Woodworth, 1938).
Today the pendulum has swung the other way (to invoke an image-based
metaphor), and there is debate as to whether imagery, as a distinct form of
representation, plays any role in cognition (Dennett, 1981a, 1981b; Fodor,
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1981; Kosslyn, 1975, 1980; Kosslyn, Pinker, Smith, & Schwartz, 1979;
Kosslyn & Pomerantz, 1977; Pylyshyn, 1980; Shepard, 1973, 1978).

Advocates of a distinct role of imagery in cognition have emphasized a
variety of funtions that imagery might serve. These include memory (Bower,
1972; Paivio, 1971), navigation (Evans, 1980), and perceptual recognition
(Posner & Keele, 1967). A recent review of empirical studies of mental imag-
ery and its functional similarities to visual perception may be found in Finke
and Shepard (1986). In this paper 1 focus on imagery’s function in inference.
Inference is an important component of most if not all other cognitive proces-
ses, including perception (Rock, 1983; but see also Gibson, 1979), language
(Lindsay, 1963), navigation (Gladwin, 1970), memory (Bartlett, 1932; Chase
& Simon, 1973) and problem solving (Larkin & Simon, 1987).

Any cognitive system, natural or artificial, must draw inferences from its
knowledge. If its environment is changing, as would be the normal case, the
inference problem becomes acute, because a change in even a single item of
knowledge might have widespread effects on many others. The problem of
determining which items are affected and how they are affected has been
called the “frame problem” in artificial intelligence (Faugeland, 1985;
McCarthy & Hayes, 1969; Raphael, 1971). The inferences in question need
not involve long chains of deduction (aithough they may); the frame problem
is difficult because of the sheer number of inferences possible in the face of
large guantities of knowledge whose mutual dependencies must somehow be
specified or derived. Obviously the framne problem is one to which any theory
of human cognition must supply an answer.

The major theme of research attacking the frame problem has been the
search for appropriate modifications and cxtensions of first-order predicate
logic (FOL) that will permit the description of world knowledge and situa-
tions and the formulation of rules of deduction that describe how situations
change over time (a so-called situational calculus). One requirement of such
a calcuius is that conclusions must be retractable in the face of additional
information; that is, unlike FOL where conclusions only accumulate, the
logic must be “non-monotonic.” There is an extensive literature on these
topics (for a review, see Reiter, 1987).

In this paper I propose a different approach to the frame problem in which
images are employed as inference-making representations. Specifically, 1
propose a model for representing gecmetric diagrams in a way that permits
the drawing of inferences without the explicit use of rules of deduction. The
kemel of this idea was present in an early artificial intelligence program
(Lindsay, 1961, 1963) which extracted kinship facts from linguistic inputs and
used a family tree representation to make explicit some inferences that were
only implicit in the inputs. Visual imagery, in addition to whatever other
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characteristics it has, provides a much more general and ubiqguitous applica-
tion of this idea. Haugeland (1985, p. 229), in commenting on the frame
problem and imagery, puts the essential idea succinctly: “The beauty of im-
ages is that (spatial) side effects take care of themselves.” Here I attempt to
spell out for the case of geometric diagrams (which illustrates the more com-
plex case of spatial imagery in general) just what is required for the “side
effects” (inferences) to “take care of themselves.”

One might well ask why inference is not adequately accounted for by
predicative knowledge representations employing logic, since inference is a
task for which logic was explicitly devised and for which there is a well-devel-
oped theory. My answer is that visual images possess properties (to be de-
scribed shortly) not possessed by deducrive propositicnal representation, and
these properties help avoid the combinatorial explosion of correct but trivial
inferences that must be explicitly represented in a propositional system. Ac-
cordingly, an important role of imagery in cognition is as a constructive infe-
rential knowledge representation system that efficiently makes inferences
based on one’s beliefs (including one’s accurate knowledge) of how real-worid
situations behave. It is one’s beliefs, perhaps describable as predicative
knowledge, that are used to construct images; inferences are retrieved from
these images. The crucial property that distinguishes images from oiher
knowledge representations is that they are non-deductive, that is non-proof-
procedure based. In order to explain this view it is necessary to take a more
careful lock at what a knowledge representation system is.

Although a general theory of knowledge representation is not at hand, the
past two decades have seen a large number of computer implementations of
methods for storing and processing knowiedge. From this work has emerged
certain limited generalizations in the form of programming systems for ex-
pressing procedural and factual knowledge of various sorts, and several au-
thors (e.g., Bobrow, 1975; Palmer, 1978; sec also Brachman & Levesque,
1985) have offered analyses of the representation problem that have clarified
several important issues.

To avoid the endless regress of the homunculus fallacy, it is now generally
recognized that it is necessary to specify not only the structure of the rep-
resentation but also bow it is constructed, and how it is accessed and used.
A completely specified knowledge representation system therefore consists
of at least three parts: a set of construction processes, a set of representation
structures, and a set of retrieval processes. A specification of the form of the
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representation structures alone has no explanatory power; however, a rep-
resentation system with unspecified construction processes could still model
those functions that use externally provided representations. The work here
presented, however, addresses issues of the selective construction of interral
representations and how construction and retrieval processes interact. Thus
a full model of imagery-based abilities must prescnbe all three components
of the representation system.

A knowledge representation system should be described in the context of
a task or purpose that it will serve; different tasks or purposes often, though
perhaps not always, are better served by different representation systems.
Thus even if a single representation system can in principle serve alt purposes,

it often serves one of them bester (c.g., Amarel, 1968). Since a knowledge

representation system is not just a passive repository of facts, but includes
methods for applying and retrieving information as well, issues of efficiency
arise and may be criterial for judging theoretical adequacy. However, I am
making no claim that the proposed representation system for images cam
make inferences that arc in principle beyond, say, predicate logic representa-
tion systems.

Any knowledge representation system must record some information, that
is, make it available at a later time. This may be thought of as a special,
limited form of inference even if what is available at a later time is exactly
what was entered explicitly. (The frame problem is non-trivial simply because
it is not always correct to conclude that facts do not change over time, hence
static memory often makes incorrect “inferences.”™) However, I wish to re-
scrve the term inference for its more customary use: making explicit informa-
tion that was implicit in sets of inputs (Lindsay 1961). Thus I will restrict the
term inference-making knowledge representation systems (IKRs) to represen-
tation systems whose three components jointly yield information that was not
directly provided to it. For example, a device that transiates English text into
predicate logic formulas and then back to English would be a knowledge
‘representation system, but not an IKR. If it also applied a proof procedure
to the formulas to generate other formulas, which could then be translated
into English, it would be an IKR.

A knowledge representation system that did English-logic and logzc—En—
glish translation and was able to retrieve inferences from inputs, but did not
embody a separate proof procedure may seem paradoxical. If the representa-
tion structure is FOL, that is indeed the case, for logic requires a proof
procedure for making inferences; that is built into the concept of logic. How-
ever, there can be knowledge representation systems that make inferences
without the use of explicit rules of deduction but simply by virtue of the
properties of the knowledge representation system alone.
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To illustrate this, consider a simple case consisting of a discrete grid, each
cell of which could be occupied by a single point labelled by a letter. Consider
the input b is one grid point due right of a, c is directly above b, and d is one
grid point due left of c¢. From this we may conclude that d is directly above a.
This inference could be supported by a calculus based system with appropri-
ate rules of deduction; such a system would be deductive. Alternatively. the
inference would be supported by a system of construction and retricval
routines that placed letters on the described grid and read off trelationships
by scanning the grid; such a system would be non-deductive. The non-deduc-
tive system requires no separate computational inference-making stage: the
operation of the construction process entails the “making” of the inferences.

Simifar tasks have been studied expenmentally, attempting to establish
that human subjects employ visual imagery in their performance Hutten-
locher (1968) and others have examined performancc in solving problems
requiring inferences from statements such as Tom is taller than Sam and John
is shorter than Sam; the evidence {from errors and response times) supports
the hypothesis that subjects image tokens of Tom, and so forth, translatmg
henght relations into spatial relations in the image. In this example, the imag-
ing processes may be construed as "nmplementmg certain properties of a
simple ordering relation (transitivity, anti-symmetry, and irreflexivity); Elliott
(1965) provides examples of other classes of relations that can be treated with
similar methods. Clearly, such a knowledge representation can make some
inferences, and yet the inferences inhere in the knowledge representatlon.
including the construction and retrieval processes, and do not require a sepa-
rate proof procedure. The construction and retrieval processes are exactly
the same whether the retrieved knowledge was given explicitly or inferred.

These examples are illustrations of non-proof-procedure methods of infer-
ence that represent a substantially different approach to inference from the
standard view of logic, and that may provide a connection between inference
and mind that does not rely on computationally opaque and inefficient
methods. The suggestion is not without precedent. Lindsay (1963) proposed
“inferential memory” as a non-rule-based form of deduction. Quillian’s
(1968) “semantic nets” and later elaborations permit non-proof-procedural
deduction. Clearly “inheritance of properties” in semantic nets (Brachman,
1979; Fahlman, 1979, 1984) employs such a method. However, a more funda-
mental and general connection to cognition exists: imagery.

The basic hypothesis of this paper is that visual imagery employs non-proof-
procedural knowledge representations that support inference by a constraint
satisfaction mechanism built into the processes that construct and access them,
A reprmentat:on that possesses this quality may remain symbolic, and even
digital, but is not based on predicate logic. This hypothesis is elaborated
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below for computer-based knowledge representation; I suggest that it is also
true for human (mental) knowiedge representation, though at present I can
offer no empirical support for that hypothesis.

Non-deductive inference should not be equated with visual imagery, for
then some “images™ would have no specific spatial properties. For example,
inheritance of properties in semantic nets is non-deductive but not explicitly
spatial. On the other hand, there is a natural translation of such inheritance
{which is based on the set-inclusion relation) into spatial terms, namely Euler/
Venn diagrams. Indeed such translations are customary and powerful
methods of problem solving by analogy and frequently are suggested as
heuristic devices in mathematical texts. Haugeland (1985) attributes such
methods, perhaps overgenerously, to Galileo, who used spatial metaphors to
prove results concerning non-spatial propositions. Perhaps it is the case that
all non-deductive representations that are available tc human thought could
be translated into spatial analogies. This is not a claim, however, that ¥ am
prepared to make, and thus leave open the possibility that imagery does not
tap afl such methods.

Conversely I do not claim that non-deductive inference is @i there is to
imagery. Finke and Shepard (1986, p. 37) conclude from their recent review
of experimental studies of imagery that “... the functional equivalence
hypothesis [that the internal processes are essentially the same in perceptual
and imagery tasks] provides the single best overall explanation for the results
reviewed in the several sections.” Many aspects of the percept-like character
of imagery (e.g., color, texture, depth, and so forth) are not addressed in the
model to be presented, and some of them may serve important functions
other than inference (e.g., simple recall, emotional impact, aesthetic judg-
ment, and so forth).

3. A knowledge representation for diagrams

For purposes of illustration, in the remaining discussion the category of visual
images will be restricted to diagrams: informally, these are drawings that can
be made with paper and pencil with a straight-edge and compass, but without
color or continuous grey-scale shading. A more precise definition of diagrams
is given below (in the form of construction processes). Basically, diagrams
include those things that can be drawn on a black and white computer termi-
nal by “graphics software.” Diagrams are expressible as a sst of propositions,
as witnessed by their representation with such sofiware. However, such prop-

ositional representations are not in general perspicuous, for reasons later
addressed.
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I now present a more precise model of non-deductive inference (NDI),
restricted to that subset of diagrams composed of points, straight lines, circu-
lar arcs, and symbolic labels for these components. The omission of inany
important qualities of actual drawings, such as colors, textures, widths of
lines, and so forth, may well limit the range of inferences that can be sup-
ported by this model, but what remains to be addressed is an important and
ubiquitous set of mental activities. The following are the basic functions of
the proposed representation for these two-dimensional diagrams.

Representation structure

The elements of a representation structure are symbolic names for points,
line segments, and circular arcs, combined into expressions that relate these
symbols te their locations on a two-dimensional, bounded flat tablet. A rep-
resentation structure R for a diagram D is a specific set of such symbols and
expressions.

Four things must be kept distinct: (1) the diagram which is represented,
(2) that which the diagram denotes, (3) the representation structure for the’
diagram, and {(4) the class of potential representation structures for diagrams
in general. For example, we might wish to represent a specific diagram, such
as a floor plan (1) of the White House. That floor plan denotes the layout of
the building at 1600 Pennsyivania Avenue (2) in Washington. The represen-
tation structure (3) is a set of coordinates of panrs of tablet points (correspond-
ing to the end points of the line segments in the floor plan) plus names for
each of these points, plus several sets of points (corresponding to a sample
of points on each line segment and curve of the flecor plan), plus names of
these line segments and curves. All points that are part of the representation
structure are “marked,” that is, they are distinguished from the other points
on the tablet.

The class of representation structures (4) could be defined by a grammar
specifying the set of real numbers that may serve as coordinates on the tablet,
the classes of coordinate combinations {e.g., pairs) that form permissible
expressions, what symbols may serve as labels "and so forth. In fact, however,
the usual forms of immediate constituent rule grammars are not perspicnous
descriptions of the non-linear structures here employed. Consequently, the
class of representation structures will merely be specified implicitly by the
construction processes themselves. These processes implicitly obey a gram-
mar of representations, but are not identical to it, just as a program that
generates English might obey a grammar of Engiish, but not be a grammar
of English itself.

The implicit grammar of the representation structure defines specific clas-
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ses of objects (points, lines, circles, etc.) that consist of sets of coordinates
that lie within the bounded rectangular tablet. The tablet points are dense in
the usual scnse that, for any two given points reference can be made to a
point between them. Points on the tablet may be labelled with symbolic
names, and may be either marked or unmarked.

Construction processes

The set of construction processes is formed from the following primitive con-
struction processes:

Mark a given point on the tablet.

Erase a given point; that is, unmark it.

Label a given point with a specified name.

Construct due right/left point relative to a given point.

Construct due abovelbelow point relative to a given point.

Construct a line segment between two given peints (i.e., mark a covering set
of points between the end points).

Select the midpoint on a given line segment and return its coordinates.

Construct ¢ perpendicular 1o a given line segment (perhaps extended) from a
given point (i.e., mark a covering set of the perpendicular).

Construct a parallel to a given line segment through a given point.

Parallel-translate a given line segment (i.e., mark its extension along itself)
until a given condition predicate (see below) is true.

Pass a circle through three given points {i.e., mark a covering set of the
circle}.

Construct a ciréle with a given point as center and passing through a second

~ given peint (i.e., mark a covering set of the circle).

Select a point on the tablet meeting a specified ordered list of condition
predicates (see below).

Extend a given line segment until a given ordered list of condition predicates
is met.

Perpendicular-translate a line segment until 2 given ordered list of condition
predicates is met.

Rotate a given line segment about a given point unti a given ordered [ist of
condition predicates is met {i.e., unmark its covering set and mark the
covering set of the line segment that would result after a rotation meeting
the condition).

In the above construction processes, condition predicates are statements that
are eitucr true or false and can be verified by compositions of the retrieval
processes, enumerated below.
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Retrieval processes

The set of retrieval processes are formed from the following primitive retrieval
processes:

Rightlleft order: Given two points determine which one is rightmost or that
neither is.

Abovelbelow order: Given two points determine which one is above or that
neither is.

Point-line relation: Determine if a given po:nt is on a given lme segment, and
if not determine which side of the line it is on.

Poin¢-circle relation: Determine if a given pomt is inside, on, or outside a
given circle.

Closure: Determine if a given set of line segments form a continuous, closed
curve; this process returns true or false.

Comparative length: Determine which of two given line segments is longer,
or whether they are of equal length within stated resolution; returns the
longer segment, or false if they are of equal length.

Comparative angle: Determine which of two given angles is greater, or
whether they are equal to within stated resolution.

Intersection: Determine if and where two given line segmients intersect; re-
turns the point of intersection, or false.

Angle metric quality: Determine if two given line segments are parallel and
if not determine if the (directed) angle from the first to the second is zero,
acute, right, obtuse, straight, cblique, a negative right angle, or reflex;
returns zero, acute, right, oblique, and so forth.

Mirror symmetry: Determine if the entire representation structure exhibits
mirror symmetry aboat a given line.

Some of the retrieval processes are predicative statements; those that are not
can be converted into one or more predicative statements. For example,
closure can be used directly as a condition predicate, and angle metric quality
yields eight condition predicates. Similarly, the composite retrieval processes,
such as those illustrated below, may yield additional condition predicates.
The condition predicates arc the heart of the inferential power of the
knowledge representation system. Consequently, their efficieit implementa-
tion is extremely important to thé problem solving power of the model. In
this paper, however, I discuss only their functional requirements and present
what is hoped to be a sufficient set of processes to accomplish the purposes
described in section 4. It is not claimed that the set is unigue, nor that the
processes correspond in any direct way to neural or mental processes of

1

humans.
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From the primitive construction and retrieval processes, more complex
construction and retrieval processes can be formed. For example:

Line—circle relation: Determine which points on a given line segment are
outside, on, or inside the circle; returns three lists of coordinates represent-
ing the endpoints of these sets of points. (Uses point—circle relation.)

Parity: Determine if two given points are on the same or opposite sides of a
given line segment (extended), or neither (that is, one or both lie on the
line segment); returns same, opposite, or false. (Uses point-line relation).

Colinearity: Determine if three given points lie on the same line. (Uses point-
line relation and parallel-translate).

Construct vectangle: Given two paralle] line segments, move one along itself
until the two line segments form opposite sides of a rectangle. (Uses paral-
lel-translate, construct-perpendicular, comparative length, and angle met-
ric quality).

Due right: (viven two points, determine if the first is due right of the second.
(Uses right/left order and above/below order).

Note that many of these processes have no knowledge of metric properties;
exceptions are midpoint construction, the two circle constructions, compara-
tive length, comparative angle, and angle metric guality. The metric informa-
tion in these processes, however, is “qualitative” (in the sense of de Kileer &
Brown, 1984 and Forbus, 1984); the distinct values are limited to a small,
ordered set, and distance measures are only comparative. These qualitative
metric properties are necessary for dealing with direction and relative length,
and these suffice for a wide class of inferences, though not all conceivable
ones that might be supported by diagrams.

With this knowledge representation system it is possible to have non-de-
ductive inference. The construction processes employ methods that impose
constraints on what can be constructed, and these constraints preclude the
construction of representation structures that embody (make available to the
retrievai processes) invalid inferences. In some cases, enough invalid infer-
ences are eliminated to leave some unambiguous, true conclusions.

No claim is made that NDI methods can in principle do things that logic
cannot. It is likely, however, that they can do some things more efficiently,
and that is the crux of the matter. The efficiency edge need not always be on
the side of NDI knowledge representations, and yet humans, and machines,
may use them more widely than would be prudent simply because the machin-
ery is already in place, just as one might pound in screws with a nearby
hammer rather than fetching a distant screwdriver. Note that this model of
imagery is indeed computational since it may be impicmented on a digital
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computer with standard (serial, digital) computational techniques. However,
to achieve an efficiency advantage may require the use of non-conventional
computers, including analog and paralle! methods. Regardless of implemen-
tation, the model differs conceptually from proof-procedure and production-
rule based inference schemes. The next section illustrates how the sorts of
inference mechanism this method provides may be used in geometric problem
solving and thinking.

4. Uses of NDI knowledge representation in cognition

There is, of course, more to cogrition than the making of inferences. In this
section I discuss how diagrammatic representations can be used in the service
of goal-directed processes such as theorem proving and problem solving.

In the Geometry Machine (Gelernter, 1939), an early artificial intelligence
program, the inferences were made by a calculus that generated a problem-
subproblem tree and sought to discover a nor-rigorous but formal dedictive
proof of a given theorem. An important feature of this program was its use
of a diagram as a mechanism for rejecting implausible subproblems. For
example, if the calculus proposed proving that two triangles were congruent,
the program first consulted its diagram to see if these two triangles had the
same perimeter length; if not the subgoal was abandoned. Here the diagram
is of service precisely because it is not possible to construct a diagram that
depicts two triangles of unequal perimeter while remaining consistent with
premises that imply that the triangles are congruent. It is of course possible
for the diagram to emr in e Gther direction: the premises may not imply
congrzency, but the chosen diagram may represent equal perimeter triangles,
since geometry diagrams are in general under-determined. The Geometry
Machine strategy is thus conservative: it may not reject ail false paths, but
those paths rejected are indeed false. Gelernter, Hansen, and Loveland
(1960) estimated from their experiments that the amount of scarch was re-
duced by a factor of at least 200 by this method.

It is interesting to note that the use of the diagram as heuristic device in
this way does not require that a sketch be “shown” to the computer. In fact,
that would not work since the Geometry Machine did not have any vision
programs. Instead, the functional equivalent of a diagram is required. In
actuality, the programmers supplied “diagrams” that consisted of a list of
numerical coordinates of the points referred to by the premises. Nonetheless,
from our viewpoint, the list of coordinates functioned diagrammatically for
the computer.

The Geometry Machine used diagrams to dispose of conjectures. Diagrams



240 R.K. Lindsay

may also be used to propose conjectures. For example, attempting to draw
diagrams consistent with a set of premises may force the construction of, say,
an isosceles triangle rather than a scalene triangle; this may be taken to
suggest that the forced featurc follows from the premises. The Geometry
Machine could not do this since it did not construct diagrams, but Lenat’s
(1976) AM program used essentially this method of conjecturing (but not
with diagrams) when its generation of examples turned up “interesting” fea-
tures.

Similarly, an NDI model does not always eliminate search, but aids search
by the use of constraint satisfaction heuristics that can either propose or
dispose of putative inferences.

Next consider Figure 1. ABC is a right triangle; a perpendicular from the
right angle to the opposite side has been constructed, forming the two triang-
les DAB and DCA.

Inference 1: Avea of ABC = area of DAB + arca of DCA.
Inference 2: DAB is similar to DCA.

Inference 1 is direct, immediate, and compelling simply from an examination
of the diagram; Inference 2 requires study but nonetheless results in convic-
tion that its proof (in a formal calculus) could be readily obtained. How cam
the disgram serve these functions, and why aze such conclusions more “di-
rect” than the formal textbock proofs employing propositional statements?
Inference 1 of course is an instance of the whole being equal to the sum
of its parts. The conclusion does not depend on the fact that ABC is a triangle,
or even that the diagram consists solely of linear elements; an arbitrary shape
containing a dividing contour would yield the analogous conclusion. A pro-

Figure 1.
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cess that spreads “activation” through bounded areas (such as the “coloring”
method propesed by Ullman, 1984) could discover the validity of Inference 1.

On the other hand, proving Inference 1 deductively for the general case is
a complicated procedure. Figure 1 is a planar graph (Harary, 1969) that can
be specified propositionally by listing the nodes (4, B, C, D) and the edges
(AB, BD, DC, CA, AD). From this speclﬁcatlon alone it is possible to show
that the graph has exactly three meshes' - ABDA, DCAD, and ABDCA -
of which only ABDCA would remain if the edge AD were removed. This is
the non-metric analog of the addition of arcas property, yet, to extract the
mesh structure from the list of nodes and edges by serial computation is
neither straighiforward nor perspicuous. The algorithm of Tarjan (1971) for
(essentially) this task, which he proved to be within a constant factor of
optimal in efficiency, is expressed as some 500 lines of high-level code and
more than 130 pages of explanation.?

In contrast to Inference 1, Inference 2 does depend on certain metric
properties of the diagram, such as the recognition of right angles and the
ratios of fengths of sides. For the human observer, the precision of the draw-
ing does not need to be great. As noted earlier, the metric precision in the
specification of our construction and retrieval processes has been limited to
“qualitative” values: they need to be able to distinguish right angles from
non-right angles, identify equivalent lengths of line segments, and make a
few other distinctions. This seems to be appropriate as a model of human use
of metiic information here and in other problem solving tasks (de Kleer &
Brown, 1984). A slight sloppiness in drawing the perpendicular AD so that
the angle BDA is, say, 87°, does not interfere with a human’s use of a diag-
ram, and a similar coarsencss of measurement is all that is available in our
model, Similarly, a person does not need to know the actual values of the
lengths of segments, or even of their ratios, they merely must “look” appro-
priate. We notice “by inspection,” and our model would “notice” by process
comparative length, that the order of the sides of DCA by length is AD <
DC < CA, and the order of the sides of DAB by length is BD < DA < AB,
We can then notice “by inspection,” and our model would “notice” by sys-
tematic search, that the corresponding pairs of sides have the same ordering
by length: AD is longer than BD, DC is longer than DA, and CA longer than
AB. Why are these the things that we focus on, rather than any of a number

YA mesi of a planzar graph is defined as a closed, connected sequence of edges, in which no edge appears
more than oace 2nd ne node is visited more than once except t0 return to the statting node, and which
constitutes the boundary of a region of the plane that contains no other edges (Harary, 1969). A mesh can

_ equivalently be defined in terms of its nodes,

*This was called to my atiention by David West.



242 R.K. Lindsay

of other facts, such as that AB is shorter than CA? One possibility is that the
process is one of exhaustive search over all possible comparisons of certain
primitive types {such as line segment length comparisons), with uninteresting
observations filtered ont as they are generated. Another possibility is that
heuristics are used to prune such a search.

§. Relation of the model to other proposals

Johnson-Laird (1983) described a method for making inferences without re-
course to a rule-based proof procedure, His method uses what he calls mental
models. These are finite representations of the content of propositions, and
are similar to models in the sense used in logic, as introduced by Tarski,
except for the finiteness restriction. From propositions are constructed finite
sets of individuals that are truc interpretations of the propositional content.
The result of the construction of such a model is a structure which is a true
interpretation of other propositions that could be validly inferred from the
original propositions by rule-based deduction. Johnsor-Laird presents evi-
dence that humans use such finitary models as a vehicle for inference. The
“images” employed in the work presented here are similar in function to
Johnson-Laird"s “mental models” (rather than what he calls “images”), but
employ more elaborate constraints that reflect the structure of two-dimen-
sional space rather than just the logical connectives and quantifiers.
Kosslyn and Shwartz (1977) devised a model of imagery that bears some
similarity to our proposal, in that it employed a “surface representation”™ of
images that is consistent with our definition of drawing. Their model and ours
differ in several ways, however. The major difference is that we have re-
stricted our consideration to the use of a few primitive object types (lines,
etc.), combined into larger types by construction processes. Kosslyn and
Shwartz deal with more complex objects, such 2s representations of chairs
and cars, that are defined as specific arrays of pixels that can be scaled and
transiated. A second difference is our explicit consideration of mechanisms
of spatial inference methods, and their role in proposing and disposing of
hypotheses. Finally, our model is not motivated by specific psychological
facts. Theirs, however, attempted to incorperate many features, such as loss
of resolution toward the boundaries, that have not been addressed here.
Funt (1977, 1981) constructed a model that reasons with “images.” In that
system, two dimensional objects were represented as on/off patierns of “celis”
on a “retina.” Processes were able to detect instabilities of balance and per-
form a systematic modification of the images that represented movement of
the objects, for example by rotating them about a point. Collisions could be
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detected as the result of movements and from these and ancillary assumptions
new instabilities could arise. Inferences were then made by playiug out a
simulation of the movements of the objects represented on the retina. In our
terminofogy, this method is a non-proof-procedural IKR that operates by
propagation of constraints. Rather than derive an analytic expression for
trajectories, or construct a proof that given initial conditions would lead to
certain results, local rules of geometric relations were used to propagate
constraints and these constraints then forced the display of conclusions.

Larkin and Simon (1987) describe methods that use “diagrammatic rep-
resentations” in a problem-solving situation. They illustrate the methed with
a mechanics problem (involving weights and pulieys) and a geometry problem
(involving congruent triangles). They contrast the diagrammatic representa-
tion and associated processes with a “sentential representation” of the same
problems, showing how the former enjoys decided computational advantages
over the latter. The task set for their system is the discovery of a derivation,
in the form of an appropriate sequence of production rule applications, of an
unknown force ratio, in the mechanics problem case, and of a proof of con-
gruency in the geometry case. The diagrams are used as heuristics in the
scarch for derivations, in the spirit of the Geometry Machine, as discussed
above in section 4. In the context of this task, the value of the diagrammatic
representation follows from its significant reduction, in comparison to the
sentential representation, of the amount of search required to find a deriva-
tion. For example, in diagrammatic representations objects are indexed by
location and attention moves from one object to adjacent objects; the search
order turns cut to be substantially better than the essentially exhaustive,
unguided order which is all that is offered by the sentential representation.
In addition, diagrammatic representations were found to simplify the match-
ing of proeduction rule antecedents to problem features because the diagrams
coded the features directly whereas sentential representations hid these fea-
tures. Since they were requiring the discovery of derivations, rather than
simply the “observation” of correct conclusions, Larkin and Simon charac-
terized the major advantages of diagrams as reduction of search and speedup
of recognition, stating (p. 71) “... the differential effects on inference appear
to be less strong.” However, much of what I have been calling inference takes
place in their model in the step of producing their “perceptually enhanced
data structure,” which is a representation that makes “explicit” certain per-
ceptually szlient elements, such as alternate interior angles, that are only
implicit in the original sentential problem description. Thus their analysis is
essentially in agreement with mine and our models have complementary
strengths: mine generalizes the methods of diagram construction and re-
trieval, and theirs interfaces diagrams with rule-based inference.
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Related suggestions have been made in the context of knowledge represea-

tations that are not explicitly image inspired. I have mentioned the inheri-
tance of properties inference mechanism that is employed in frame-based
representation schemes, and acknowledged the relation to our concept of
non-preof-procedure inference methods. Efliot (1965), Brown (1970), and
Lindsay (1973), employed generalizations of this notion that used properties
other than the tramsitivity of set inclusion. Constraint propagation methods
of problem solving have been employed exteasively in artificial intelligence,
for example, de Kleer (1979) and Steele and Sussman (1978). The truth
maintenance system proposal of Doyle (de Kleer, 1984; Doyle, 1979) addres-
ses related issues from a different perspective (maintaining a consistent set
of beliefs), but one that is related to our suggested mechanisms for proposing
and disposing of conjectures. These and other proposals arec compatible with
the madel outlined in this paper, and offer possible avenues for integrating
imagery and more traditional views of knowledge representation in fruitful
ways. .
There is an extensive literature on machine vision (Brady, 1982; Rosenfeld
& Kak, 1976) that deals with systems that attempt to transform digitized
physical images into propositional descriptions of “scenes” so that deductions
may be made about the content of the original images. The output from such
“scene analysis” is typically expressed in propositional form: there is a tank
at coordinates (3, 5), this is a view of a 3fs inch hex nut from 45° perspective,
and so forth. This is the form of knowiedge needed for search and rule-based
deduction by artificial intclligence programs that plan (Wilkins, 1984) or
problem solve (Milsson, 1980), for example. Scene analysis, including object
recognition, is the process of comstructing comglex retricval processes and
using them in goal-directed contexts, as discussed in section 4. Ullman (1984)
has called such processes visual routines and envisions a model of perceptual
recognition that constructs complex visual routines from a set of elementary
ones. My primitive retrieval processes would presumably comprise a proper
subset of the elementary visual routines that Ullman seeks.

The conventicnal lay wisdom is that knowledge representations can be di-
vided into two distinct types. The two are imagery and language, correspond-
ing to two phenomenologicaily distinet objects of introspection. Various
suggestions have been put forth in the scientific literature to clarify this fun-
damentat distinction. Often, visual imagery is identified with pictorial rep-
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resentations, and language with descriptional representations. Descrip-
ticnalists such as Pylyshyn {1980) hold specifically that all knowledge can be
represented descriptionally. Apparentiy no one holds that the pictorial sub-
sumes the descriptional; that battle has been conceded. Thus the question
usually addressed is whether visual imagery employs pictorial representations
that cannot be fully reduced to descriptions (see Block, 1981, pp. 1-16).

The distinction between pictorial and descriptional representations has
proven to be diffienlt to characterize. One popular approach is to identify
pictorial with analog and descriptional with digital (see Kosslyn et al., 1979;
also Pylyshyn, 1981). The analog/digital contrast is often in turn taken to be
a contrast between continuous and discrete representations. Some writers,
myself included, feel that this fails to capture the original imagery/proposi-
tional distinction,

Dretske (1981) suggests retaining the “analog-digital” terminolegy, but
glosses it differently: a signal (representational element or notation) carries
information that “property s bas value F” in digital form if and only if the
signal carries no additional information about property s; if the signal carries
additional information, then by definition it carries information in enalog
form. Under these definitions, knowledge represented propositionally, e.g.,
as a statement in first-order logic (FOL), represents orly what is stated
explicitly; all other information must be derived by use of a separate set of
structural relations among FOL statements, usuvally in the form of axioms,
variable bindings, and rules of inference. On the other hand, a picture of a
situation conveys additional information since the representation must make
some additional things explicit in order to be a picture. To use Dretske’s
example (p. 137), “The cup has coffee in it” carries no information about
how much coffee, how dark it is, or the shape of the cup’s handle, whereas
a picture of the situation must contain some such additional information. As
in my discussion, Dretske’s anatysis and the intuitions on which it is based
emphasize inference as the essential distinction between pictorial and descrip-
tional representations.

A second influential analysis of knowledge representation issues comes to
what I take to be the same conclusion. Palmer (1978) proposes a hierarchy
of types of “isomorphism™ between representation and that which is rep-
resented. Physical isomorphisms preserve information by virtue of represent-
ing relations that are identical to the relations represented. Thus a physical
model of a natural terrain preserves the spatial relations of the represented
terrain with the very same relations, including for example elevation, but on
a smaller scale. Functicnal isomorphisms, on the other hand, preserve infor-
mation by representing relations that have the same (algebraic) structure as
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the relations represented. Thus the elevations of a natural terrain may be
represented as colors on a map of the terrain, provided the colors are inter-
preted appropriately (as an ordered set) and mapped 50 as to preserve the
order of the physical clevations of the terrain. Thus physical models are a
proper subset of funciional models. Palmer proposes introducing a class of
isomorphisms between physical and functional, which he calls natural
isomosrphisms. In a natural isomorphism, the representation of preserved
relations need not be by means of identical relations, as in physical isomorph-
ism, hence not all natural isomorphisms are physical isomorphisms. On the
other hand, not just any identically structured set of relations qualify. In a
natural isomorphism, the representing constructs have inherent constrainis
(Palmer’s term); that is, there is a structure imposed on the representing
objects that limits the ways in which they may relate. If these inherent con-
straints preserve the relations of the represented world, we have a natural
isomorphism.

Palmer identifies natural (including physical) isomorphisms with analog
(including pictorial) representations, and fumctional but non-natural
isomorphisms with propositional representations. Propositional representa-
tions are thus less restricted, as we normally suppose, because the structure
of the representing world is extrinsic to it, that is it may be arbitranly im-
posed, say in the form of rules of deduction. However, analog (including
pictorial) representations employ representations that have inherent (non-ar-
bitrary, unalterable) structurs (“inherent constraints™) that allow us to do
away with deduction rules. This limits their applicability, but at the same time
increases their power by reducing the computational complexity of inference
(and casing the frame problem). The analysis in this paper, I believe, illus-
trates how this can be done with a limited ciass of representation problems,
and captures what is commen to the Dretske and Palimer definitions.

7. Concinsion: Toward 2 fanctional theory of image

This paper has proposed a characterization of mental visual imagery that
distinguishes that class of knowledge representations from representations
based on logical calculi, which are the common currency of artificial intelli-
gence problem-solving programs and expert systems. The proposed know-
ledge representations may be descriptional and discrete or they may not; they
are specified in terms of the mechanism of inference they support. Even
in-principle wholly descriptional knowledge representations such as diagrams
have important inference support roles that transcend proposition-plus-proof-
procedure representations.
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The theory defines a set of primitively recognizable features of the class
of representation structures, rules for construction that maintain specified
values of specified features, and strategies for searching the representation
structure for feature values. An example of such a theory has been presented.
Each of its components could acguire independent empiricai and logical sup-
port. The theory does not depend upon knowing whether the substrate of
images is neural or electronic.

There are many properties of drawings that are not encompassed by this
model; some of them may prove amenable to generalizations of its methods.
For ecxample, no use was made of area information. By adding retrieval
processes that could compute this metric property, conclusions about equality
of area would be possible. Thus certain proofs of the Pythagorean Theorem
could be represented and “understood,” perhaps even discovered, with such
an extension. Textured and colored regions could also be represented by
allowing regions to be filled with points of various “colors” or qualities (in
addition to “marks”) at various settings of the covering resolution. Inferences
about intersections of regions would then be available in a non-deductive,
constraint generated manner. Inferences about, say, the effects of combining
colors would require altogether new sorts of construction and retrieval pro-
cesses. While [ have suggested that the model discussed captures the essential
method of the inferential work of imagery, the model presented is limited to
very simple, though important, instances — diagrams. Images of more custom-
ary experience have not been addressed here. Obviously, extending these
notions to percepts/images of complex familiar objects such as faces, animals,
and scenes is not straightforward, but the processes dealing with spatial rela-
tions here outlined should remain intact and unaffected by the addition of
other abilities.

Finally, a word about the status of this work as a psychological model is
in order. None of this work has made use of or been tested by experimental
methods; it is empirical only in the broad sense of being guided by obvious
facts of commen sense psychology. It is of relevance to psychological theory,
however, in that it addresses a general problem, the frame problem, and an
important psychological phenomenon, imagery, for which any theory of
natural intelligence must offer some account. One may view perception as
offering a solution to the frame problem by allowing “the world” to make
appropriate inferences which are then “read” by the brain/mind. If imagery
is conceived as a percept-like representation that is evoked in the absence of
appropriate sensory input, as the functional equivalence hypothesis of Finke
and Shepard has it, then the present model offers an account of how the
natural consiraints of world situations may be employed to solve the frame
problem cognitively.
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