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This marly is concerned with the development of a variational formulation and a pmcedare for the 
~ mhstion for the shape op~mal des~ of a ~ linear elastic body. The 
ob~:tive is to mlalmb~ the ma~mum value of the Vou Mises equivalent sires in the body, sub~ct to 
an impe~met~ amstraint on the area. Tbe optimafity mnditiom for this problem are ~ ruing a 
mixed variational formulation, where the equatiom defining the etastomatks problem m dealt with as 
additional mmumts for the ~ .  The results o~ the analysis are implemented via a finite 
ekutent di~retization. 'the disaetized model is tested in two numeral examp~, the thape op~miza- 
tioe M a hole in a biaxially loaded sheet, and of the design o( a fillet. 

1. Intreduettm 

This study is concerned with the development of a variational formulation and a procedure 
for the computational solution for the shape optimal design of a two-dimensional linear elastic 
body, using a mixed finite element discretization. 

Shape optimal design is a problem that has interested many researchers in the last fifteen 
years. The subject has been surveyed in a number of review articles. The reader is referred to 
the recent paper by Haftka and Grandhi (see, e.g. [11]), and the papers cited therein for 
additional background information from the recent literature. 

Zienkiewicz and Campbell (see, e.g. [12]), were among the first to approach this problem 
using a virtual displacement-based finite element model. Subsequently this method has been 
applied widely to problems in shape optimal design (see, e.g. [2, 3, 13--15]), but only with 
mixed success. The virtual displacement finite element method has two main disadvantages: 
(1) the increase of finite element error that results from mesh distortion during shape 
redesign, and (2) in some situations, a lack of sufficient precision in the prediction of stresses 
and strains at the boundary and internal nodes. 

There are some methods one can consider to overcome these difficulties. Some investigators 
have applied the boundary element method (see, e.g. [16--18]). While the BEM has proved to 
be very useful and looks promising in certain applications on shape optimal design, for 
problems that require numerous evaluations of state variables in the domain (objective 
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function = maX.EaF(u, e), for example) the BEM loses some of its advantages, also at the 
current stage of development it lacks the generality provided by FEM in stngttmd analysis. 
Within the FEM applications, the domain method (see, e.g. [19]), where sensitivity expres- 
sions are defined in terms of domain integrals rather than boundary integrals (thereby 
avoiding the evaluation of state variables at the boundary), provides for improved accuracy in 
the numerical calculation of sensitivities. Also, recently Haber proposed an Eulerian- 
Lagrangian formulation based on the mutual Reimner energy (see, e.g. [20]), where the 
shape-optimization problem can be formulated in an arbitrary initial domain as a means to 
overcome the difficulties inherited from shape redesign. 

In this work another approach is considered. With the development of powerful automatic 
mesh generation and optimization techniques (see, e.g. [7]) the first of the cited disadvantages 
o[ FEM is avoided. Mixed finite element methods (see, e.g. [8]) that provide for accurate 
computation of stresses and strains at the element nodes appears to be a natural approach to 
resolve the other difficulty. These considerations are brought together in the developments 
reported here, to demonstrate a more effective approach to the overall treatment of shape 
optimal design. 

2. Problem fonnulatlon 

For the two-dimensional linear elastic body described as shown in Fig. 1 the objective is to 
determine the domain D such that the maximum value of the local measure F(e, a) is 
minimized, i.e., to achieve 

Min Max Y(e,u) (1) 
D xED 

subject to the resource constraint 

f d a  - A ~ 0  (2) D P 

f D r, j 

Fig. I. Elastic body nomendature. 
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and to the condition for equilibrium. The later requirement is defmed via the equation of 
equilibrium 

V. tr +J '=  0, g = o "  o n D ,  

the strain-displacement relations (compatibility) 

e =  i (vu + . v )  o n D ,  

(3) 

(4) 

the strcss-~ain relation 

¢ = E : ¢  o n  D , (5) 

the traction boundary condition 

n - u f t  on r , ,  (6) 

and the displacement boundary condition 

• ffio o a r . .  (7) 

The argument F(¢, s) in (1) is the objective (cost) function, which is assumed to be strictly 
positive (in the numerical examples presented below, F is the Von Mises equivalent stress 
written in terms of strains, for example). 

The problem defined by (1) is not diHerentiable with respect to the design, so it is useful as 
a first step to restate it as a simple Min problem with respect to a bound ~ on the objective 
function F(o, a) (see, e.g. [1]). Accordingly, the optimal design problem is restated: 

Min# (8) 
D 

subject to 

F(¢, u) - # ~ 0 on D ,  (9) 

and to the same comtzaint equations (2)---(7). 

3. Nm=m7 ¢mdatem ter e ~ b J  . e t d m  

To obtain the necessary conditions for the shape-optimization problem defined, let us 
introduce the augmented functional 

L f # + A ( ~ o d f i - A ) + f o A ( F ( e , a ) - f l ) d n - f  v.(V.g+I)dn 

+ f o ~:(E:e- o)d~ + f oT:(~(Vu + uV)- e)dlI- fr.P" udF (lo) 



32 H.C. Sodng~, Shape op~U~ deagn o / ~  bod~ 

under conditions on the Lagrange multipliers, 

A ~ 0 ,  A(z)~0 ,  x E D ,  (11) 

and *" = , . t  , _. e t. 
Integrating by parts, applying boundary condition (6), and using the symmetry of q this 

functional is reduced to 

L=a+a(fodn-a)+ fo i(W+vV): ,dn 
- f o  r ' f d f J - f r ,  V ' t d r + f v  e: (E: e -  ~r) dK~ 

+fo • :(½ (V. + uV)-e)dO-frP..dr-fr(..e).vdr. 02) 

The augmented functional (12) forms the Lagrangian for the shape optimization problem 
defined by (8), (9) and (2)-(7), from which the necessary conditions may he obtained by a 
formal procedure as stationarity conditions. Note that the multipliers ~', e, and u represent 
stress, strain, and displacement for the adjoint problem, which is characterized by the 
necessary condition (23) given below. 

The perturbed domain D~, is defined relative to the optimum design D via the transformation 
T (see, e.g. [4-6] for applications of such transformation in a somewhat different context) i.e., 

D. ffi 7(D, ~ ) .  

In this  r e p r e s e n t a t i o n  

D =  T(D,O). 
Also, the curves OF, and OF, that bound the displacement and stress prescribed boundaries are 
fixed, i.e., 

r = l  for x~O/ ' .  U OC. 

In the neighborhood of ~t = 0 and assuming sufficient regularity on T, the transformation 
can be expressed via 

T(D, t~) = T(D, O) + I~ dT(D, + ' " .  

Then up to the first order 

where 
T(D, ~ ) = ( !  + tte)(O) , 

#(D) f dnD,  Iz)/dl~]~.o , 

s e e  Fig .  2.  
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vr ,  D 

Fig. 2. Domain lg'rtudmtion field 0. 

All the expres~ons defined in the functional (12) are of the following types: 

f o  f(x) d O ,  (13) 

J r  b(x). n d F ,  (14) 

f r g(x) dF  , (15) 

where the functiom f, g, and the vector field b are defined on D,, or its boundary. Using the 
previously introduced domain perturbation field 0, the first variations of these expressions with 
respect to / t  are defined by (see, e.g. [5, 6]) 

d [ L  J(x)dO]/d/t[w,.  o - fD a.f(l)/'p,l~,.o dO+ fr f(x)(0" •)dF,  

d[fr.b(x)'ndO]/dl~["°dF=fr a.x)/al~l..o.n+V.b(O.a)dF, 

diff. g(x)] dF /d / t ] j , ,  o :-" fr ¢38(x)/"u'l~"° + (SV" x + Hg)(t" .)dF, 

(16) 

(17) 

(is) 

wi~,re H is the curvature of F in,'.13 problems and twice the mean curvature in 3D. 
From the first variation with respect to ~a of the augmented fanctional (12) based on 

(16)--(18), considering the conservative loading case in which the traction t in (6) depends on 
position only, and under the constraints (11) on the Lagrange multipliers, the necessary 
conditions for the optimum are obtained as presented below (see, e.g. [1-3]). 

The normalization 

f A dO - 1 (19) 
D 

on the multiplier A reflects stationarity of L with respect to/3. Generalized Kamsh-Kulm- 
Tucker conditions provide 



34 n.c. a ~ ,  ssa~ o ~  ,b.~ o/ aneac ~,aa 

A ( ~ e ,  . )  - # )  = o ,  

x;~o, (F(~, . ) -  # ) ( o ,  x E D ,  
(2o) 

A~O (f dO-,*),~0 
t D 

(2t) 

From stationarity with respect to the adjoint state variables 0", e, v, p) and the state 
variables (u, e, ,,), respectively, the equilibrium and adjoint equiWvfium equations for the 
optimal domain are stated as (this corresponds in a sense to the Hu-Washizu variational 
principle expressed in weak form (see, e.g. [9])) 

./o i(ve~ +e~V):~,dn- fo 8v- fd / } - [  ~l~-tdr + fo 8,~-(E',,- ~.)da 

+ J M:(i(V,l+ ,N) - . )d~ t -  fr ~ ' u d r -  f r . ( s ' ~ ) ' ~ d r - O  
D • 

f o  ½(W+ vV) :8o' d/] + f o  A(i~F/i~e:~+~F/au.~)dO 

+ ~  o • :  (~:  ~,  - 8,,) dn  + f o • :  ( i  ( v  8,, + 8 ,  v )  - ~ )  d n  

- f t .  P " s" d r  - fr.(m " 8 ~ )  " v d r  = ° " 

(22) 

(23) 

If the boundary conditions on the displacement fields u and v are satished a priori. (22) and 
(23) can equivalently be stated as 

L) ½(V~, + ~, V): ~, d / t -  fo ~'ldIt-fr,~'tdr 

+~ 8,.(B:,-o.)da+J" ~..(.i(V,+,V)-,)da=0 O O 9 

,,=0 on/'., (24) 

fo t(W + vV):So'dCJ + f A(aF/ae:~ + 6F/au.~u) dCJ 
D 

+ f  e : ( E : ~ - 6 . r ) d . + f  ~ ' : ( i ( V S u + S u V ) - ~ ) d . = 0  
D D 

v=o onr.,  (25) 
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with p defined by 

p , ~ , r - i l  OD /~u" 

The optimality condition, i.e., the necessary condition as~',ciated with variation of the domain 
is given by 

fr, (e : er - v "I  + A)(e . n) d r -  It. p" (uV). ,(S- ,,) d r  

- ft. u : ( ~ 7 ) ( e - . ) d r -  fr.(((t, v )V) . .  + Hr. v}(e. , )  d r  = 0. (26) 

If T = I for x E F. O F~ and assuming f = ,  on Fd, the optimality condition is simply 

Ir,(U : s + A ) ( O .  m) d r  = O . (27) 

According to this result, for the optimal domain the mum~ ene~,y has constant value on the 
design boundary F~. Once again, e represents the perturbation field of the domain defined on 

Fig. 2). 

4. N ~ m ' k g  f eneg t t tm  

4.1. Finite element model 

The equih'brium equation (24) is discretized using four-node isoparametric finite elements 
to interpolate the stress, strain, and displacement fields (see Fig. 3). 

For the 2D linear elasticity and sathfying a priori the symmetry condition for a and e, the 
finite element inteqxgations are expressed via" 

3 

[] (a.a. g ) 
2 

F'qg. 3. Fom'-emde finite element. 

t Repeated dummy indices !, J : | . . . . .  4 are summed over their raDl~es. 
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. ( x )  = N,u, ,  ,,(z) = .,'v,.r,, . ( x )  = N,u , ,  CZS) 

where Nt symbolizes the polynomial basis, bilinear for the four-node element, and the vectors 
u s - (u,,  u,} l, • I - (e,, ey, 2e,7} l, o'! = (or,, o'y, o',y}l represent the nodal values of the 
displacement, strain, and stress fields, respectively. 

Using the displacement interpolation field, one can define 

Uy,y = j~ l lS i  , 
LU.., u,~ 

with B ! given by, 

s, LN,., ~v,~j 

(29)  

(30)  

Substituting the finite element interpolations (28), (29) in equation (24), the corresponding 
finear system of algebraic equations of equilibrium is 

r o,, o,, . . T r . , ] "  .,-,,,1. 

C~, O.J  L(r~j 
(31)  

where the discrete gradient operator B . ,  stress (strain) projection operator C . ,  material 
properties matrix D . ,  and load vector F I are defined by 

Btj =fm B;Nj dll , 

C .  = - L ,  NI INj  dl} , 

(32) 

(33) 

D. = L. N~DNj dn , (34) 

Fl = L N• dl2 + fr Np dF , (35) 

and 0 u represents a zero  matrix. 
Tne adjoint equilibrium equation (25) is discretized using the same interpolation functions, 

which implies that only the force term is changed while the coefficient matrix is the same as in 
the previous system: 

r°. o. . . l  r.1 
:E/o, o. C . l l . , i  = 
• LB;, c:, 0 ,  j L 1.,j 

(36) 
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where the adjoint stress F;  and adjoint force P~ vectors are defined by 

F; = fat ANI dF/d'ri dO, 

F~ =/m AN: dF/dJ: dO. 

(37) 

(38) 

Here ,~ is the Lagrange multiplier of the bound constraint (9); it is interpolated using 
bilinear shape functions within each element where this constraint is active. Recall that the 
function A is required to satisfy the normalization condition (19). 

4.2. Desi~-modd discregzagon 

The perturbation field O(x), x E/"d, is interpolated using linear bour, dary elements. The 
design va,-iables d then become defined as the norm of the position vectc, r of the respective 
interpolation nodes expressed with respect to a pre-defined origin O (see i~g. 4). 

For the design element F~, the perturbation field is expressed as # = t¥(s), s E [0, Lj], 
where L~ is the element length. #J(s) is interpolated via 

e',(s) = ~, (s)  Sd, ~ #, + N~(s)Sd,,,cos ~, , , ,  (39) 

where 
e',(s) = N , ( s )  Sd, ~ #, + N,(s)Sd,÷, m # , . , .  

Nt(s) = (I  - s/L,) and Nz(s ) = s/L,.  

(40)  

Since this discretization is needed in order to express the optimality condition (2:7), the 
design boundary and finite element meshes should coincide at this portion of the de, main 
boundary. This implies that the design variables are related to the fmite element nodes in F d. 

The adjoint strain field, obtained by solving the algebraic system of equations (36) ~md 
needed to express the optimality condition, iS very ilTegular along the design boundary nooks. 
Due to this fact the shape redesign process based on this optimality condition becomes quit,: 

i*l 
~d 

0 

di+t 

~ "  dt 
Pi 

x 
F,g. 4. Design v~ables d. 
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Fi 8. 5. Shape optimizatk~ of a hole in a square sheet. Plune stress, 110 finite elements, 11 design 
objec~ve ~ the Von Mises ecluivalent stress, maximum admisuble area for the hole O.16m=. 
quarter of the sheet is modeled. 

v,mhd~lez, 

G e , j , ~  14mm~ 

!,0 , 

o ,; 2; 
bmU+Oll 

| 

3O 

41, Idm eq. m 

C0esuz~ ~ 

0.10 t 

41" ~ cam~r. 

Fig. 6. 

0 ,;, " ~ 3"o 
l m m m  

Convergence of the iterative procedure for load F l  ,, 1., F2.,  1. 
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unstable. To avoid thlg problem the mutual energy term defined in (27) is only evaluated, in 
each element constituting the design boundary, at the respective middle node and it is 
assumed constant within each element. Following the previous comments and defining 
U' = ~ : e,  evaluated at the middle node o f  the ith design element with u and • obtained from 
(31) and (36), respectively, the optimality condition (27) can be approximated via 

~;,i (U' + A)/r,[(Nt(s)B~l, cos B~ + N2(s) 6d,+t cos IJ~z)n. 

+ (N~($)8d~ sin ,Sj + N2(s)~l ,+ , sin .B,+t)n,] d F  = 0 .  (41) 

The design variables d are then computed iteratively, either based on a direct solution of 
the discrete optimality condition (41) or by employing weH-Imown gradient-type algorithms. 
In this work the version of the linearization method due to Pshenichny (see e.g., [10]) was 
used. 

ltm,dm 1 llenuion 2 

lletati0a $ Iteration 24 

Fig. 7. Variation of the shape dut~g iterative procedure. 
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s. gzm  prol,tm  

E X A M P L E  51.  Results are prt,'sented for the computational prediction of the optimally 
shaped hole in a biaxially loaded sheet. Two load cases are treated. Details of the problem 
statement are provided in Fig. 5. 

Iteration histories for the 'maximum equivalent stress' and the area constraint are provided 
for the different loads in Figs. 6 and 8. Evolutions of the bole design are shown in Figs. 7 and 
9. 

E X A M P L E  5.2. In the second example, for the two-dimensional structure supported and 
loaded as indicated in Fig. 10, the portion of boundary shown by heavy lines is fixed. Fillet 
design refers to the shape of the remaining part designated by F~ in the figure. Iteration 
histories for the 'maximum equivalent stress' and the area constraint are provided in Fig. 11. 
Evolution of the fillet shape is shown in Fig. 12. 

OMect~ Punctkm 
7 , 0  " 

I ~ I  
0 ! 0  20 30  

t I~ut tq. R 

GIO = 

I° 
4LlO 

C.mmaint Function 

4 ,  A m I I .  

• I I 

0 tO 20 30 
Itmntmt 

Fig. 8. Convergence of the iterative procedure for load FI - 1., F2 = 1.5. 
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~ 1  Iteratioa 2 

I 

lU~atlon $ Iteration 23 

F'tg. 9. Variation of the shape during iterative procedure. 

0.(~ m 0.07 m 0.05 m 

0.10 st  

rd 

l~g. I0. Shape opt/mizatioa of a fillet. Phme stress, 126 finite elements, 14 de ign  variables, objective function the 
Voo Mises equivalent stress, maximum sdmissabk area for the fillet 1.135 x I0-" m. 
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Fig. 11. convergence of  the iterative pgocedure, F = 1. 

lt¢ntion 1 lumuion 3 

Ite~-~on 11 Iteration 24 
Fig. 12. Variation of the shape during iterative procedure. 
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& F l n a l  remarks 

The development presented introduces a quite general form of mixed formulation for the 
optimal shape design problem, and the associated optimality conditions are easily obtained 
without resorting to highly elaborate mathematical developments. Also the physical signifi- 
cance of the adjoint problem comes out to be clearly defined with this formulation. 

In the examples presented, an elliptical automatic mesh generator assuring an orthogonal 
finite element mesh at the domain boundary (see, e.g. [7]) was used at each shape redesign. 
Although it might seem computationally to be a very expensive procedure, actually it 
guarantees a good accuracy for the discrete model with an increase on computational time of 
less than 5% of the actual Ome required for the finite element analysis. 

At the same time from the numerical examples executed the procedure appears to be quite 
stable and problems commonly encountered in shape optimiTntion arising from the develop- 
merit of instabilities in the design boundary definition were largely avoided. As is to be 
expected, this improvement is accomplished at the expense of the increase in cost of 
computation as compared to the simple displacement formulation. 
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