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This study is concerned with the development of a variational formulation and a procedure for the
computational solution for the shape optimal design of a two-dimensional linear elastic body. The
objective is to minimize the maximum value of the Von Mises equivaleat stress in the body, subject to
an isoperimetric constraint on the area. The optimality conditions for this problem are derived using a
mixed variational formulation, where the equations defining the clastostatics problem are dealt with as
additional constraints for the optimization. The results of the analysis are implemented via a finite
clement discretization. The discretized model is tested in two numerical examples, the shape optimiza-
tion of a bhole in a biaxially loaded sheet, and of the design of a fillet.

1. Introduction

This study is concerned with the development of a variational formulation and a procedure
for the computational solution for the shape optimal design of a two-dimensional linear elastic
body, using a mixed finite element discretization.

Shape optimal design is a problem that has interested many researchers in the last fifteen
years. The subject has been surveyed in a number of review articles. The reader is referred to
the recent paper by Haftka and Grandhi (see, e.g. [11]), and the papers cited therein for
additional background information from the recent literature.

Zienkiewicz and Campbell (see, e.g. [12]), werc among the first to approach this problem
using a virtual displacement-based finite clement model. Subsequently this method has been
applied widely to problems in shape optimal design (see, e.g. [2, 3, 13-15]), but only with
mixed success. The virtual displacement finite element method has two main disadvantages:
(1) the increase of finite element error that results from mesh distortion during shape
redesign, and (2) in some situations, a lack of sufficient precision in the prediction of stresses
and strains at the boundary and internal nodes.

There are some methods one can consider to overcome these difficultics. Some investigators
have applied the boundary element method (see, e.g. [16-18]). While the BEM has proved to
be very useful and looks promising in certain applications on shape optimal design, for
problems that require numerous evaluations of state variables in the domain (objective
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function = max, ., F(, ¢), for example) the BEM loses some of its advantages, also at the
current stage of development it lacks the generality provided by FEM in structural analysis.
Within the FEM applications, the domain method (see, e.g. [19]), where sensitivity expres-
sions are defined in terms of domain integrals rather than boundary integrals (thereby
avoiding the evaluation of state variables at the boundary), provides for improved accuracy in
the numerical calculation of sensitivities. Also, recently Haber proposed an Eulerian-
Lagrangian formulation based on the mutual Reissner encrgy (see, e.g. [20]), where the
shape-optimization problem can be formulated in an arbitrary initial domain as a means to
overcome the difficulties inherited from shape redesign.

In this work another approach is considered. With the development of powerful automatic
mesh generation and optimization techniques (see, ¢.g. [7]) the first of the cited disadvantages
of FEM is avoided. Mixed finite element methods (see, e.g. [8]) that provide for accurate
computation of stresses and strains at the element nodes appears to be a natural approach to
resolve the other difficulty. These considerations are brought together in the developments
reported here, to demonstrate a more effective approach to the overall treatment of shape
optimal design.

2. Problem formulation

For the two-dimensional linear elastic body described as shown in Fig. 1 the objective is to
determine the domain D such that the maximum value of the local measure F(e, x) is
minimized, i.e., to achieve

Min Max F(e,u) (1)

subject to the resource constraint

Ldn—Aso, (2)

Fig. 1. Elastic body nomenclature.
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and to the condition for equilibrium. The later requirement is defined via the equation of
equilibrium

Vioe+f=0, o=0' onD, 3)
the strain-displacement relations (compatibility)
e=4{(Vu+uV) onD, 4)
the stress-strain relation
o=E:e onD, (&)
the traction boundary condition
n-o=¢t onl, (6)
and the displacement boundary condition
=0 onl,. @)
The argument 'I"(c, ) in (1) is the objective (cost) function, which is assumed to be strictly
positive (in the numerical examples presented below, F is the Von Mises equivalent stress
written in terms of strains, for example).
The problem defined by (1) is not differentiable with respect to the design, so it is useful as
a first step to restate it as a simple Min problem with respect to a bound 8 on the objective
function Fle, &) (see, e.g. (1]). Accordingly, the optimal design problem is restated:
Mio B ®
subject to
Fe,8)—B<0 onD, 9)

and to the same constraint equations (2)-(7).

3. Necessary coaditions for optimal solution

To obtain the necessary conditions for the shape-optimization problem defined, let us
introduce the augmented functional

L=B+AUDdO—A)+IDA(F(c,u)-ﬂ)dﬂ—jpv-(v-o+j)dﬂ

+foe:(E:e—o)d0+f01:(i(Vu+uV)-e)d.f)—L prudlr (10)



2 H.C. Rodrigues, Shape optimal design of elastic bodies
under conditions on the Lagrange multipliers,

A20, Ax)=0, x€D, (11)
andr=7" e=¢€"

Integrating by parts, applying boundary condition (6), and using the symmetry of o this
functional is reduced to

L=p+A(fan-A)+fD A(F(e,u)-p)da+fo }(Vo + oV): 0 402
—Ioqu!)—Lv-tdl‘+[be:(3:¢-a)d.ﬂ

+jo'r:(i(Vu+uV)—e)d.Q—Ir p-udl'—jr(n-a)-vdl‘. (12)

The augmented functional (12) forms the Lagrangian for the shape optimization problem
defined by (8), (9) and (2)-(7), from which the necessary conditions may be obtained by a
formal procedure as stationarity conditions. Note that the multipliers 7, €, and v represent
stress, strain, and displacement for the adjoint problem, which is characterized by the
necessary condition (23) given below.

The perturbed domain D, is defined relative to the optimum design D via the transformation
T (see, e.g. [4-6] for applications of such transformation in a somewhat different context) i.e.,

D,=T(D, u).
In this representation
D=T(D,0).

Also, the curves 3T, and oI, that bound the displacement and stress prescribed boundaries are
fixed, i.e.,

T=1 forx€al,UJI,.

In the neighborhood of 1 =0 and assuming sufficient regularity on T, the transformation
can be expressed via

T(D, u) = T(D,0) + u dT(D, p)/dp|, .o+ - +-
Then up to the first order
T(D, p)=(I + uo)(D),

6(D) =d1(D, ﬂ-)’dl"..-o ’

see Fig. 2.

where
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~2

Fig. 2. Domain perturbation field €.

Lyvr,

All the expressions defined in the functional (12) are of the following types:

[, fnea, (13)
I, b(x)-ndrl’, (14)
f _g)dr, (15)

where the functions f, g, and the vector ficld b are defined on D, or its boundary. Using the
previously introduced domain perturbation field 0, the first variations of these expressions with
respect to u are defined by (see, ¢.g. (5, 6])

d[ L.. f(x) dn] / dpl, 0= f L @) /opl, a0 + j . fx)@-mar, (16)
d[L b(x)-ndﬂ]/dul,,o dr=L ab(x)(3p], .o+ n + V- B(O-m)dT, (17)

d[L g(x)] (ll’/d;a.l,,.o = Ir ag(.t)lcmlm_0 +(gV-n+ Hg)(0-m)drI', (18)

whore H is the curvature of I' in "D problems and twice the mean curvature in 3D.

From the first variation with respect to u of the augmented functional (12) based on
(16)-(18), considering the conservative loading case in which the traction ¢ in (6) depends on
position only, and under the constraints (11) on the Lagrange muitipliers, the necessary
conditions for the optimum are obtained as presented below (see, e.g. [1-3]).

The normalization

LAd!)=1 (19)

on the multiplier A reflects stationarity of L with respect to B. Generalized Karush-Kuhn-
Tucker conditions provide
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A(I;‘('v x)-p8)=0,
A0, (F(e,u)-B)=0, x€D,

A([ an- 4)=o,

A=20, ([an—A)so.

(20)

1)

From stationarity with respect to the adjoint state variables (7, e, v, p) and the state
variables (o, e, #), respectively, the equilibrium and adjoint equilibrium equations for the
optimal domain are stated as (this corresponds in a sense to the Hu-Washizu variational
principle expressed in weak form (see, ¢.g. [9]))

ID 5(780+807):ad0—foav-fd0- [ sa-:dr+fpse:(8:e—a)dn
+joa-r:(;(vu+m-¢)dn-Lsp-udr—fn (v-0)-30dl=0, (22)

ID ;(Vv+oV):sadn+jD A(9F/3e:3e + 3F/3u - 3u) d2
+Ipe:(E:&—80)dﬂ+Iofz(§(78u+8uV)—83)dﬂ
—Lp-BudI‘—L(mba)-vdl’-O. (23)

If the boundary conditions on the displacement fields # and v are satisfied a priori, (22) and
(23) can equivalently be stated as

IDi(V&H-BoV):odﬂ—jp&:-[dﬂ-frbv-tdr
+I088:(E:¢—c)dﬂ-f-ID&r:(i(Vu+uV)-e)d.f)=0,

=0 onrl,, (24)

jo §(v°+vv):8¢rdﬂ+jo A(3F/e:5e + 5F/3u - 5u) dN2

+IDe:(E:Be—&a)dﬂ+Ibf:(i(V8u+8uV)—&)dn=o,

v=0 onl,, (25)
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with p defined by
p=7'm onl,.

The optimality condition, i.e., the necessary condition associated with variation of the domain
is given by

Ir (c:o—v-[-&A)(O-n)dF—L P (uV)-n(€-n)di
d -
—L_ a:(vV)(O-n)dI‘—Ir{((t-v)V)-u+Htov}(o-n)dl‘=0. (26)
I T=1Ifor x€I, UI, and assuming f=0 on I, the optimality condition is simply
Ir(o:e+A)(0-u)dI'=0. 27)
4
According to this result, for the optimal domain the mutual energy has constant value on the
design boundary I',. Once again, 0 represents the perturbation field of the domain defined on
I, (see Fig. 2).
4. Nuemerical formulation

4.1. Finite element model

The equilibrium equation (24) is discretized using four-node isoparametric finite clements
(o interpolate the stress, strain, and displacement fields (see Fig. 3).

For the 2D linear elasticity and satisfying a Pﬁori the symmetry condition for o and e, the
finite eclement interpolations are expressed via

‘—
\X
—

(n.e.g)
2

Fig. 3. Four-node finite clement.

! Repeated dummy indices 7, J =1, . .. ,4 are summed over their ranges.
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u(x) = Nyu;, e(x) = N,e,, o(x)=N,0o,, (28)

where N, symbolizes the polynomial basis, bilinear for the four-node element, and the vectors
u,={u,u), ¢={c,e,2¢.}, o= {o,,0,,0,}, represent the nodal values of the
displacement, strain, and stress fields, respectively.

Using the displacement interpolation field, one can define

u,, 0
[ 0 u,',:l = B,ul , (29)
u” u,,
with B, given by,
N, 0
B, = 0 Nl.y . (30)
Nl.y Nl.x

Substituting the finite element interpolations (28), (29) in equation (24), the corresponding
linear system of algebraic equations of equilibrium is

o, 0, B, T, | rFI ‘
2 0, D, C,||e ‘-“'Zlol . (31)
[ 4 [ 4

B, C, 0,5]l0 0,

where the discrete gradient operator B,,, stress (strain) projection operator C,,, material
properties matrix D,,, and load vector F, are defined by

B, = L. B.N,dQ2, (32)
C,=- fm NJIN,dQ, (33)
p,=|[ NDN,an, (4)
F,= L. NfdN + LN,: dr, (35)

and 0,, represents a zero matrix.

The adjoint equilibrium equation (25) is discretized using the same interpolation functions,
which implies that only the force term is changed while the coefficient matrix is the same as in
the previous system:

o, 0, B,T 0,7 0]
310, D, C, [c,] =2 ?Z , (36)
I

€ t t T
B, C, 0, s
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where the adjoint stress F; and adjoint force F} vectors are defined by

F;= fm AN, dF/de,d02 (37)
F:= L. AN, dF/ds,dn . (38)

Here A is the Lagrange multiplier of the bound constraint (9); it is interpolated using
bilinear shape functions within each element where this constraint is active. Recall that the
function A is required to satisfy the normalization condition (19).

4.2. Design-model discretization

The perturbation field €(x), x € I',, is interpolated using linear bourdary clements. The
design variables d then become defined as the norm of the position vecter of the respective
interpolation nodes expressed with respect to a pre-defined origin O (see iFig. 4).

For the design clement I'’;, the perturbation field is expressed as 8 = &'(s), s€[0, L ],
where L, is the element length. 8'(s) is interpolated via

Oi(s) = Ny(s) 8d; cos B, + N,(s) 8d,,, cos B, , (39)

0;(3) = Ny(s) 8d;sin B, + Ny(s) 8d,,,sin B,,, , (40)
where
N(s)=(1—-s/L)) and N,(s)=s/L,.

Since this discretization is needed in order to express the optimality condition (27), the
design boundary and finite element meshes should coincide at this portion of the dcmain
boundary. This implies that the design variables are related to the finite element nodes in I.

The adjoint strain field, obtained by solving the algebraic system of equations (36) and
needed to express the optimality condition, is very irregular along the design boundary nodcs.
Due to this fact the shape redesign process based on this optimality condition becomes quit

Fig. 4. Design variables d.
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Fig. 5. Shapeopummhonofaholemasqumsbeet Plane stress, 110 finite elements, lldenpvamblec
objective function the Von Mises equivalent stress, maximum admissable area for the hole 0.16 m> Only one
quarter of the sheet is modeled.

Objective Punction
6.0 9
<
30«
*
I
¢ ) & Max oq. stress
! 30«
4
2.0+
L
10 ' s v r v \
(] 10 20 30
Deration
Constraint Function

Asen canatr * 10704
8 &
¢
i
i

010 - v - v v -

Fig. 6. Convergence of the iterative procedure for load Fl=1., F2=1,
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unstable. To avoid this problem the mutual energy term defined in (27) is only evaluated, in
each clement constituting the design boundary, at the respective middle node and it is
assumed constant within each element. Following the previous comments and defining
U' = o: ¢, evaluated at the middle node of the ith design clement with o and e obtained from
(31) and (36), respectively, the optimality condition (27) can be approximated via

SW' + A) [ ((N,(5)8d, co8 B, + Nys)8d,., 005 B, ),
+(Ny(s) 8d; sin B, + N,(s) 84, sin B.’ﬂ)",] dr=0. (41)

The design variables d are then computed iteratively, either based on a direct solution of
the discrete optimality condition (41) or by employing well-known gradient-type algorithms.
In this work the version of the linearization method due to Pshenichny (see e.g., [10]) was
used.

Ireration § Iteration 24
Fig. 7. Variation of the shape during iterative procedure.
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5. Example problems

EXAMPLE 5.1. Results are presented for the computational prediction of the optimally
shaped hole in a biaxially loaded sheet. Two load cases are treated. Details of the problem

Rodrigues, Shape optimal design of elastic bodies

statement are provided in Fig. 5.

Iteration histories for the

9.

EXAMPLE 5.2. In the second example, for the two-dimensional structure supported and
loaded as indicated in Fig. 10, the portion of boundary shown by heavy lines is fixed. Fillet
design refers to the shape of the remaining part designated by I, in the figure. Iteration
histories for the ‘maximum equivalent stress’ and the area constraint are provided in Fig. 11.

‘maximum equivalent stress’ and the area constraint are provided
for the different loads in Figs. 6 and 8. Evolutions of the hole design are shown in Figs. 7 and

Evolution of the fillet shape is shown in Fig. 12.

Objective Punction
7.0 4
<
6.0 4
<
5.0
i 1
4 “: - Maxog strem
! 30+
<
20+
10 v v
(] 10 20 30
Ineration
Constraint Function

0.10 «

Asmes constr. *10°%4
g

Fig. 8. Convergence of the iterative procedure for load F1=1., F2=1.5.
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Ineration $ Iteration 23
Fig. 9. Variation of the shape during iterative procedure.

005 m 00T m 005 m

i+ —

0.10 m

00 m F

'

Fig. 10. Shape optimization of a fillet. Plane stress, 126 finite elements, 14 design variables, objective function the
Von Mises equivalent stress, maximum admissable area for the fillet 1.135 X 107 *m.

7 2. v
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Max oq. stress

Objective Punction

Asve constr. *10°%4
s
J

@ Maxoq. stres

g

Fig. 11. convergence of the iterative procedure, F=1.

171 IS L\ T ARV
g d X1 I 11 1 ) A\
~d1 1

Iteration 1 Iteration 3
X \\‘
T 1
y
1] |
Iteration 11 Iteration 24

Fig. 12. Variation of the shape during iterative procedure.
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6. Final remarks

The development presented introduces a quite general form of mixed formulation for the
optimal shape design problem, and the associated optimality conditions are easily obtained
without resorting to highly elaborate mathematical developments. Also the physical signifi-
cance of the adjoint problem comes out to be clearly defined with this formulation.

In the examples presented, an elliptical automatic mesh generator assuring an orthogonal
finite element mesh at the domain boundary (see, e.g. [7]) was used at each shape redesign.
Although it might seem computationally to be a very expensive procedure, actually it
guarantees a good accuracy for the discrete model with an increase on computational time of
less than 5% of the actual time required for the finite clement analysis.

At the same time from the numerical examples executed the procedure appears to be quite
stable and problems commonly encountered in shape optimization arising from the develop-
ment of instabilities in the design boundary definition were largely avoided. As is to be
expected, this improvement is accomplished at the expense of the increase in cost of
computation as compared to the simple displacement formulation.

References

(1} J.E. Taylor and M.P. Bendsoe, An interpretation for min-max structural design problems including a method
for relaxing constraints, Internat. J. Solids and Structures 20 (4) (1984) 301-314.

(2] K.Y. Chung, Shape optimization and free boundary value problem with grid adaptation, Ph.D. Thesis, The
University of Michigan, Ann Arbor, MI, 1985.

(3] M.S. Na, N. Kikuchi and J.E. Taylor, Optimal modification of shape for two-dimensional elastic bodies, J.
Structural Mech. 11 (1) (1983) 111-135.

[4] J. Cea, Problems of shape optimal design, in: E.J. Haug and J. Cea, eds., Optimization of Distributed
Parameter Structures II {Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1981) 1005-1048.

[5] E.J. Haug, K.K. Choi and V. Komkov, Design Sensitivity Analysis of Structural Systems (Academic Press,
New York, 1986).

(6] J.P. Zolesio, Material derivative (or speed) method for shape optimization, in: E.J. Haug and J. Cea, eds.,
Optimization of Distributed Paraineter Structures 1I (Sijthoff and Noordhoff, Alphen aan den Rijn, The
Netheriands, 1981) 1089-1151.

[7} N. Kikuchi, Adaptive grid-design methods for finite element analysis, Comput. Meths. Appl. Mech. Engrg. 55

1986) 129-160.

(8] é.N. ltluri, R.N. Gallagher and O.C. Zienkiewicz, eds., Hybrid and Mixed Finite Element Methods (Wiley,
New York, 1983).

(9] K. Washizu, Variational Metbods in Elasticity and Plasticity (Pergamon, Oxford, 1983).

(10] B.N. Pshenichny and Yu.M. Danilin, Numerical Mecthods in Extremal Problems (Mir, Moscow, 1978).

[t1] R.T. Haftka and RV. Grandhi, Structural shape optimization—a survey, Comput. Meths. Appl. Mech.
Engrg. 57 (1986) 91-106.

[12) O.C. Zienkiewicz and J.S. Campbell, Shape optimization and sequential lincar programming, in: R.H.

and O.C. Zienkiewicz, eds., Optimum Structural Design (Wiley, London, 1973) 109-126.

[13] R.J. Yang, K.K. Choi and E.J. Haug, Numerical considerations in structural component shape optimization,
ASME J. Mechanisms, Transmissions and Automation in Design 107 (1985) 334-339.

[14] K. Dems and Z. Mroz, Multiparameter structural shape optimization by the finite clement method, Internat.
J. Numer. Meths. Engrg. 13 (1978) 247-263.

(15] V. Braibant and C. Fleury, Shape optimal design using B-splincs, Comput. Meths. Appl. Mech. Engrg. 44
(1984) 247-267.



“ H.C. Rodrigues, Shape optimal design of elastic bodies

[16) D. Eizadian and P. Trompette, Shape optimization of bidimensional structures by the boundary clement
method, in: Proceedings CAD/CAM, Robotics and Automation Conference, Tucson, AZ, 198S.

[17]) C.A. Mota Soares, H.C. Rodrigues and K.K. Choi, Shape optimal structural design using boundary elements
and minimum compliance techniques, ASME J. Mechanisms, Transmissions and Automation in Design 106
(1984) 518-523.

(18] T. Burczynsky and T. Adamczyk, The boundary element foimulation for multiparameter shape optimization,
Appl. Math. Modelling 9 (1985) 195-200.

[(19) K.K. Choi and H.G. Secong, A domain method for shape design sensitivity analysis of built-up structures,
Comput. Meths, Appl. Mech. Engrg. 57 (1986) 1-15.

[20] R.B. Haber, Application of the Eulerian Lagrangian kinematic description to structural shape design, in: C.A.
Mota Soares, ed. Computer Aided Optimal Design: Structural and Mechanical Systems, NATO ASI Series,
Series F: Computer and Systems Sciences 27 (Springer, Berlin, 1986).



