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The time domain recursive least squares estimation of parameters in the presence of 
additive output noise of harmonic form leads to biased estimates. However, frequency 
domain least squares parameter estimation, where the frequency range contaminated by 
the noise is eliminated, can be used to obtain good parameter estimates. Both the time 
domain and frequency domain methods are described, and applied to the example of a 
slot milling operation. A model of the resultant force response to feedrate changes in slot 
milling, based on previously reported experimental studies, is presented. The force 
measurement is corrupted by harmonic noise arising from runout on the milling cutter. 
Simulation studies are performed, using a fiat band width multi-frequency test signal to 
persistently excite the system. The time domain approach leads to poor estimates as 
expected, while the frequency domain approach gives good parameter estimates. The 
advantages and disadvantages of both methods are discussed. 

1. INTRODUCTION 

This paper  considers time domain vs. frequency domain parameter  estimation in linear 
systems with additive harmonic output noise. The study was motivated by the particular 
problem of  adaptive control in a slot milling operation as described below, and this 
example is used as a basis for comparing the time domain vs. frequency domain parameter  
estimation approaches. The conclusions and results, however, should be relevant to a 
wide variety of  parameter  estimation problems with additive harmonic output noise. 

Numerically controlled (NC) and computer  numerically controlled (CNC) machine 
tools are used extensively for machining operations to reduce operator input, resulting 
in significant improvements in productivity. However, further improvements in metal 
removal rates, and in the tool life can be achieved by on-line manipulation of the feeds 
and speeds [1], [2]. This can, for example, be achieved by using a process controller 
where the resultant cutting force can be measured and fed back to manipulate the feed 
in order to maintain a constant, opt imum, force level. Such process control strategies 
have generated considerable research interest in recent years, particularly in light of  
difficulties due to process parameter  variations [2]-[5]. Adaptive controllers, which 
combine on-line parameter  estimation and control [6]-[8], have been proposed and 
implemented to address these difficulties [3]-[5], [9], [10]. 

In adaptive control of  the force during a milling operation, difficulties in parameter  
estimation arise due to runout noise [4]. The runout noise comes from small geometric 
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imperfections in the cutter, as well as from small imperfections in the mounting of the 
cutter in the chuck. Thus, it occurs at a frequency given by the number of teeth on the 
cutter times the spindle rotational frequency. The harmonic nature of the noise necessitates 
a recursive parameter estimation algorithm with some form of prefiltering, and a stability 
analysis or check is required. Also the runout noise model contains roots on the unit 
circle, and leads to problems with unknown initial conditions whose influence does not 
decay [6], [8]. If  this runout noise frequency is sufficiently high, it can be effectively 
filtered to eliminate problems of bias in the parameter estimates [10]. However, at lower 
spindle speeds the runout noise frequency spectrum may begin to overlap with the process 
model spectrum, necessitating the inclusion of the filter dynamics in the process model 
and leading to a parameter estimation problem with a potentially large number of unknown 
parameters [10]. Thus, a high order model may be required as the basis for the adaptive 
controller design, the model may depend on the filter as well as process dynamic 
characteristics, and the resulting adaptive controller may require a large computation 
time between samples. 

Braun and Seth [11] have suggested the use of frequency domain filtering techniques 
for rotating machinery. Such an approach is based on using a discrete Fourier transform 
(DFT) of a time domain signal, removing from the spectrum the information at the 
rotational speed frequency (and its multiples), then using an inverse DFT to obtain the 
filtered time domain signal. A similar approach has been successfully used in refs. [12] 
and [13] for estimating the oil-film coefficients in a rotor-bearing system. This method 
uses a least squares procedure to directly estimate the parameters in the frequency domain. 
Because of  its frequency domain nature, it has the inherent capability of filtering measure- 
ment noise at known frequencies. 

The purpose of  this paper is to carry out a quantitative comparison of  the time domain 
and frequency domain parameter estimation methods, for the particular example of the 
force response model in milling including the runout noise. First, the milling force response 
model used as the basis for the simulation studies is presented. Next, the time domain 
and frequency domain parameter estimation methods are described. Simulation results, 
showing and comparing the performance of these two methods, are also presented. The 
results show the poor performance of the time domain least squares parameter estimation 
in the presence of runout noise, and the good performance obtained using the frequency 
domain approach. However, the frequency domain approach is not recursive, and further 
work will be needed to make it an attractive on-line estimation method. 

2. MILLING PROCESS MODEL 

Experiments have been performed to develop a dynamic model of  the resultant force 
(FR) response in slot milling to changes in the feedrate ( f ) .  The experiments are described 
in detail in ref. [4], and briefly summarised here. 

A CNC milling machine was instrumented with a three component force dynamometer,  
and an analog circuit to compute the resultant force 

F~-- (F~+ ~ F~) ''~ F y +  (1) 

during a slot milling operation. A laboratory minicomputer system was used to provide 
a step change in the feedrate during the milling operation, and to sample and collect the 
feedrate and resultant force data. A series of  cutting tests were performed at different 
depths of  cut (a),  spindle rotational speeds (Nr), and feedrates ( f ) .  These tests, together 
with a simple mechanistic model of  the cutter deflections, show that the force response 
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to feedrate changes in the slot milling process can be suitably modeled by the following 
non-linear differential equation [4] 

FR + 21~to,,~PR + to2,,FR = Ksat3to] f °' + Ksat~2(,to,,f '~. (2) 

Note that at steady state the above equation reduces to a form commonly employed in 
the manufacturing literature [1], 

FR = K s a ° f  ~ (3) 

and Ks is referred to as the specific cutting force coefficient. 
The non-linear equation (2) can be linearised about a steady state operating point using 

a Taylor series expansion. Defining the incremental variables AFR and Af as 

FR = FRo + aFR 
(4) 

f=fo+af 

and neglecting higher order terms in the Taylor series, we get the linear equation 

A F  R + 2~¢a,AF R + ~o2 AFR = ( Ksa~e~f~-l~o~)( A f  + (2~'/to~) A f ) .  (5) 

Equation (5) can be written in'transfer function form as 

AFR(s )  (c3+c4s)  

A f (  s ) - (s 2 + cls + c2) (6) 

where 
cl = 2~'~o, 

2 
C 2 ~--- tO n 

c3 = K s a ~ a f ~ - l t o  ] (7) 

c4 = Ksa/3af~-12~to, .  

Rewriting the non-linear equation (2) in state variable form gives 

xl  = -ClXl  + x2 + ( K , a ° c O u  ~ (8a) 

Yc2 = - c 2 x l  + ( Ksa/J c2)u '~ (8b) 

where x, = FR and u =f .  To account for the runout noise d ( t ) ,  the output equation is 
written as, 

y = x~(t)  + d ( t )  = FR + do sin todt (9) 

where toa = 2 ¢ r N , ( N , / 6 0 )  rad/sec is the runout noise frequency, and do is the runout noise 
amplitude. The linear equations (5) or (6) are used as the basis for the parameter estimation 
methods described below. The non-linear equation (8) is used in the simulations, with 
equation (9), to generate the data used in the parameter estimation study. Typical values 
of the process parameters are obtained from [4], and the standard values used in the 
simulation studies are summarised in Table 1. 
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T A B L E  1 

Standard values of the process parameters used in the simulation studies 

Parameter Standard value used in simulation 

f0, nominal feedrate 
a, feedrate exponent 
/3, depth exponent 
Ks, specific cutting force coefficient 
Nr, spindle speed 
Nt, number of teeth 
do, runout noise peak to peak magnitude 
s r, process damping ratio 
to,, process natural frequency 
a, depth of cut 

0.847 mm/sec 
0.73 
1.4 
150.0 
575.0 or 200.0 rpm 
4 o r 2  
25.0 or 50.0 N 
0.55 
3-0 rad/sec 
3.0 mm 

3. PARAMETER ESTIMATION METHODS 

The goal is to estimate the parameters of  the linear model presented in the previous 
section from input ( / i f )  and output (AFR) measurements. In particular it is desired to 
investigate the effect of  the runout noise on both time domain and frequency domain 
least squares parameter estimates. First the choice of the input signal (zlf) for estimation 
is discussed, then both the time domain and frequency domain least squares parameter 
estimation methods are outlined. 

For convergence of the parameter estimates to the true parameter values, it is well 
known that the input signal must be sufficiently rich and persistently exciting [6], [8]. 
For the model presented above a persistently exciting input signal with a minimum of 
two distinct frequencies within the bandwidth of the system is required. There are several 
candidates for such an input signal, and the pseudo-random binary sequence (PRBS) is 
one of the most commonly used. Here the Schroeder-phased harmonic sequence (SPHS) 
is used [14]. 

SPHS is a periodic signal which can be constructed using the formula 
N h 

f ( t )  = ~ (pk/2) 1/2 COS (ktoot+ Ok) (10) 
k = l  

N h where Pk, with ~ k = l  Pk = 1, is the relative power and Ok is the phase angle of the kth 
harmonic. Nh is the number of  harmonics, and tOo is the fundamental frequency of the 
SPHS. The SPHS can be synthesised to give any arbitrarily defined spectrum, including 
a flat modulus spectrum with a sharp cut off. This is not possible with PRBS which always 
has the same shape of  modulus spectrum and possesses parasitic frequencies beyond its 
flat bandwidth. The SPHS is a low peak factor signal and persistently excites all of  the 
system modes without violating the linear operation condition. By a low peak factor 
signal, we mean that the difference between the minimum and maximum amplitudes of  
the signal divided by its root mean square value is low. This can be achieved by using 
the following recursive formula to compute the phase angles Ok in equation (10), [14] 

k - I  

Ok=Ok-l--21r Y. Pl; k = 1 , 2  . . . .  ,Nh. (11) 
/=1 

3.1. TIME DOMAIN ESTIMATION 

The time domain least squares parameter estimation method, requires a difference 
equation form of the linear equation (5) 

A F R ( k ) = - a l A F R ( k - 1 ) - a 2 A F R ( k - 2 ) + b o A f ( k - 1 ) + b l A f ( k - 2 ) + e ( k )  (12) 
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where k represents the sampling instant (i.e. tk =/cAt, where At is the sampling period) 
and the parameters in equation (12) are related to those in equation (6) by 

at = 2 exp ( -ClAt /2)  cos (to'At) 

a 2 = exp (--clAt) 

bo = ( c f f  c2)(1 - exp ( - c lA t  / 2 ) cos (to'At) + (~'to,/to') sin (to'At)) 
(13) 

+ (cdto') exp ( - c lA t /2 )  sin (to'At) 

bl = ( c f f  c2) exp ( -ClAt  / 2 ) ( exp ( - c lA t  / 2 ) + ( Kto./ to') sin (to'At) - c o s  (to'At)) 

- ( cd to ' )  exp ( - c tA t /2 )  sin (to'At) 

where to'= to.(1 _~2)~/2. Equation (12) can be written in regression form 

"AFR(k-1 ) ]  
A F R ( k - 2 )  / 

AFR(k)=[-a~-a2bob~]  A f ( k - 1 )  I + e ( k ) = @ T * ( k - 1 ) + e ( k )  (14) 

A f ( k - 2 )  J 

where @ is the parameter vector, and , ( k )  is the measurement vector at the kth sampling 
instant. The least squares parameter estimate is given by [6], [8] 

If  the input Af(k)  is sufficiently rich and persistently exciting, and the measurement noise 
e(k) is zero mean and Gaussian, then the parameter estimate converges to the true value 
of the parameter vector. With the sinusoidal noise term in equation (9), the parameter 
estimates can be expected to be biased [6], [8]. 

Equation (15) represents the off-line least squares estimate, and a recursive form of 
equation (15), suitable for on-line estimation, can also be employed as was done in ref. 
[10]. Here we use the off-line version for purposes of direct comparison With the frequency 
domain approach described below. 

3.2. FREQUENCY DOMAIN ESTIMATION 

If a multifrequency feedrate signal is used to produce small perturbations in the resultant 
cutting force about an operating point, then equation (6) can be written in the frequency 
domain as: 

Letting 

then we have 

(-*o2+ cljto + c2)AFR(jto ) = (c3+ c4fio ) Af(jto ). (16) 

G(jto) =AFR(Jto-- ) G R +jG'  
Af(yto) 

(_to2 + cj to  + c2)[ G" + j G  I ] = (c3 + c4jto ). (17) 
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Equation (16) can be separated into its real and imaginary parts and then put in matrix 
form as 

-(ntoo)(G')n (Gn)n --1 0 c2 = 

(ntoo)(GR)n (GI)n 0 (nTo) c3 

C4 

where n = 1, 2, 3, . . . ,  N and to = ntoo. 
Equation (18) can be represented in standard form as, 

(ntoo) 2 (GR)n 

(ntoo) 2 ( G ' ) n  
(18) 

X C = Y  (19) 

where the 2N  x 4 matrix X and the 2N  x 1 vector Y are formed from frequency domain 
measurements. The 4 x 1 vector C is the matrix of unknown coefficients to be estimated. 

The least-squares solution of  equation (19) is given by [15] 

(~ = ( x T x ) - I x T ' y .  (20) 

Any particular frequency range can be excluded from the estimation by simply deleting 
the corresponding rows in X and Y in equation (18). This property is useful for filtering 
any measurement noise within the band limit given by Ntoo. The noise beyond this limit 
in particular the runout noise is automatically filtered by equation (18). 

The frequency-domain parameter estimation method can be summarised as follows 
(i) Apply the FFT algorithm to signals AFa(k) and Af(k) where k denotes the sampled 

forms o f / iFR( t )  and ~if(t) respectively. 
(ii) Fill the matrices X and Y with the frequency response coefficients obtained by 

equation (19). 
(iii) Use equation (20) to obtain the estimates for cl, c:, Ca and ca. 

In order to evaluate the estimates and the estimation procedure quantitatively, statistical 
results such as sum of  the squares of the residuals, standard errors significance test and 
confidence intervals can be computed with little extra effort [15]. 

The sum of  the squares of the residuals is given by, 

S=f~TE (21) 

where E is the residual vector given by 

E = Y - ~ ' =  Y-X(~  (22) 

and Y is the vector containing the estimated values of the elements in Y. Standard errors 
of  the estimated coefficients can be obtained from 

s. e. (E~)= Wx/ith diagonal of (XTX) -1 (23) 

where ~ is the (i)th element of (~ and 

1 
w = -£ff V E. 

Standard errors are used to test the significance of each coefficient. It is possible that 
there are some parameters that have negligible effect on the system response despite the 
high goodness of fit value. In statistical terms, the hypothesis to be tested is ~ = 0. Standard 
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t-tests can be used for this purpose. The estimated coefficient ~'i is not zero with probabili ty 
of  (1 - p )  if 

> tDF, p (24) 
s" e(~,) 

where toF, p is tabulated in t-distribution tables for DF degrees of  freedom and the 
probabili ty p. 

It is also possible to calculate the confidence interval of  each estimated coefficient 

~t( I ±tDF'Ps" e. (ci)]" 

I f  the above region contains zero, then the coefficient is said to be insignificant. 
In the following results section the parameter  estimates by both frequency and time 

domain least squares estimation methods are presented for the simulated slot milling 
operation. 

4. RESULTS AND DISCUSSION 

The equations (8) and (9) with zero initial conditions and f = f o + A f  for t ~ 0  were 
used to simulate the slot milling process using the parameter  values given in Table 1. The 
feedrate perturbation / i f  is simulated using an SPHS with Nh = 16 and tOo = 1.2275 as 
shown in Fig. 1. The resultant force response is illustrated in Fig. 2 for Nr = 575 rpm, 
Nt = 4, the runout noise d(t) = 50 sin 240.86t, and a sampling period o f / i t  = 0.01 sec. The 
total simulation time is 15.35 sec (1536 samples). The modulus spectrum o f / i f  is shown 
in Fig. 3, and is flat up to the frequency NhtOO = 19"632 rad/sec.  Figure 4 shows the 
magnitude of  the frequency response function G(jtO)=/iFR(jtO)/Af(jtO) vs. to. 

For the estimation results shown below, since the lineadsed equations about the 
equilibrium are used, the first 1024 data points were discarded and the final 512 data 
points were used. The frequency domain information was obtained using a fast Fourier 
transform (FFT) algorithm. The frequency domain results given below use the first 14 
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Figure 1. Three periods of SPHS feed perturbation (At = 0.01 sec, 1536 samples). 
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Figure 2. Three periods of the resultant force with noise (noise d(t)= 50 sin 240.86t). 
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Figure 3. Modulus spectrum of SPHS. 
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Figure 4. Magnitude of frequency response. 
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harmonics (i.e. N = 14 in equation (18)). The numerical integration, FFT and matrix and 
vector algebra were performed using standard routines available in the International 
Mathematical and Statistical Library [16]. The programming was done in FORTRAN 77 
on a CDC-170/815 computer. 

Based on the time domain parameter estimation results in Table 2 one can make the 
following observations 

1. Without runout noise the parameter estimates were excellent. All parameter estimates 
were significant since the confidence intervals do not include zero, and the maximum 
error (which is for the parameter bl) is 3-3%. 

2. In the presence of  runout noise the parameter estimates are unacceptable, with 
maximum errors of several hundred to several thousand per cent. 

3. When the runout noise amplitude is lowered from do = 50N to do = 25N the para- 
meter estimates are slightly improved, but still remain unacceptable. 

4. The parameter estimates for the lower runout noise frequency ~a = 41-89 rad/sec 
(i.e. Nr = 200 rpm, Nt = 2) are improved over the a~a = 240-86 rad/sec (i.e. Nr = 575 rpm, 
Nt = 4) case. However, again the parameter estimates are unacceptable in both cases. 

Based on the frequency domain parameter estimation results given in Table 3, one can 
note the following 

1. The parameter estimation results are quite good in all cases, even in the presence 
of  the runout noise. When d(t)=0, the maximum error, which is for the parameter ca, 
is 2.6%. The confidence intervals do not include zero in any of  the cases presented, and 
so the estimated parameters are significant. 

2. When equation (13) is used to calculate a l ,  a2, b o and b~ from the estimated c~, c2, 
ca and c4, these estimates never show maximum errors greater than 2.5%. Whereas the 
maximum errors for the estimated c~, i = 1, . . . ,  4, can be as large as 54.9%. 

3. Although the parameter estimates are acceptable  in all cases, some improve- 
ment can be observed when the runout noise amplitude is reduced from do = 50N to 
do = 25N. 

4. Unlike the time domain parameter estimation results, the parameter estimation 
results are somewhat better for the higher runout noise frequency rod = 41"89 rad/sec (i.e. 
N, = 200 rpm, Nt = 2). 

A comparison of  the results in Tables 2 and  3 clearly shows the superiority of  the 
frequency domain estimation method in the presence of  runout noise. This is due to the 
filtering of  the information at the runout noise frequency before the least squares problem 
is solved. The cost associated with this improved performance in parameter estimation, 
is that an FFT must be performed on the feed and force data. This, with the computational 
speeds available on current computing hardware, may restrict the applicability of  the 
frequency domain parameter approach to off-line estimation, or on-line estimation of  
systems with relatively slow dynamics. Note that while both equations (15) and (20) can 
be rewritten in a recursive form suitable for on-line estimation [6], [8], the FFT required 
by the frequency domain approach, requires a block of  2" data points and cannot be 
performed recursively. The availability of  a high speed parallel FFT co-processor would 
make the frequency domain approach much more attractive for on-line parameter estima- 
tion. Note also, that filtering can be used in conjunction with the time domain estimation 
approach as described in [10]. However, unless there is large separation in frequency 
between the process dynamics and the runout noise, the filter must also be included in 
the process model and its parameters estimated along with those of  the process. This can 
lead to a large parameter estimation problem, and significantly increase computation time 
requirements. 
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5. SUMMARY AND CONCLUSIONS 

The estimation of process model parameters for the resultant force response to feedrate 
changes in slot milling is made difficult due to the presence of  runout noise. A simulation 
model of  this process, based on previous experimental studies, is presented. The simulation 
studies are used for a quantitative comparison of  time domain and frequency domain 
least squares parameter estimation studies. The frequency domain method uses an FFT 
and can effectively filter out information associated with the runout noise frequency. 
Although the particular example of a slot milling operation has been considered here, 
similar results can be expected for other estimation problems with additive harmonic 
output noise. 

The results show clearly the superiority of  the frequency domain parameter estimates 
in the presence of  runout noise. However, the frequency domain approach requires an 
FFT and may only be suitable for off-line estimation, or on-line estimation of processes 
with slow dynamics. Further research, and developments in high-speed computing hard- 
ware, may make the frequency domain approach more attractive as an on-line estimation 
method in the future. 
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APPENDIX: NOMENCLATURE 

depth of cut. mm 
parameters of discrete-time linear model 
parameters of continuous-time linear model 
parameter vector in frequency domain estimation 
runout noise signal. N 
amplitude of runout noise, N 
measurement noise in discrete form 
feedrate signal, mm/sec 
resultant force signal. N 
stead-state values of feedrate and resultant force respectively 
perturbation variables of feedrate and resultant force respectively 
force components in cartesian coordinates, N 
frequency response function 
real and imaginary parts of  G(jncoo) 
specific cutting force coefficient 
number of equations in the least squares problem 
number of harmonics in the SPHS signal 
spindle rotational speed, rpm 
number of teeth on the milling cutter 
relative power in the kth harmonic 
Laplace variable 
time 
sampling interval 
state variables 
2 N  x 4 measurement matrix in the frequency domain estimation 
2 N  x 1 measurement vector in the frequency domain estimation 
feedrate exponent 
depth of cut exponent 
measurement vector in the time domain estimation 
parameter vector in the time domain estimation 
frequency, rad/sec 
process natural frequency, rad/sec 
runout noise frequency, rad/sec 
fundamental frequency of the SPHS, rad/sec 
= ¢o. (I - ~z)I/z 
process damping ratio 
denotes the transpose 
denotes the time derivative 
denotes the estimate 
denotes the average value 


