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Abstract--This paper presents the necessary conditions for the minimum fuel, time-free transfer between 
two non-coplanar elliptical orbits. It is shown that the solution is obtained by solving a system of three 
non-linear equations for three unknowns. In the second part, we discuss the case where the impulses are 
applied along the line of nodes. In general, this nodal transfer is non optimal, but the characteristic velocity 
for the best nodal transfer, called the minimizing nodal transfer, is reasonably close to the one for the 
optimal transfer for it to be useful as a substitute for a practical transfer. Furthermore, when we 
continuously vary the relative position of the two terminal orbits, the two characteristic velocities, for the 
minimizing nodal transfer and the optimal transfer, exhibit the same trend in the sense that they pass 
through their maxima and minima at nearly the same relative position. This makes the set of explicit 
formulas for computing the minimizing nodal transfer, as presented in this paper, a useful tool for 
designing a minimum fuel transfer between several orbits. 

1. INTRODUCTION 

With the advent of the orbital transfer vehicle, there 
is a current research interest in the analysis of com- 
bined aerodynamic and propulsive maneuver as a 
technique for reduction of the fuel consumption in 
orbital transfer as compared to the pure propulsive 
maneuver. In the published literature, these com- 
parisons are usually made in simple cases such as the 
transfer between non-coplanar circular orbits. This is 
because the computation of the optimal propulsive 
transfer between non-coplanar elliptical orbits in 
itself is a difficult problem. 

In this paper we shall first present the necessary 
conditions for the minimum fuel, time-free, two- 
impulse transfer between two arbitrary ellipitical 
orbits. It is shown that basically the solution is 
obtained by solving a system of three non-linear 
equations for three unknowns. In the second part, we 
restrict the discussion of the optimal solution to the 
case of nodal transfers, that is the transfers where all 
the impulses are applied along the line of nodes. In 
general, they are non-optimal. They are possibly 
optimal only in the one-impulse or the two-impulse 
cases, except when the terminal orbits are coaxial the 
three-impulse optimal transfer also exists. When the 
terminal orbits are non-coaxial, it is easy to compute 
the one-impulse transfer when the orbits are inter- 
secting, and also the best two-impulse transfer in the 
general case of non intersecting orbits. Then, this 
transfer, called the minimizing nodal transfer, is truly 
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optimal only when some inequalities are verified, and 
also when one additional equality is satisfied in the 
two-impulse case. 

In practical applications, the cost for the mini- 
mizing nodal transfer is close to the optimal solution. 
Hence, the best nodal transfer can be used as a 
practical transfer between non-coplanar elliptical 
orbits. It also serves as a reasonable upper bound for 
the fuel consumption in the search of the true optimal 
transfer. 

2. NECESSARY CONDITIONS 

Consider a two-impulse, time-free transfer between 
an initial orbit O t and a final orbit O 2. The two orbits 
are connected by a transfer orbit O through the 
applications of the impulses It and 12 (Fig. 1). Along 
the transfer orbit with center of attraction at point F, 
let MSTW be a rotating coordinate system with the 
origin M at the vehicle, the S-axis along the position 
vector positive outwards, the T-axis along the 
circumferential direction in the plane of O, positive 
toward the direction of motion and the W-axis 
completing a right-handed system. Then, if S, T, and 
W are the direction cosines of the optimal impulses, 
we have the identities 

S ~ + T ~ + W ~ =  1, i =  1,2. (1) 

It is convenient to define the optimal direction of the 
impulse by its azimuth ~ and elevation ~b. Then at the 
impulses 

St = sin ~b~, T~ = cos ~b~cos ~O~, W i = cos ~b~ sin ~b~ (2) 

i = 1 , 2  
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Fig. 1. Rotating coordinates and transfer geometry. 
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Fig. 2. Geometry of the terminal orbits. 

Let f be the true anomalies of the points of applica- 
tion of the impulses, measured on the transfer orbit 
with eccentricity e. The transfer angle is 

A =fz - f J ,  (3) 

From Lawden's theory of primer vector, it can be 
shown that for the transfer to be optimal, we have 
three necessary conditions, called the optimal switch- 
ing conditions, relating the elements e, f., S .  T~ and 
W,.[1-3]. 

(1 +ql)J i - -q iT l  =(1  +q2)J2-q2T2 (4) 

(Yl T1 - ql Sl) (Tl -- Jl) 

- SiTl + y l W l : +  K I W  l = 0 (5 )  

(yzT2 - q2S2) (T2 - J2) 

- S2T2 + y2W~ + K2W2 = 0. (6) 

In the following, we shall use the notat ion 

x = e cos f,  y = e sin f, q = 1 + e cos f,  

Jl = ($2 - Sl cos A)/sin A, 

J2 = ($2 cos A - S0/sin A, 

K1 = (q2W2 - qlWl COS A)/sin A, 

1(2 = (q2 W2 cos A - qt W0/sin A. (7) 

In addition to these three switching equations, 
some additional conditions and relations are re- 
quired. First, for the impulse I1, to precede the 
impulse 12 in an optimal way, it is necessary that[3] 

qlTl >/q2T:. (8) 

Furthermore, for the case where the transfer orbit is 
completely outside the attracting planet, we must 
verify the condition that the magnitude of the primer 
vector along all the three orbits involved does not 
exceed unity. Along the transfer orbit O, this condi- 
tion is[3] 

A3>.~/A~+A~=2e(S~+J~)  (9) 

where 

A1 = 2e(Sl $2 - Ji J2), 

A2 = 2e(Sj J2 + SzJI), 

A3 = - Al cosfl -- A 2 sinfl  

+ 2[q I (1 -- 3S~) - B2]/(I - cos A), 

B 2 = q~(Tl -- Jl) 2 + [yl(T~ - Jj) + Sl] 2 

+ [(Tl -- J~) (Yl Tl -- ql Sl) -- Sl Tl]2/W~. (1 O) 

The condition (9) always implies 

Sl~+J~= s~+J~<¼. ~ll) 
This restricts the elevation angle of the optimal 
impulse to be always less than 30 ° from the local 
horizontal plane. 

To find the solution for a transfer by two impulses 
between given terminal orbits O l and 02, we need the 
relations connecting these orbits with the transfer 
orbit O and the expressions for the impulses. The 
geometry of the terminal orbits is defined by their 
eccentricities e~ and e2, semi-latus recta Pl and P2, the 
angle i between the orbital planes which intersect 
each other along the line of nodes FN, and the two 
angles 61 and 62 which are the true anomalies of this 
line of node in the initial and final plane respectively 
(Fig. 2). We acknowledge that in celestial mechanics 
if the plane of Ol is used as the reference plane and 
the direction FP~ to its perigee is used as the reference 
direction, then the angular orientation of the orbit 02 
is defined by the longitude of the ascending node 
f~z, the inclination i2 and the argument of the perigee 
O) 2. Here we use i, 61 and 62 for the sake of symmetry 
in the resulting equations with the obvious relations 
i = i2, 6~ =f~2, 62 = 2 n - c o  2. To solve the general 
problem of optimal two-impulse non-coplanar  trans- 
fer between elliptical orbits, it has been suggested 
in[4] to use the unknowns: p for the semi-latus rectum 
of the transfer orbit, and 01 and 02 to be respectively, 
the true anomalies of the points of application of the 
impulse on the initial and the final orbit. All the 
pertinent elements can be expressed in terms of these 
variables and the given data ei, p~, 61 and i. 

Let rl be the radial distance to the impulse I~. Then 

ri = pd(1 + e~ cos 0t). (12) 

Next, in the unit  sphere, after the application of the 
impulse I1, the plane Oj is rotated to the transfer 
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Fig. 3. Spherical geometry of the orbital planes. 

plane O by the angle it and after the applicat ion of  
the impulse 12 the plane O is rotated to the final plane 
02 by the angle i2 with the total  plane change i as 
prescribed (Fig. 3). F rom spherical t r igonometry 
based on the figure with the angles as labeled, we 
have 

cos A = cos(f,  - 01) c0s(62 - 02) 

+ sin(ft - 01) sin(f2 - 02) cos i, (13) 

s i n ( f 2 -  02) . 
sin i I = sin A sm i, 

sin i2 = sin(fit - 00 sin i. (14) 
sin A 

Hence, A and i~ are obtained explicitly in terms of 0~. 
In the figure, the two rotations,  it and i 2 are in the 
same direction. This is the plane change of  the 
rotat ing type. In the case where i 2 is in the opposite 
direction, we have a plane change of  the reflecting 
type. The same equations apply if we take a negative 
value for i:. The true anomalies fj  of the impulses I~ 
as measured in the transfer orbit  are given by the 
equations 

r l  (P -- r2) 
tanf~ = cot A 

r2 (p  - rl) sin A '  

r2( p - rt) 
tan f2 = - c o t A  -¢ r t ( p  _ r2) sin A, (15) 

which involve p in addit ion to 0 t and 02. Finally the 
eccentricity of the transfer orbit  is given by 

r 2 - -  r 1 
e = (16) 

r I cosf l  -- r 2 cos f2 

Let A Vi be the impulsive velocity changes with com- 
ponents on the STW system being u~, v~, and w~. Then 
if # is the gravitat ional  constant,  we have 

ul = sinfl  -- - - - - :  sm 01 , ,/pl 

vl = V/~ (w/p -- x /~ t  COS it), 
r l  

wl = ~ sin il, 

I 

r l  
(17) 

and 
\ 

e 2 . e 
u2 = v /~  ( - - :  sin 02 sin f2 

v2: 
F2 

wi = ~ sin i2. (18) 
r2 

The magnitude of the respective characteristic 
velocity is 

AV, = (u 2 + v~ + w~) t/2. (19) 

We now summarize the problem. Two terminal 
orbits O1 and O 2 are given. They are defined by the 
elements ei, Pi, fi and the angle i between their planes. 
To find the opt imum transfer orbit  O connecting the 
given orbits, we use the three unknowns p, 0~, and 02 
which are the semi-latus rectum of the transfer orbit  
and the true anomalies of  the impulses measured in 
the initial and the final orbit,  respectively. The three 
non-linear equations to be solved are the switching 
eqns (4), (5) and (6). In these equations, all the 
elements A, xi = e cosfi ,  y~ = e sin f / c a n  be expressed 
in terms of  the unknowns p, 01, and 02, while the 
direction cosines of  the thrust (and hence the thrust 
angles themselves) are obtained from 

Ui Ui W -.~ wi 
S, = ~ ,  T, = ~-~j, ' A V, (20) 

F rom eqns (17) arid (18), these direction cosines are 
also expressible in terms of  the selected unknowns. 
Once the solution is obtained, the two conditions (8) 
and (9) must be verified to insure the optimali ty of  the 
transfer. 

3. T H E  O P T I M A L  N O D A L  T R A N S F E R  

We now impose the condit ion that the impulses are 
applied on the line of nodes. Then 

A =f2 - f ~  = n. (21) 

F rom the definition (7), we obtain 

x t + x 2 = 0 ,  Y I + Y : = 0 ,  q l + q : = 2 .  (22) 

F rom the same definition, we write 

(S~ + S2) A 
Jl = sin--------A- SI cot 2' 

A (St + $2) 
J2 = S2cot - - ,  (23) 

2 sin A 

When A tends to n, we have 

(Sl + S2) 
lim Jt = lim - -  = - lira 3"2 = J. (24) 

sin A 

With this, we write the switching relation (4) 

4J  = ql TI - q2T2. (25) 
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We deduce that J is finite and as a consequence 

Sj + $2 = 0. (26) 

Again, from the definition (7), we have singularity in 
K~ and K2. But now that J~ and J2 are finite, we see 
from eqns (5) and (6) that K~ and K2 are also finite. 
We write 

(qlW~ + q2W2) A 
KI = sin A ql W1 cot 2 '  

( q l W l  + q2W2) A 
/(2 = - sin A t- q2W2 cot ~ .  (27) 

Let 

lim K l = lira (qj W ~ +  q2W2) = - lim/('2 = K. (28) 
sin A 

Since K is finite, we have at the limit when A tends 
to ~, 

ql Wi + q2 W2 = 0. (29) 

By putting K, = K = - K  2 in eqns (5) and (6) and 
then eliminating K between these equations, we have 
a new relation free of singularities 

X 1 S 1 (1 - -  S~)  
Yl - -  J ( t  - S{ - 2 J 2 ) "  ( 3 0 )  

Let 

rl q2 1 - xj 
n (31) 

r 2 qj 1 + x~' 

be the ratio of the radii. In terms of the optimal thrust 
angles ~bi and @~, we first have the condition (26) 
written as 

~bl = -- ~b2. (32) 

Next, we have the condition (29) which becomes 

sin @1 = - n  sin @2. (33) 

To put this equation in a more symmetric form, let 

2~ = 0 : -  @1, 2fl = @2 + @~. (34) 

Then, equation (33) becomes 

(1  - n) tan e = (1 + n) tan ft. (35) 

Finally, after some algebraic manipulat ion,  we can 
transform eqn (30) into a more explicit form 

y, cos fl[(n + 1) 2 + 4n cos2fl] 

= 4 ( n + 1 )  2 tanq5 Icos~ (36) 

In summary, for a two-impulse nodal transfer, the 
three necessary conditions for optimality are the 
eqns (32), (35) and (36). Besides, we must verify that 
the magnitude of the primer vector does not exceed 
unity on the three orbits Or, O and 02. This 
condition on the transfer orbit is given by the 
inequality (9). 

4. T H E  M I N I M I Z I N G  N O D A L  T R A N S F E R  

There is an infinite number  of nodal transfers 
connecting two orbits O~ and 02 with given elements 

e~, Pi, 6~ and i. For  distinction, we call the best of these 
nodal transfers the minimizing nodal transfer and 
when this nodal transfer also verifies all the Lawden's 
optimality conditions, we call it the optimal nodal 
transfer. The minimizing nodal transfer has been 
studied in[5], and it has been shown that it satisfies 
the two conditions (32) and (33). Since, in general, the 
third condition (36) is not satisfied, the minimizing 
nodal transfer is non optimal. But it is worth analyz- 
ing since the cost for this transfer is generally low and 
the transfer time is finite, of  the order of half an 
orbital period and as such it can be used as a practical 
transfer between non coplanar elliptical orbits. 

The line of nodes intersects the first orbit O1 at the 
points N 1 and N~ and the second orbit O. at the 
points N 2 and N;, where Ni are defined by the true 
anomalies 6, and N',  by 6~ + ft. It can be shown that 
the optimal way in connecting these points by a 
transfer orbit is the same as for the transfer between 
two equivalent coaxial orbits O~ and O;, in the plane 
of O~ and 0 2 respectively, and having the points N, 
and N~ as apsidal points. Then, we have the following 
rule[2]: If et e 2 COS 61 COS 6 2 ~ 0, the transfer is of the 
direct, or aligned coaxial type using a transfer orbit 
connecting the highest apogee with the perigee of the 
other orbit. If el e2 c o s  61 c o s  62 < 0 ,  w e  have the 
inverse coaxial type and the transfer orbit is either 
between the apogees or between the perigees. 

With the positions of the impulses settled, for the 
aligned coaxial type, we have either 0~ = 6~ and 
02 = 62 + n or 0t = 6~ + 7z and 02 = 62. For the inverse 
coaxial type we have either 0t = 6, and 0, = 62 or 
0t = 6~ + n and 02 = 62 + n. With the values of 0~ and 
02 well defined, we have the radii r~ and r, and also 
their ratio n = ri /r  2. The semi-latus rectum of the 
transfer orbit can be easily evaluated as 

2 r l  r2 
= . (37) 

P r ~ + r ,  

Before evaluating the characteristic velocities for the 
transfer, we notice that the rotation i2 is of the 
reflecting type, and hence 

i I - -  i 2 = i, (38) 

with a negative value for i2. 
Next we explicit the direction cosines of the 

impulses as given by eqn (20): 

Ul u2 
s i n q ~ l - A V  t, s in~b2=AV 2, 

Vl /)2 
cos  4'~ cos  @, = ~ - ~ ,  cos  4'2 cos  @2 = A V , '  

W 1 W 2 
cos ~b I sin @j = ~ ,  cos ~b2 sin @2 = AV 2, (39) 

with u~, v~ and w~ given by eqns (17) and (18). To 
evaluate the rotation angles il and /2 we first use 
eqn (39) to express the optimal relation (32) as 

vx / /~ l  + w~ _ x/~2 + w~ u, _ u2 (40) 
A V I A V 2 ' A V~ A V 2 
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On the other hand, we have from the optimal relation 
(33) 

wl avl v/~,~ + w~ 
- n - - =  - n - - .  (41) 

w~ av~ , /~  + w~ 
With the aid of eqns (17) and (18) we explicit this 
equation as 

sin i] [1 + (P/Pl) - 2 ~ )  cos ill l/2 
- n (42) 

sin i2 [1 + (P/P2) - 2 ~ cos i2] 1/2" 

Upon  solving eqns (38) and (42), we have the optimal 
rotations il and /2. From eqn (41), we immediately 
have the ratio of the characteristic velocities: 

A Vl 1 ~ sin i l 
A~2 - ~ X/p: sin i2 = m. (43) 

If we use sin f :  = - s i n f ~ ,  and substitute eqns (17) 
and (18) into eqn (39) we have for the other elements 

sin i 1 

tan qJl P x / ~ l  - cos il 

sin i2 
tan ~02 = Px / ~z  - cos i2' 

(44) 

u] m { el . ~ e2 . "~ 
"-7 ~ | ~  sin vl + - - -~  sin 02j, 

wfp (1 -I- m ) kx/Pl x/P2 

u 2 - 1  (e~p 1 e 2 " )  ~ (1 + m )  sin01 +--=smO2x/P2 " (45) 

N 

el 
- - ~  sm 02) mrj ( - - s m "  Ol + e: . 
,/p2 , 

tan 4h = . (46) 
(1 +m)x/p  + P l -  2 x / ~ l  cos i, 

The characteristic velocities A Vi are obtained by eqn 
(19). They are also explicit functions of the given data 
ei, p~, 6i and the computed plane change angles i I and 
i2 which, for each given i, depend on the three ratios 

n, P /Pl and P /Pz. 

5. NUMERICAL EXAMPLES 

The minimizing nodal transfer is valuable only if it 
is not  far from the true optimal transfer. It can be 
shown that if C = A V 1 + A I/"2 is the total character- 
istic velocity for the minimizing nodal transfer and C' 
is the total characteristic velocity for the generalized 
Hohmann  transfer between the equivalent coaxial 
orbits O'l and O~ with the same plane change i, as 
defined in Section 4, we have the relation 

(p )2 C2=Ct2÷ el sin61--h:e2sin 62 . (47) 
P2 

Hence, not only that the transfer time of about  half 
an orbital period is acceptable in practice, the cost for 
the minimizing nodal transfer under favorable condi- 
tions is reasonably close to the cost for an ideal 
transfer. It is easy to compute the minimizing nodal 
transfer. After evaluating its elements we can verify 
the third condit ion (36). It is trivially satisfied for the 

coaxial case, Yl = e sin f l  = 0, tan ~)] = 0. In general 
the condit ion is not satisfied and the minimizing 
nodal transfer is not  the true optimal transfer 
between the given terminal orbits. 

To assess the usefulness of the minimizing nodal 
transfer, we consider below two examples. The first 
one concerns the transfer between two equal orbits 
and the second example is the transfer from an 
elliptical orbit to a non coaxial circular orbit. We 
shall take p = 1 for the computat ion of the character- 
istic velocities. 

By taking e I = e2 = 0.4, Pl = P2 = 1.68, we have two 
equal terminal orbits. We assume that the initial orbit 
Ol is in the equatorial plane. For the terminal orbit 
02 besides the prescribed values e 2 and P2, we only 
require that its perigee is at 90 ° before the ascending 
node, that is 62 = 90 °, and that it is inclined at a 
certain angle, taken as i = 30 ° for the computation. 
The fact that the longitude of the ascending node of 
the final orbit f~2 = 61 is not important  is that the 
Earth is rotating about an axis orthogonal to the 
equatorial plane and hence with respect to Earth 
fixed axes, the line of nodes is automatically adjusted 
by the Earth's rotation. 

Then, we shall use 6~ as parameter and for each 
value of 6], from 0 to 180 °, we compute the min- 
imizing nodal transfer by the equations in Section 4, 
and analyze the variation of the total characteristic 
velocity. 

Since el e 2 cos 61 cos 62 = 0, we have the aligned 
coaxial type. Since r 2 = P2, when 61 ~< 90 °, the first 
impulse is applied at 01 = 61 + n, and the second 
impulse at 02 = 62. For 6~ between 90 and 180 °, we 
shall use 01 = 61 , and 02 = 62 + n. The total character- 
istic velocity for this transfer is plotted vs 61 as the 
upper curve in Fig. 4. In the same figure, we have 
plotted as the lower curve the total characteristic for 
the optimal two-impulse transfer, using the optimal 
switching relations in Section 2. The two curves 
exhibit symmetry with respect to the line 61 = 90 °. 
The usual deviation between these two curves is 
about 10% and reduces to 6% when they are near 
their minimum values which occur for a nearly same 

0 . 4 8  

0 . 4 0  

0 . 3 2  

0 . 2 4  
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Fig. 4. Characteristic velocities for Case 1. 
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Fig. 5. Characteristic velocities for Case 2. 

value of 6,. Hence, for a transfer from 0, to O2 when 
6, = f& is not specified, we can use the minimizing 
nodal transfer to quickly determine the approximate 
optimum value Qf before calculating the transfer. As 
a check of the optimality of the solution we have 
plotted in Fig. 4 the constant cost for a transfer via 
parabolic orbits which is 

AVr=c 
J 

F[Jm-(l +e,)]. (48) 

In the present case, AVr = 0.4217. It is seen that the 
cost for the minimizing nodal transfer is sufficiently 
close to the optimal value for it to be a useful transfer. 

In the second example, we use the same initial orbit 
0, in the equatorial plane, with the same plane 
change i = 30”. This time we take the final orbit as 
circular with ez = 0, pz = 1. Again we use the longi- 
tude of the ascending node 6, = R2 as a parameter 
varying from 0 to 180”, while 6, is of course arbitrary. 
This is a practical configuration usually encountered 
when we transfer from an elliptical orbit in the 
equatorial plane to an inclined circular orbit at low 
altitude. Again, the transfer is of the aligned coaxial 
type and since 0, is completely inside 0,) we use the 
same selection for 0, and e2 as in the first case. The 
characteristic velocities are plotted in Fig. 5 and we 
have a deviation of about 6%. When 6, = 0 and 180”, 
the two orbits are coaxial and the minimizing nodal 
transfer is also the optimal transfer. In this case, the 
cost for the parabolic transfer as computed from 
eqn (48) is AVr = 0.6251 and is non optimal. 

6. CONCLUSION 

In this paper, we have presented the necessary 
conditions for the minimum fuel, time-free transfer 
between two non-coplanar elliptical orbits. It is 
shown that the solution is obtained by solving a 
system of three non-linear equations for three un- 
knowns. It is then the best two-impulse transfer but 
if some additional inequalities are not satisfied. the 
three-impulse transfer may be optimal. 

In the second part we discuss the case where the 
impulses are applied along the line of nodes. In 
general, this nodal transfer is non optimal, but the 
best nodal transfer, called the minimizing nodal 
transfer is reasonably close to the optima1 transfer to 
be useful as its substitute for a preliminary evaluation 
of the fuel consumption. Furthermore, when we 
continuously vary the relative position of the terminal 
orbits, the variations of the two total characteristic 
velocities exhibit the same trend in the sense that they 
pass through their minima at nearly the same relative 
position. This makes the set of explicit formulae for 
computing the minimizing nodal transfer, as 
presented in this paper, a useful tool for designing a 
minimum fuel transfer between several orbits. For 
lack of space we plan to discuss the special case of one 
impulse transfer and the non optimality of the non- 
coaxial three-impulse nodal transfer in a separate 
paper. 
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