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A general method for establishing the existence of quasi-periodic solutions of Hamiltonian systems for vortex lattices is 
illustrated in a simple example involving two degrees of freedom. The geometry of intersecting singular manifolds of the 
Hamiltonians introduces suitable canonical transformations which put the Hamiltonian into the form of singular weakly 
coupled oscillators. As by-products of this procedure, additional integrals of motion are found for the leading term in the 
transformed Hamiltonian. These extra integrals are approximate invariants for the full Hamiltonians. 

1. Introduction 

In this paper, a method for proving the existence of quasi-periodic solutions in finite-dimensional 
Hamiltonian systems is introduced and applied to a family of Hamiltonians (2.2) from vortex trail 
dynamics. Although it can be used in more general situations, we describe the method in the nontrivial 
context of Hamiltonians of two degrees of freedom, (2.6). 

Meyer [1] discussed a method for finding periodic solutions in N-body problems which required the 
introduction of small parameters in judicious ways. Amongst the extensive literature on Hamiltonian 
mechanics, we refer the reader to some key references on weakly coupled oscillators of two degrees of 
freedom, i.e. Braun [2], Kummer [3, 4], Churchill et al. [5], Gustavson [6], Greene [7], Contopoulos [8]. In 
these papers, approximate third integrals and the existence of quasi-periodic solutions for resonantly 
coupled oscillators are discussed. The Hamiltonians considered in these papers have an isolated equi- 
librium at the origin. 

On the other hand, the Hamiltonians (2.6) in this paper can be transformed into singular coupled 
oscillators, i.e. the origin is a branch point singularity of the Hamiltonian function of two complex 
variables. We will show that Hamiltonians with complicated singularities which lie on submanifolds are 
commonly found in vortex trail dynamics. The main idea in our method is to characterize the singularities 
of the Hamiltonian explicitly as embedded submanifolds in phase space and then use the natural 
coordinates of these singular manifolds to factor the Hamiltonian into the form of weakly coupled singular 
oscillators in the neighborhood of points where two or more singular manifolds intersect. Once this has 
been carried out, an approximate third integral of eqs. (A.1), of which (2.6) is the reduced Hamiltonian, 
can be found. 

We consider a class of Hamiltonians which govern the nonlinear dynamics of infinite lattices of point 
vortices in two-dimensional inviscid flows. Of special interest to us are the one-dimensional lattices which 
model the wake behind a cylinder and the plane jet. They are known as the von Karman trail and the 
symmetric trail respectively (see fig. 1). von Karman [9] discussed the linear stability of such objects under 
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periodic disturbances. Sirovich [10] used the linear oscillation theory of the von Karman trail to describe 
quasi-periodic flows behind the cylinder (see Sreenivasan [ l i  D. Lim and Sirovich [12a] discussed linear 
wave propagation theory while Lira and Sirovich [12b] studied the linear stability of the von Karman trail 
to aperiodic disturbances of compact support. Kochin [13] was the first author to discuss the nonlinear 
dynamics of such vortex trails. Lim and Sirovich [14] discussed numerical solutions of the vortex trail far 
from equilibrium configurations, which correspond to vortex merging in the wake of a cylinder. One of the 
chief goals here is to prove the existence of quasi-periodic solutions and open connected sets of bounded 
solutions for these Hamiltonians, (2.6). 

A related but different problem in vortex dynamics is the integrability of Hamiltonians for N point 
vortices. Early work on this problem can be found in Synge [15] and Lin [16]. The case of N = 3 was found 
to be completely integrable. (See Novikov [17] and Aref [18].) For N = 4, Novikov [19] showed numerically 
that chaotic solutions exist. On the other hand, Khanin [20] proved that some quasi-periodic solutions exist 
for this case. 

We summarize the main steps in our approach: 
(i) derivation of finite-dimensional Hamiltonians from periodic problems for the infinite lattices, e.g. the 

vortex trails; 
(ii) classification of the complex singularities of the Hamiltonians, i.e. branch points and describe their 

geometry as singular manifolds; 
(iii) factorization of Hamiltonians near intersections of singular manifolds to obtain weakly coupled 

singular oscillators; 
(iv) establish the existence of quasi-periodic solutions by KAM theory; 
(v) establish the existence of open connected subsets of bounded solutions. 

In section 2, we briefly review step (i) above. We discuss the singularities in section 3. One class of 
quasi-periodic solutions is considered in section 4 and a different class in section 5. In the conclusion, 
section 7, we discuss the connection between our theoretical results and experiments. 

2. Reduced Hamiitonians 

Here we briefly review the derivation of finite-dimensional Hamiltonians for the periodic problem of the 
vortex trails (see Kochin [13]). 

An N-periodic disturbance of a vortex trail can be viewed in terms of repeated groups of 2N vortices. 
The corresponding vortices in each group form an infinite vortex row. This idea is depicted for the case 
N = 2 in fig. 1. Thus the evolution of periodic disturbances on vortex trails can be formated in terms of 
equations describing the interaction of parallel vortex rows. 

The complex velocity potential for the j t h  row is given by 

~ ( z )  = ( - 1 ) i F  '~ 
2vi l o g s i n [ ~ - l ( Z -  Z,)] ,  (2.1) 

where Zj is the location of a typical vortex in the j t h  row and l is the distance between adjacent vortices 
in the original vortex trail. The factor ( - 1 ) J  adjusts the circulation so that odd-numbered rows have 
circulation - F  and even-numbered rows have circulation F. Using (2.1), the equations for the N-periodic 
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Fig. la.  The von Karman  trail consists of two rows of point vortices of opposite circulations denoted by open and filled circles. The 
distance between two vortices in each row is denoted by l. The separation between rows is denoted by h. b denotes the stagger 
between the two rows; in this case b = I/2. 
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Fig. lb.  The symmetric trail corresponds to the case where the stagger b = 0. The arrows in both figures describe the period two 
( N  = 2) perturbat ion of the equilibrium trails. The vortices ( Z 1, Z 2 , Z3, Z 4 } in both figures form a 4-cell. ~ denotes the circulation 
strength of the vortices. 

problem (or 2N cell problem) can be written in the form 

dZ-- k 2N j F 
dt = • ' ( - 1 )  ] - - N - ~ c o t ~ ( Z k - Z j ) ,  k = l  . . . . .  2N, (2.2) 

j = l  

where prime denotes exclusion of the term j = k in the sum, and bar denotes complex conjugation. This is 
a Hamiltonian system with N degrees of freedom. 

Note that (2.2) has the integral 

C =  • Z , -  E Zj, (2.3) 
i odd j even 

which is the second integral for (2.2). The integral manifolds of (2.2) have a trivial noncompactness 
property which can be removed by using the translational invariance of the equations. This implies that 
(2.2) can be transformed into (2N - 1) complex equations in terms of the differences. We will focus on the 
N = 2 case which is the lowest-dimensional problem of importance in vortex trail dynamics. The 
transformed equations in terms of the three differences (Z  1 - Z 2 )  , ( Z  2 - Z 3 )  and (Z  3 - Z4) are given in 
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the appendix, (A.1). The integral (2.3) takes the form 

C = ( Z  1 - Z 2 )  "[- ( Z  3 - Z 4 )  (2.4) 

for the case N = 2. The C-level sets are thus invariant manifolds and we consider the reduced flow on these 
manifolds. 

Instead of writing the equations for the reduced flow in terms of the above differences, e.g. (Z  1 - Z2) 
etc., we follow Kochin [13] and give the equations in terms of non-dimensionalized perturbations from the 
corresponding equilibria. This is sketched in the appendix. The flow on the C-level manifolds are thus 
governed by the equations 

d~ [ 1 1 ] 
d ~" - - i sin/3 cos a + cos fl cos 13 + cos G ' 

af t  [ 1 1 ] 
d---7 = - i sin a cos a + cos fl cos a - cos G " 

(2.5) 

The associated complex Hamiltonian parametrized by G is the following function of two complex 
variables (a,/3): 

H =  log(  (cosa - cos G)(cosfl c--~ ~ ~- c-~ fl + cosG) }. (2.6) 

The complex equations (2.5) are then given by 

d~ . OH dfl . OH (2.7) 
d----~ = l-~fl ,  d-----~- = 1 0a , 

where the partial derivatives in (2.7) are taken in the sense of the theory of several complex variables. 
These equations are not in the standard Hamiltonian form but are convenient. In standard form eqs. (2.7) 
become 

dar  OH dfli OH - -  = - -  _ _  
d~- 0fli ' d'r Oa r ' 

dfl___z = 0__H_H d a i =  0H (2.8) 
d~" O a  i ' d~" Off r ' 

H =  log (cosa - cosC°S G)(coSfla + cos fl + cosG) , 

where the absolute value sign denotes the modulus in complex function theory and a = O ~ r " [ - i a i ,  

fl = fir + iBi. Henceforth we will use the complex form of the equations. Observe that the complex-valued 
parameter 

'IT 
G = - 2 l  [ Z 1 0  - -  z 2 0  -~- z 3 0  - -  Z4"0 ] (2.9) 

is essentially the non-dimensionalized value of the integral C (2.4). 
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We summarize the above considerations in the following: 

Theorem 2.1. The reduced flow on the C-level manifolds of (A.1) is given by the 2-parameter family of 
Hamiltonians H(a,/3; G), (2.6), which depends continuously on the complex parameter G. 

3. Singularities 

The Hamiltonian H(a,/3; G), (2.6), is an analytic function of two complex variables a,/3 except at the 
singularities of the logarithm function. The branch cut of the log function does not play a role here 
because for given values of (a,/3), one can choose the branch cut to avoid the value of the argument of the 
log function. Furthermore the complex derivative of the log function is the same for all branches. On the 
other hand, the branch point of the log function is important for our analysis. 

To elaborate on the structure of these singularities we write the Hamiltonian (2.6) in the form 

H ( a ,  13; G) = - log (cos a + cos/3 ) + log (cos a - cos G) + log (cos/3 + cos G ). (3.1) 

The set of singularities denoted by ~2(G) consists of values of (a,/3) which give branch points of at least 
one of the three log functions in (3.1). Since the arguments of the log functions in (3.1) are functions of 
two complex variables, their zeros are in general complex hypersurfaces in (a,/3) phase space. Thus the 
singular set consists of the union 

~ ( C )  = ( ( a , /3 )  [(cos a - cosG) = 0} U ((a, /3)1(cos/3 + cosC)  = 0) 

U ( (~ , /3) l (cos  ~ + cos/3) = 0}. (3.2) 

On ~2(G), the vector field (2.6) is undefined, i.e. blows up. 
The entire functions in (3.2) have multi-valued inverses. Thus 

= + G , / 3 e C )  u Vi,ot ~ C } U ((or,/3)lot 
(3.3) 

Note  that the first two subsets are parametrized smoothly by G while the third and fourth sets do not 
depend on G. 

Next, we give coordinates which are natural to the singular manifolds comprising ~2(G), i.e. charts for 
these manifolds. First we define the singular points 

-G,/3= (3.4) 

which serve as the origins of two coordinate systems 

( a  t , h i )  = ( a , / 3 )  - 0 1 ,  ( a ,  b )  ~- (~ t , /3 )  - 02  . (3.5) 

It is important to note that the first subset of ~2(G) consists of the 2-submanifolds 

t.tx = {(a' ,b ') la '=O, b ' ~ C } ,  

I~z= ( (a ,b) la- -O,  b ~ C ) .  
(3.6) 
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The second subset of ~2(G) consists of the 2-submanifolds 

vl= {(a',b')[a' ~C, b ' = 0 } ,  (3.7) 

v2= ((a,b)la~C, b = 0 } .  

All three subsets in (3.3) can be extended mod(2,n) to countably many 2-manifolds due to the inherent 
periodicity of the vortex trails considered (see fig. 1). The third subset of ~2(G) consists of the 2-manifolds 

O.~1= {(a',b')la'+b'~C, a ' - b ' = 0 ) ,  (3.8) 

o ~ 2 = { ( a , b ) l a + b = 0 ,  a - b ~ C } .  

The points O~ which define the coordinate systems (3.5) are in fact the umque intersection points of the 
manifolds, i.e. 

Oi=~i(-~lti('~&Oi, i=1,2. (3.9) 

We give a further coordinate transformation which also provides the trivial embedding for the manifolds 

A'(a',b')=a'+b', B'(a',b')=a'-b', (3.10) 

A(a,b)=a+b, B(a,b)=a-b.  

In these coordinates 

 o1= {(A',B')IA' B'=O}, 
,o2= ((A,  S)IA = 0, S C}. 

(3.11) 

Besides O i, i = 1, 2, we will be concerned with a third intersection point, namely 

03 = o~ 1 N ~02 = (~r,0) in (a ,  r )  coordinates. (3.12) 

In small neighborhoods of the intersection points O,, i = 1, 2, 3, we prove the existence of quasi-periodic 
solutions of (2.6). The coordinates natural to the singular manifolds (3.5) and (3.10) will be used to factor 
the Hamiltonian (2.6) into weakly coupled singular oscillators, i.e. nearly integrable systems. 

We summarize the above considerations on the topology of singular manifolds for (2.6): 

Theorem 3.1. 
(i) Ia(G) consists of the 2-submanifolds #i, vi, %, i = 1, 2, mod 21r, 
(ii) #i, vi, oa~ are complex hyperplanes in C 2, and 
(iii) /,~, v~, oa~ intersect transversally at Oi, i = 1,2; ~1 and oa 2 intersect transversally at 03. 

As remarked earlier, on ga(G) the log function in the Hamiltonian (2.6) blows-up. In fact it is easy to 
verify that 

Lemma 3.2. 
(i) R e ( H )  tends to - o o  on/*i, vi, i =  1,2, 
(ii) R e ( H )  tends to +oo on ~0i, i =  1,2. 
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An immediate corollary of lemma 3.2 is 

Theorem 3.3. 
(i) /~, ~i, o~ are not integral manifolds, 
(ii) trajectories of the Hamiltonian system (2.5) do not intersect these singular manifolds. 

349 

3.1. Vortex merging 

Here we give the physical interpretations for the phase points on or near the singular manifolds. The 
transformations (3.5) and (3.10) are first inverted and then the definition of the variables (a, fl) in the 
appendix is used to describe the singular manifolds in terms of the locations of the four vortex rows in the 
complex plane. 

(/~i, vi, i =  1,2) correspond to the merging of two vortex rows of opposite circulation while the 
remaining two rows are separate. 

{ o~i, i = 1, 2} correspond to the merging of two vortex rows of similar circulation while the remaining 
two rows are separate. 

{O~, i = 1, 2) correspond to the merging of three vortex rows with the fourth row remaining separate 
from the cluster of three. 

{ 03 } correspond to two concurrent mergings of similar vortex rows. 
The following definitions will facilitate our discussion of vortex states which correspond to phase points 

in the neighborhoods of /~ ,  v i, o~ i. 

Definitions. 
(i) A vortex pair is two vortex rows of the same circulation relatively close together. 
(ii) A vortex couple is two vortex rows of opposite circulation relatively close together. 
(iii) A vortex triplet is three vortex rows relatively close together. 

In this paper, we are concerned with bounded solutions of (2.6) and hence we do not discuss vortex 
couples which correspond to unbounded motions (see Lim and Sirovich [14]). We end this section with the 
remark that theorem 3.3 imphes that vortex collapse cannot occur in the dynamics of four infinite vortex 
rows with equal and opposite circulations. In this respect, the dynamics of vortex rows differ from the 
problem of the motion of a finite number of point vortices. Novikov [17] showed that three vortices can 
collapse. 

4. Quasi-periodic solutions I 

We use the coordinate transformations (3.5) and (3.10) to write the Hamiltonian (2.6) in the form of 
weakly coupled singular oscillators of two degrees of freedom. A by-product of this factorization 
procedure is an approximate third integral for eqs. (A.1). Furthermore, the singular (and integrable) part of 
the transformed Hamiltonian turns out to be independent of the value of G which parametrizes the 
reduced flow on the C-level manifolds of (A.1). 

In the coordinates (a, b) given by the second part of (3.5), the Hamiltonian (2.6) takes the form 

H ( a ,  b; G) = log  ~ + l o g [ F ( a ,  b; G)],  (4.1) 
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where 

r (a ,  b; G) = 1 + O(a, b) (4.2) 

is a convergent power series in the complex variables (a, b) starting with the term one, for lal, Ib[ 
sufficiently small. 

The singular part takes the form 

ab 
Ho( a, b ) = log [ 7-4-6 ). (4.3) 

The Hamilton equations for H o are 

da  .aHo ia 

d---7 = 1 ~  = (a + b)b'  (4.4) 

db . ~H 0 ib 
d -7=]  aa - (a+b)a"  

We carry out a second coordinate transformation given by (3.10). In these variables, and after rescaling 
time, eqs. (4.4) become 

d A  i [ A 2 + B  2 ] .bHo 
dr  A A2--B2 =1 OA ' 

dB B . OHo (4.5) 
d r  = 2i[A2--B2 ] = 1 --~ , 

where the Hamiltonian is 

Ho(A, B) = log ~ . (4.6) 

A second integral of (4.5) is given by 

I(A,  B ) =  [AI 2 -  IBI 2. (4.7) 

Further work is needed before we obtain the desired form of weakly coupled singular oscillators. 
We pause here to summarize the results of the two coordinate transformations performed above. 

Theorem 4.1. 
(i) In a sufficiently small ball around the intersection of singular manifolds, 0 2 (3.4), the Hamiltonian 

(2.6) splits into a small perturbation of the singular part, i.e. 

H( A, B; G) = Ho( A, B) + H,( A, B; G). (4.8) 

(ii) The singular part, Ho(A, B) (4.6), gives rise to a completely integrable Hamiltonian system (4.5). 
(iii) The level sets i - x ( j ) ,  j E R are 3-hyperboloids in R4; the associated Lie group is SU(1,1). 
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Proo f .  

(i) The term Hi(A, B; G) = log[F(A, B; G)], where F(A, B; G) = 1 + d)(A, B; G) is a convergent power 
series in A, B which begins with the term 1 and has coefficients which depend analytically on G. Thus in a 
sufficiently small ball around the origin, (A, B) = (0,0), log[F]  is O([h l, IB[) • This proves part (i). 

(ii) The second integral, 1 = IA 12- [B[ 2, is independent of the Hamiltonian Ho(A, B). Thus (4.5) is 
completely integrable. 

(iii) The manifolds, I-l(J), J ~ R are the noncompact 3-manifolds in R 4 known as 3-hyperboloids. 
For J = 1, the 3-hyperboloid is the group manifold for Lie group SU(1,1). [] 

Using the primed coordinate systems (3.5) and (3.10) and carrying out exactly the same steps as above, 
we obtain a similar result for the intersection point O 1 (3.4). It is interesting that in the neighborhoods of 
intersection points of singular manifolds, a result such as theorem 4.1 can be established. The generaliza- 
tions of such results to other classes of Hamiltonians is the subject of Lim [21]. 

4.1. Singular decoupled oscillators 

Although it is possible to compute explicitly the quasi-periodic solutions for (4.5) (this is carried out in 
Lim and Sirovich [14]) and then continue these solutions to the full Hamiltonian (4.8), we follow another 
route where the conditions of KAM theory are easily verified. For this purpose, we construct open subsets 
of a small ball around the origin, 

S~= ((a, e)[ IAI2+ IBI2<e}, (4.9) 

in the following way: 

Ms,.= (A,B)~S~16<[B[2<e-8 2 , T < I A [ 2 < 6  2 , (4.10) 

where/J << e(G) and n is a large positive integer. These product domains of two annulus are chosen to be 
nearer to the singular manifold 09 2 than to the origin of the coordinate system (A, B). At the same time, 
they are bounded away from the singular manifolds. Thus the full Hamiltonian, H(A, B) (4.8), is analytic 
in Ms, .. 

Now we perform the second factorization on the Hamiltonian Ho(A , B) (4.6) which splits it into three 
terms, 

Ho(A, B) = 2log (B)  - l o g ( a )  + log (1 - A 2 / B 2 ) .  (4.11) 

The third term log(1 - A2/B 2) is O([A 12//IB[ 2) in the open sets M,, ,. Next we write the full Hamiltonian 
(4.8) as the sum of two terms, 

/4(a,  B) = n~(a ,  s )  + n; (A,  B), 

HI(A, B) = 2log(B) - log (a) ,  

H{(A, B; G) -- log(1 - A 2 / B  2) + log [F(A, B; G)]. 

(4.12) 

Note  that we have collected together the small terms of 0(6)  and 0(e)  respectively in the perturbation 
term H{(A, B; G). 
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Dropping primes, H0(A, B) in (4.12) is the Hamiltonian for decoupled oscillators. It is singular at 
IAI = 0 or [BI = 0. Thus we have achieved one of the main goals of this paper. The Hamiltonian equations 
for Ho(A, B) (4.12) are 

d . d  i .0Ho 

d r  A = 1--~-'-, (4.13) 

dB  2i . OH0 
d--)- = - B = - l  OB " 

These equations are clearly nonlinear and therefore can be made non-resonant by appropriate choice of 
the moduli IAI, IBI. 

Lemma 4.2. All orbits of (4.13) are in products of two circles, i.e. S a X S 1 = T 2. 

Proof. First we write Ho(A, B) in the polar coordinates 

A = ~ e  -io', B = ~ e  i02. 

In action-angle variables, the real Hamiltonian is given by 

Ho(J1, J2) = 2log ( 4 )  - log (J1). 

(4.14) 

(4.15) 

Thus the complex form of Hamilton's equations (4.13) takes the real form 

d J  1 ~ 1 OH o 
d r  = 0, 01 J1 aJ1 ' 

d 4  d ~  2 aHo 
d r  = 0 ,  0 2 =  ~ - a j  2 • 

The orbits of these equations are clearly in S 1 X S 1. 

(4.16) 

[] 

Lemma 4.3. The frequencies of the decoupled oscillators (4.16) depend on the values of -/1, J2- In 
particular, they can be rationally independent in which case the corresponding orbit is dense in S 1 x S 1. 

Proof. The frequencies are given by 

1 aHo 2 aHo 
f l =  J1 = -fff~ ' f2= 72 = OJ2 " 

[] (4.17) 

Lemma 4.4. The Hamiltonian no(J1, J2) is nondegenerate for all values of J1, -/2. 

Proof. The nondegeneracy condition of KAM theory is verified, 

a2no a2Ho 
a J? a J1 a4 

a2Ho a2Ho 
a4aJ~ a4 = 

I 1 = 
o 

= _ 2  
2 J12J]' 

o - ~  
(4.18) 
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for all values of J1, J2 > 0. In fact the determinant can be made arbitrarily large near the singular 
intersection point 02. [] 

4.2. Continuation to full Hamiltonian 

In order to continue the quasi-periodic solutions S 1 × S 1 of the leading Hamiltonian Ho(J1, J2) to the 
full Hamiltonian we gather here the properties of H(J  l, J2, 01, 02; G). This Hamiltonian is the sum of two 
terms of which H 1 is small in the sets Ms,,, 

H(J1, J2, 01, 02; G) = Ho(J1, J2) + Hi(J1, J2, 01, 02; G) 

Hi(J1, J2, 01, 02; G) = log (1 - J1/J2cos2(01 + 02) + j z / j 2  } + log { F(J  l, J2, 01, 02; G)}. 
(4.19) 

In the second term in /-/1, 

F(J1, J2, 01, 02; G) = IF(A, B; G)I (4.20) 

is the modulus of the 0(1) second term in Hf(A,  B; G) (4.12). Since F(A, B; G) is a convergent power 
series in A, B with leading term equal to one, (4.20) is real analytic in Jx, J2, 01, 02. It is 2,~-periodic in 
01, 02 because these angle variables enter (4.20) in the form of harmonics of the trigonometric functions 
COS 01, COS 02, sin 01, sin 02. Furthermore F(J 1, J2, 01, 02, G) is 0(1). 

We are now ready to state and prove our main result. 

Theorem 4.5. In the open sets Ms, . for 6 << e(G)<< 1 and n ~ Z + large, the full Hamiltonian (4.19) 
admits a set of quasi-periodic solutions which has positive Lebesgue measure in R 4. 

Proof. The Hamiltonian (4.19) is real analytic in J1, J2, 01, 02 in Ms, . and 2~r-periodic in 01, 02. The 
leading term H o (4.15) is independent of 01, O 2 and admits quasi-periodic solutions S 1 × S 1 in Ms,, (cf. 
lemmas 4.2, 4.3). Lemma 4.4 states that H0(J1, J2) is nondegenerate for all values of J1, J2 in Ms, .. 

In the open sets Ms, ., Jx/J2 < ~ << e and J2 < e(G) which implies that the perturbation term 
Hi(J1, J2, 01, 02; G) (4.19) is 0(e) in Ms,,. Thus all the conditions of the KAM theory (see Arnol'd [22, 
23], Moser [24, 25]), are satisfied and this proves the theorem. [] 

We end this section with the remark that theorem 4.5 holds for all values of G because the full 
Hamiltonian (4.19) is smoothly parametrized by the complex parameter G but the leading term H0(J1, J2) 
(4.5) is independent of G. 

We remind the reader that (4.19) is the reduced Hamiltonian on the C-level manifolds of eqs. (A.1); the 
parameter G specifies the C-level manifold. 

In addition, it should be noted that an analogue of theorem 4.5 for the singular intersection point O 1 
(3.4), (3.9) is proved in a similar way. These remarks imply the following theorem. 

Theorem 4.6. On each C-level manifold of the equations for four vortex rows, (A.1), the reduced 
Hamiltonian (2.6) admits quasi-periodic solutions in open subsets Ms. . and M~',, respectively of 
sufficiently small neighborhoods S~ and S" of the singular intersection points 02, O1. 
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5. Quasi-periodic solutions II 

In this section, the existence of quasi-periodic solutions in a full neighborhood of the third singular 
intersection point 03, (3.12) is established. We recall that 03 = (~r, 0) in (a, t )  coordinates is the unique 
intersection point of the singular manifolds ~0a, ~02. The procedure is similar to that used in section 4 for 
O i = 1, 2, namely a factorization of the Hamiltonian (2.6) is carried out in a sufficiently small ball of 03 
after a suitable change of coordinates. Like the previous cases, the leading singular term or unperturbed 
Hamiltonian represents decoupled oscillators with two degrees of freedom. 

To begin, we introduce new coordinates with origin located at 03 . Since there is little possibility of 
confusion these new coordinates are also denoted by (a, b), 

a=c~-~r, b=fl. (5.1) 

Substituting (5.1) in (2.6) and expanding the trigonometric terms sin a, sin b, cos a and cos b, we obtain 
(after absorbing a constant multiple in the time) the Hamiltonian 

H(a,b; G)=log[ l +c°sG] aZ_b 2 +log(K(a,b;G)). (5.2) 

The singular first term is 

Ho(a, b) = - l o g  [a 2 - b 2 ] + log [1 + cos G]. (5.3) 

Henceforth the constant second term in (5.3) parametrized by G will be dropped since the Hamiltonians 
are defined up to an additive constant. The second term in (5.2) is 

H i ( a ,  b; G) = log[1 + h.o.t.]. (5.4) 

K(a, b; G) is a convergent power series in a, b with coefficients depending smoothly on G and begins with 
the term one. Thus in a sufficiently small ball around the origin of the coordinate system (5.1), the 
Hamiltonian H(a, b; G) is a small perturbation of Ho(a, b). 

The Hamilton's equations for (5.3), 

d S _  2 i b  iaH o db 2ia iaHo (5.5) 
d~" a 2 - b 2 = a---if-' d--~ = a 2 - b - - - - - -~  = Ta--, 

can be diagonalized or decoupled by a second coordinate transformation, 

A=a+b,  B = b - a .  (5.6) 

In these variables, the Hamiltonian (5.2) becomes 

H (  A,  B; G) ~- 11o(.,4 , B )  + Hx( A , B; a ) ,  

/¢o(A, s )  = - log(AS) ,  

/-/I(A, B) = log [K(A, G)], 

(5.7) 

where K(A, B; G) is again a convergent power series in A, B with first term equal to one. The 
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Hamiltonian's equations for Ho(A, B) are 

d A  - i  .aHo dB i .~Ho 
d~" = ~ = 1  ~A ' d'r = B = - I  0B ' (5.8) 

which are clearly decoupled oscillators equations. 
Once again the coordinates (5.6) which decouple the equations are natural in the sense that they give the 

trivial embedding of the singular manifolds to1, w2 which intersect at 0 3, that is 

o~ 1 ~-- -  ( ( h ,  B)IA ~ C ,  B = 0 ) ,  (5.9) 

{(A, B)IA =0, B C}. 

Next, we introduce action-angle variables 

A = ~ l  ei°l, B = ~2  el02. (5.10) 

The full Harniltonian becomes 

g(J1,  J2,81, 82; G) = go(J, ,  "12) + Hi(J1, J2, 01, 02; a ) ,  (5.11) 

where the leading term 

a0(J1,  J2) = - l°g(J1J2)  (5.12) 

is independent of 8 t, 82. The perturbation H 1 has the real analytic form 

Hi(J1, ,12, 01, 02; G) = log [K(J  1, J2, 0t, 02; G)] = log [IK(A, B; G)I]. (5.13) 

Since K(J  x, J2, Or, 02; G) is the modulus of K(A, B; G) in (5.7), it is a convergent power series in J1, J2 
and the sines and cosines of 01, 02, with coefficients which depend smoothly on G. Moreover the power 
series begins with the term one. 

The frequencies of the S t × S 1 orbits of the leading equations 

d J1 dot OHo(J1, J2) 1 

d r  = 0 '  ~ =  Oj t = - ~ - ~ '  (5.14) 

d J2 d02 aH0(Jt, J2) 1 
d r  = 0 '  -d--(r 0J2 = J2 

depend on the values of the action variables. 
We are ready to state and prove an analogue of theorem 4.5 for a neighborhood of the singular 

intersection point 03. 

Theorem 5.1. In a sufficiently small open ball S~, e(G)<< 1 around the point 0 3 (the origin), the full 
Hamiltonian (5.11) admits a set of quasi-periodic solutions which has positive Lebesgue measure in R 4. 
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Proof. First we check that the unperturbed Hamiltonian H0(J1, J2) is nondegenerate for all values of 
J1, J2. The determinant of the Hessian matrix 

02H0 0290 0200 1 
(5.15) 

Second, the full Hamiltonian H(J1, J2, 01, 02; G) is real analytic in J1, J2, 01, 02 and 2v-periodic in 0 a, 02 in 
S e Moreover for e(G) sufficiently small, the full Hamiltonian is a small (O(e)) perturbation of the 
integrable leading term, Ho(J1, J2), (cf. (5.13)). Thus by the KAM theorem, the Hamiltonian (5.11) admits 
a positive measure set of toil which are continuations of the sufficiently irrational toil of H0(J1, .]2). [] 

We remark that theorem 5.1 differs from theorem 4.6 in the sense that the existence of quasi-periodic 
solutions is established in a full neighborhood, that is an open ball S~ of the point 0 3. On the other hand, 
the quasi-periodic solutions or KAM tori in theorem 4.5 are found in the restricted subsets of S~' denoted 
by M~,, (see (4.10)) which are constructed to be nearer to the singular manifold 03i than to either/~g or ~, 
i = 1,2. (Recall that the points of intersection O,, i = 1,2 are phase points where the three singular 
manifolds meet.) The singular manifolds /~, ~,, correspond to merging of opposite vortex rows and we 
should expect unbounded solutions rather than KAM tori in their vicinity. Like its counterpart, theorem 
5.1 holds for all values of the complex parameter G. Thus in each C-level manifold of the eqs. (A.1), there 
is a positive measure set of tori in the neighborhood of 0 3. 

6. Open connected sets of bounded solutions 

In this section, we prove several useful corollaries of the results in sections 4 and 5. Collectively, theorem 
4.5, theorem 4.6 and theorem 5.1 establish the existence of relatively large (in the sense of measure) sets of 
invariant toil in the neighborhoods of O i, i = 1, 2, 3 in each C-level manifold of the eqs. (A.1). The first 
idea here is to show that in fact there are open connected sets of bounded solutions near these singular 
intersection points. The second idea is to consider the collection of bounded solutions parametrized 
smoothly by G in the 6-dimensional phase space of the equation for four infinite rows, (A.1). 

The key property used in the proof of the following results is the fact that in 4-dimensional phase space, 
the KAM tori separate an isoenergetic manifold into two distinct regions (cf. Arnol'd [23]). 

First we construct bounded, open and connected sets that are also invariant regions for the Hamiltonian 
system in the neighborhood of the intersection points Oi, i = 1, 2. Let S i denote e-radius bails around Op 
For e sufficiently small, theorem 4.6 implies that there are large sets of invariant tori in S~, parametrized 
over a Cantor set of strongly nonresonant frequencies, (031,032), for which there exist C and v such that 
1031kl + t~Ek2[ > Clk I -~ for all integral 2-vectors k = (k D k2). These tori depend continuously on  (o31, b32) 
and their rotation numbers, 03, are given by 031/032. Through each point 03 in the Cantor set, consider the 
short segment 

(t031, t032), 1 - ~ < t < 1 + 8 ,  (6.1) 

with constant rotation number 03 = 031/032. This one-parameter family satisfies the strongly nonresonant 
condition for sufficiently small 8 which depends on (031,032) and C, p. To each such family there is a 
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continuous curve of invariant tori T~(t). The union of their interiors, T ~, is an invariant connected and 
bounded set in 4-dimensional phase space which contains the singular point (J1, -/2) = (0, 0). 

Theorem 6.1. For  each fixed value of G, the Hamiltonian H(a, fl; G) (2.6) admits bounded connected and 
invariant sets in the neighborhood of the intersection points O~, i -- 1, 2. Moreover each of these invariant 
sets is an open subset in R 4. 

Proof. The constructed sets T ~, i = 1, 2, for some fixed rotation number ~0 are bounded and connected. 
They are also invariant sets because the interiors of the tori Ti(t) in the 3-dimensional isoenergetic 
manifold Mh(t) a r e  invariant. These sets are also open in R 4 because the one-parameter family Ti(t) is not 
contained in a single h-level surface Mh(o, i.e. h(t) is not a constant. If the family of tori is in a single 
h-level surface then one obtains a contradiction with the isoenergetic nondegeneracy condition which holds 
for the unperturbed Hamiltonian H 0 in (4.12), as seen in the following: 

02Ho 02Ho 0Ho 
o J? 0J1 o J2 o21 

O2no O2G ano 
O J, aJ~ O J? OJ~ 

O#o OHo o 
OJx o J2 

1 1 
0 

-- 0 

1 

2 2 

2 
0 

2 4 2 
J12J 2 J2J22 Jt2J 2"  

(6.2) 

Thus the constructed sets T i, i = 1, 2, are not contained in a single energy manifold and the theorem is 
proven. [] 

Next, we construct a bounded connected and invariant open set T 3 in the neighborhood of the 
intersection point 0 3. The construction follows somewhat different steps because the boundedness 
requirement for T 3 implies that we cannot use the full interior of the invariant tori T3(t)  in the energy 
manifold Mh(t). In the coordinates (5.10) in e-radius ball $3 around 0 3 is given by 

$3=  ( ( J1, J2,01,02)l + Jl + J2 < e). (6.3) 

For  e sufficiently small, the Hamiltonian (5.7) restricted to S 3 is greater than some large positive number, 
i.e. H =  h > N. The Hamiltonian is essentially given by its leading term H--- - l o g ( J r ,  J2) (5.12) in S 3 
which satisfies the isoenergetic nondegeneracy condition of the KAM theorem, 

O2no O2no Ono 
a J? OJ~ O J2 aJ~ 

a~/4o a~Ho OHo 
oJ~ aJ~ aJ] aJ~ 

aJ~ o J2 o 

1 1 
0 

= 0 

1 

J1 

1 1 
J~ J: 

1 
0 J~ 

2 
j ? j 2 "  

(6.4) 
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Thus there is a large set of invariant tori on each isoenergetic surface M h f3 S 3. Each such torus is given by 
a smooth function 

Jx =f~(01,  02; h) (6.5) 

in the 3-dimensional surface M h (~ S 3 where the index o~ is the rotation number ~1/~%. Note that (6.5) 
gives a natural ordering of the tori T3(h) in Mh, i.e. T3(h) is inside T3,, if f~ <f,~, and o~ < o~' (using the 
fact that a torus separates M h into inside and outside regions). Now it is clear from the forms of H o (5.12) 
and S 3 (6.3) that the full interior of a torus T3(h) in M h n S 3 is not contained in S 3. 

From the above considerations, it is therefore necessary to choose two tori T~(h) and T3(h) such that 
the one with rotation number w is inside the other and both are in M h n S 3. 

Thus the annular region 

T ~ , ( h ) \ T ~ ( h )  = A ( h )  (6.6) 

is contained in S 3. The remaining steps in the construction follow closely the previous ones for theorem 
6.1. Theorem 5.1 implies that there is a large set of invariant tori in S 3 parametrized over a Cantor set of 
strongly nonresonant frequencies (~l ,  t°2). Through the points ~0 < ~0', there are two short segments 

(to~l, tw2), 1 - 8 < t < 1 + 8 ,  (6.7) 

(twO, twO), 1 - 8 ' < t < 1 + 8 ' ;  

each has constant rotation numbers 

= tol/w 2, w'= "wa/o~ 2.' (6.8) 

We choose (~o 1, ~02) and (~o~, ~0~) so that the corresponding tori for t = 1 are in the h-level surface M h n S 3. 
Let 8 m = min { 6, 6') and consider the continuous one-parameter family of annular regions, 

A( t )  = T~a,(h( t ) ) \T3(h(t ) ) ,  1 - 8 m < t < 1 -4- 8 m. ( 6 , 9 )  

It is easy to verify that for the above values of t, TJ(h(t)) and T2,(h(t)) are in the same isoenergetic 
manifold Mh(,) ¢3 S 3. We take the union to be our set T 3 

T 3 =  U A ( t ) .  (6.10) 
l 

Theorem 6.2. For  each fixed value of G, the Hamiltonian (2.6) admits a bounded invariant connected set 
in the neighborhood of 0 3. Moreover this set is open in R 4 

Proof. From the construction of T 3 it is clear that the union is an invariant connected set since the 
annular regions A(t) are invariant. Each A(t) is contained in S 3 and therefore the union is bounded. The 
openness of T 3 follows from the same argument for the transversality of the continuous one-parameter 
family A(t)  to each h-level surface Mh( o, as in the proof of theorem 6.1. The sufficient condition for 
transversality is the isoenergetic nondegeneracy condition (6.4). [] 

Next we discuss the smooth dependence of the open invariant sets, T i, i = 1, 2, 3, on the parameter G. 
Since the C-level manifolds are continuously embedded in the 6-dimensional phase space of (A.1) as G 
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varies, and the positions of the singular manifolds /~i, vi, (.0i, i = 1, 2, within the C-level sets change 
continuously with G, we deduce that the above invariant sets vary continuously with G. 

Consider the union (over values of G in a small open complex disk D) of the invariant sets Ti(G),  

i =  1,2,3, 

V~= [,.J 7 ' (G) .  (6.11) 
G~D 

Then V,, i = 1, 2, 3, are bounded, open, connected invariant subsets in R 6 for the eqs. (A.1). These sets are 
constructed near the corresponding singular intersection points O~(G), i = 1, 2, 3. 

The openness property of the sets V~ will be used to establish the persistence of certain vortex patterns 
under small perturbations. In other words the topological property of openness is equivalent to the 
physical property of being capable of observation. 

7. Generalizations and conclusions 

In the first part of this section we discuss the physical consequences of the mathematical results in this 
paper. Generalizations of our procedure to other classes of Hamiltonians which admit complex singulari- 
ties are outlined in the second part. 

We recall the physical meaning of the singular manifolds #i, vi, ¢0i, i = 1, 2, for the Hamiltonian (2.6) 
from section 3. Also recall the definitions of a vortex pair, vortex couple and a vortex triplet from the same 
section. 

Theorem 6.1 implies that if three of the four vortex rows are clustered together and in addition, two such 
rows of similar circulation are sufficiently near each other, then this configuration is preserved for all time. 
In terms of the above definitions, this vortex configuration is a vortex pair within a vortex triplet. The 
remarks concerning the smooth dependence on the parameter G of the invariant sets T,, i = 1, 2, 3, implies 
moreover that given any such vortex configuration, sufficiently small perturbations from it will evolve into 
vortex states similar to the original configuration. 

The above statement on the persistence of the vortex pair within a vortex triplet configuration holds 
only for perturbations in the 6-dimensional phase space of the equations for four vortex rows (A.1). Such 
configurations are special solutions of the vortex lattices (see fig. 1), namely spatially periodic solutions 
with the shortest wavelength. Since the solution space of the vortex lattices are infinite dimensional and 
consists of periodic signals of all wavelengths, we do not claim that the special configuration discussed 
above will persist under arbitrary small perturbations of the vortex lattices. 

Theorem 6.2 implies an analogue statement for the vortex configuration consisting of two distinct vortex 
pairs. If the separations between the vortex rows within each pair are sufficiently small compared to the 
distance between the two vortex pairs, then the configuration will be preserved for all time. Moreover the 
smooth dependence on the parameter G implies that sufficiently small perturbations (within the phase 
space of (A.1)) of this configuration evolve into vortex states with similar combinatorial configuration. 

In addition, theorems 4.5, 4.6 and 5.1 imply that a substantial fraction (of positive Lebesgue measure in 
R 6) of vortex states with one of the above special configurations evolve in a quasi-periodic manner. They 
represent two-frequencies oscillations of vortex triples and vortex pairs. The comparison of these 
theoretical results with the experimental observations of vortex merging in the wake of an oscillating 
cylinder as reported in Williamson and Roshko [22] and Couder [23], is given in Lim and Sirovich [14]. In 
the above paper we also report numerical studies of eqs. (A.1) which indicated the presence of 
quasi-periodic motions in vortex lattices and have guided the investigations in the present paper. 
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7.1. Generalizations 

Now, we wish to indicate briefly some applications of the method illustrated in this paper to more 
general situations. An immediate generalization is to consider arbitrary N-periodic motions in vortex 
lattices by studying the singular manifolds of eqs. (2.2) for N > 2. Other applications arise in problems of 
N oscillators in a ring which interact through potentials besides the logarithm function. 

In general, the singular hypersurfaces of the Hamiltonians are not embedded submanifolds in phase 
space. For our method to work, the singular surfaces must intersect locally like submanifolds. Other 
necessary and sufficient conditions for the method of singular manifolds will be discussed in another 
paper. 

We close with the remark that the theoretically significant example (2.6) analyzed in this paper can be 
discussed within the abstract framework in Marsden and Weinstein [24]; but we choose to use the more 
familiar language in this paper in order to highlight the simple geometrical ideas of our method. 
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Appendix 

Consider the case N = 2 for eqs. (2.2), 

--- - cot ~ 7 ( Z k -  Zj), 
j = l  

k = 1,2, 3,4. (A.0) 

Writing in terms of the differences ( Z  1 - 

equation for (Z  1 - -  Z 2 )  is given explicitly) 

d(Z1 - - - ~ - ~ )  F 
dt  - 4/i c°t~ [(Z1-Z2)+(Z2-Z3)+(Z3-Z4)] 

F ~ F ~r 
+ 4-~ c o t - ~ [ ( Z  1 -  Z 3)] - ~ cot  ~ ] [ ( Z  1 -  Z 2) q- ( Z  2 -  Z 3)] 

F 
4li cot 21 [(Z2 - Z3) + (z3 - z 4 ) ] '  

d(Z2 - - ~ )  
dt  

d(Z3 ---- -~4)  , . ° . 
dt  

Z 2 )  , ( Z  2 - Z3)  and (Z 3 - Z 4 )  , eqs. (A.0) become (where only the 

(A.1) 

C = ( Z  1 - Z2 )  -t- ( Z  3 - Z4 )  ( A , 2 )  

The equations which are not given explicitly can be obtained directly from (A.0) and are left to the reader. 
It can be verified directly from (A.1), which governs the interaction of four vortex rows, that the 

complex function 
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is an invariant. We consider the reduced flow of (A.1) on the level sets of C, that is we eliminate the 
difference ( Z  3 - Z4) with the help of (A.2). 

Following Kochin [13], we give the reduction of (A.1) in terms of the normalized perturbations which 

are given by 

21 
Z k = V t + Z k o + ' - ~ P k ,  k = 1 , 2 , 3 , 4 ,  (A.3) 

where Zko gives the equilibrium configuration (see fig. 1) and V is the rigid translation velocity of the 
equilibrium. 

Each value of the invariant C specifies a particular equilibrium vortex trail, i.e. 

C = ( Z , o -  Z2o) + (Z30 - Z,o) 

= 2(b + ih) ,  (A.4) 

where b is the stagger and h is the separation between the two vortex rows in equilibrium (cf. fig. 1). 
In terms of the normalized differences 

ct = 2(02 - p , ) ,  fl = ( P 2 -  P3), 

the reduced flow of (A.1) on the C-level manifolds is given by 

[ 1 ] 
d ~ ' = - s i n / ?  c o s a + c o s f l  c o s f l + c o s G  ' 

d/3 - s i n a [  1 1 ] 
d r  = cosc t+cos f l  c o s f l + c o s G  " 

The complex parameter G given by 

G=-~C 

specifies the particular C-level manifold. Time in eqs. (A.6) has been scaled in the following way: 

= F, n t / 2 l  2. 

(A.5) 

(A.6) 

(A.7) 

(A.8) 
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