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Let X be a smooth projective curve over a finite fietd. The main result is that the 

odd-dimensional K-theory of the extension of X to the algebraic closure is the sum of two 

copies of the K-theory of the field. Two plausible conjectures are advanced which would suffice 

to compute the K-theory of X itself. These provisional computations are then related to the 

L-functions of X. 

Introduction 

Let X be a smooth projective curve over a finite field F. Let J denote the 
Jacobian variety of X. Write F for the algebraic closure of F and X = X x F F. The 
main result of this paper is 

Theorem 1. Zfn 20, then Z&+,(x)= K,,+,(F)@KK,,+,(F). 

The theorem is proved in the first section. The techniques used are a shameless 
exploitation of the work of Quillen, Soule, and Suslin. Quillen’s results on higher 
K-theory [9] and finite fields [S] form a solid and indispensible foundation. Soule’s 
study [ll] of the K-theory of varieties over finite fields and Suslin’s study [12] of 
the torsion in higher K-theory raise on this foundation an imposing edifice, from 
which vantage point the way to Theorem 1 can be clearly seen. 

The remainder of the paper is built on a more conjectural foundation. The 
computation of the K-theory of X is reduced to certain properties of function 
fields. 

Conjecture A. Let Y be a geometrically integral variety over a field k. Let 
G = Gal(k/k). Then 

(A#( Y)) IK,(k))G = Ki(k( Y)) /K,(k) . 

Conjecture B. The K-theoretic product yields an isomorphism 

F(x)* 63 K2n-,(F)+ K&X)) . 
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Conjecture A was known ‘classically’ for i = 0, 1 and has been proven for i = 2 

by Colliot-Thelene [2] and Suslin [13]. 
Conjecture B was proven for IZ = 1 by Tate [14] and generalized by Suslin [13]. 

Furthermore, it will be seen that Conjecture B is equivalent to an isomorphism 

&(X) -Tor(J(F), K,,_,(F)). 

The main consequence of these conjectures is 

Theorem 2. If both Conjectures A and B hold, then 

W &n+lW)= G+,tWK,+,U% 
(ii) K,,(X) =Tor(J(F), K2n_l(F))C . 

Theorem 1 and Theorem 2(i) will be proven in the first section of the paper. 
Theorem Z(ii) will be proven in the second section. The second section concludes 
with a study of the relationship between the K-theory of X and its ~-function. 
The groups computed by Theorem 2 have the orders predicted by the Quillen- 
Lichtenbaum conjectures [6, lo]. 

Notation. Let A be an abelian group, IZ a positive integer, I a prime number. Write 
- .A = n-torsion subgroup, 

- A,,, = subgroup of all torsion elements, 
- A(f) = Z-primary torsion subgroup. 

1. Odd-dimensional R-groups 

Let X be a smooth projective geometrically integral curve over a field F. 
Quillen [9] has constructed an exact localization sequence 

where F(X) is the function field of X and, for each closed point x, F(x) is its 
residue field. 

Let Y& denote the Zariski sheaf on X associated to the presheaf U-+ K,(U). 
Then Quillen f9] has also constructed an acyclic resolution 

04 ~+r),K,(F(X))+~ i,K,_,(F(x))--,O. 

Consequently, the localization sequence can be decomposed into two different 
flavors of shorter exact sequences: 
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(An) o-+ qx, Yc,)+ K,(F(X))~UK,_,(F(x))~H’(X, Yc,)+O , 

(B,) o+ H’(X, ?c,+,)+ K,(X)+ I-(X, X,)+-O. 

For the remainder of this section, let F be a finite field with algebraic closure F. 

Write X for the curve X X spec F Spec F obtained by base extension. 

As a consequence of the work of Quillen and SoulC, sequences (A .) and (B,) 

simplify considerably. There is, however, a difference depending on whether y1 is 

odd or even. Let n Z- 1. Quillen’s proof [8] that K*,,(F) = 0 implies 

(A,,+,) T(X, %n+r) = Kzn+,(F(X)) 

Now Soul6 [ll, Proposition 31 has shown that H’(X, YC,,,) = K,,(F). Combined 

with (Azn+,), this yields 

(&?I+,) O+ K,,+,(F)+ Kzn+l(X)+ Kzn+r(F(X))+O . 
Using Soule’s result in the case of the even-dimensional K-groups, one has 

(B,“) K2n (X) = r(X, %,) . 

Therefore 

(A,,) O+ Kzn(X)+ Kzn(F(X))+U Kzn-r(F(x))+ Kzn-l(F)+0 . 
By passing to the direct limit over finite extensions of F, one obtains the same 

sequences for X over F. For the sake of completeness, note also that 

K,(X) = Z G3 Pit(X) , 

K,(X)= F*@F*. 

Lemma 1.1. Let X be a curve over either afinitefield or its algebraic closure. Let E 

be the function jield of X. If n 2 2, then K,,(X) and K,(E) are torsion groups. 

Proof. Harder [5] showed that K,(X) is finite for X defined over a finite field and 

II 2 1. The result follows for X over the algebraic closure by passage to the direct 

limit. Finally, the result follows for function fields from sequences (Azn) and 

(&,.I). 0 

Proposition 1.2. Let X be a smooth projective curve over an algebraically closed 

field L. Let E = L(X) be the algebraic closure of its function field. Then there is an 

injection 

Proof. Write E = lim A where A 3 L(X) is a finite algebraic extension field. Since 

the exact sequencz (A,,) and (B,) are stable under base change and K-theory 
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commutes with direct limits, it suffices to show that 

For K-theory with any finite coefficients, Suslin [12] has constructed specialization 
maps 

iu,(X,; Z/r)-+ E;,(X,; Z/r) 

which split off the K-theory of X,. In particular, 

Since the sequences (B,) split compatibly with base change [ll], the result 
follows, 0 

Theorem 1.3. Let X be a smooth projective curve over a finite field F. Then 

G) Gn+lG-Y) = G+@)@ h+&% 
(3 &,+,(RX)) = fGn+l(~~. 

Proof. The two parts are equivalent by sequence (B*,+,). Write E for the 
algebraic closure of the function field F(X). There is a commutative diagram 

&+1(F) A K*,+lmN --=-+ nx, 9 AL + 1) 

, ! base 
change 

K,,+,(E) Y WYE~ ~Czn+*> 

where the isomorphism comes from (A 2n+ I >. 

By Suslin [12], the composite @r is an isomorphism on torsion. Since &,+1(F) 
is all torsion, cy is an injection. By Proposition 1.2, the composite $ is also an 
injection on torsion. When it 2 1, Lemma 1.1 shows that all of K,,Z+,(E) is 
torsion. So, /? is an injection. Finally, since &Y is also surjective on torsion, LY 
must be surjective on torsion and hence surjective. Since the case y1= 0 has been 
noted earlier, the theorem is proved. 0 

Corollary 1.4. Let A be a smooth @fine cwve over a finite fieZd F. If n 2 1, then 

Proof. Let X be a smooth completion. The corollary follows from the localization 
sequence 
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and the fact that the norm maps are surjections 

Corollary 1.5. Assume Conjecture A holds when i = 2n + 1, Y = X is a curve, and 
k = F is a finite field. Then 

Proof. Using exact sequence (&+,), one sees that the corollary is equivalent to 

showing that there is an isomorphism K2,,+ ,(F(X)) = K,, + 1 (F). By Theorem 

1.3(ii), this isomorphism holds over E. The conjecture then implies that it also 

holds over F. II 

Remark. (i) Conjecture A is trivially true when i = 0, since both sides are zero. If 

i = 1, the conjecture follows from K,(F) = F* and Hilbert’s Theorem 90. The 

conjecture has been proven for i = 2 by Colliot-Theline [2] under mild hypoth- 

eses and in general by Suslin [13]. Their proofs rely on the Merkurjev and Suslin 

[7] version of Hilbert’s Theorem 90 for K2. Conjecture A should, therefore, be 

related to a generalization of Hilbert’s Theorem 90 to higher K-theory. 

(ii) The conjecture must be made in the context of a quotient of K-groups. In 

general, the map K,(F)+K,,(E) ’ is not an isomorphism. For example, take 

n = 2, F = Q, E = O(i). Then (-1, -l} is a nontrivial element of the kernel. 

(iii) Corollary 1.5 would also follow if the conjecture were only known for the 

torsion subgroup of K,. It is likely that it would suffice equally well to prove the 

conjecture for K-theory with finite coefficients. 

2. Even dimensional K-groups 

In this section, we study the even-dimensional K-groups of a curve X over a 

finite field. First, Conjecture B will be used to compute the K-theory of X. Then 

Conjecture A will be used to descend to X. Finally, the orders of these K-groups 

will be compared with special values of the L-functions of X. Throughout the 

section, write Y = X and k = F. 

Proposition 2.1. Assume Conjecture B holds. Then 

G(Y) =Tor(W7 &,A’4) . 
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Proof. To use the multiplicative structure of K-theory, it is necessary to study the 

effect on 

(Al) O-+ k*--, k(Y)*-+UZ+Pic(Y)-+O 

of tensoring with Kzn_ ,(k). There is also an exact sequence 

(*) O+J(k)+Pic(Y)+Z+O 

where J is the Jacobian variety of Y. All the groups k* , J(k), and K,,-,(k) are 

divisible torsion groups. Therefore tensoring ( *) with KzEpl(k) yields the pair of 

isomorphisms 

Pi@“)@ K2nd4 = &n-l(k) , 

Tor(J(k), K2,_l(k)) =Tor(Pic(Y), K2,_l(k)). 

Next, introduce the group D(Y) = k(Y)* lk* of principal divisors on Y. Then 

k(Y)* 63 &n-l(k) = D(Y)@ K,,_,(k). 

Finally, tensoring the short exact sequence 

O+D(Y)-+UZ+Pic(Y)-+O 

with K2n_1 (k) and using the above isomorphisms, one obtains a four-term exact 

sequence which can be compared with (A,,): 

O+Tor(J(k), K,,_,(k))+ k(Y)*~K,,_,(k)~UK,,~,(k) -Kzn-l(k)+0 

I 
o+ G(Y) 

m I /I II 
‘Gn(k(Y))- kn-dk(y))-, &-l(k)-,0 

The proposition follows. 0 

Remarks. (i) When at = 1, Tate [14] has proven Conjecture B. Many of the 

consequences to be drawn from this conjecture are based on his arguments in 

t141. 
(ii) Since Quillen [8] has shown that K2,_l(k)(l) = Q,lZ,(n), one might look 

for a version of this conjecture computing torsion over any algebraically closed 

field k. Suslin [13] has proven such a generalization of Tate’s result when y1 = 1. 

Theorem 2.2. If both Conjectures A and B hold, then 

&(X) = Tor(J(F), K2n-I(F))G . 
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Proof. Using Proposition 2.1, it suffices to show that &,,(X) = K*,,(X)‘. Since 

K,,F = K,,F = 0, it follows from Conjecture A that K,,(F(X)) = 

H”(G, K,,@(X))). 
Write C = K,, (F(X)) IKzn(X). There are exact sequences 

and 

O-+ H”(G, K7JX))+ K,,(F(X))-, H”(G, C)+ H’(G, K2,, (x))+ . . . 

O+ H”(G, C)-u Kzn_IF(x)-, K2n_1F+0 
x 

obtained by taking the Galois cohomology of (Azn) over F. Then the result 

follows by comparing these sequences with (A,,) over F. 0 

In order to get a more complete description of K2,,(X), it is useful to keep track 

of the action of G = Gal(FIF). Recall [3, 6, 11, 141 the definitions of the standard 

I-adic Galois modules 

T, = @ J(F) ) 

v, = T[ Br, Q/Z, = 15 J(F) . 

Z,(l) = @ /L&F) ) 

Z,(n) = Z,( 1) @ . . . @ Z,( 1) (n copies) . 

For any I-adic Galois module M, let M(n) = M 64 Z,(n). Also, write IV, = Ll!,/Z, so 

that 

W,(l) = Q,/&(l) = F*(l). 

Lemma 2.3. Tor(J(F), Kznml(F)) {I} = y(n). 

Proof. Quillen’s computation [S] of the K-theory of finite fields says that 

K2n-,(F){I} = W,(n). S’ mce Tor(J(F), IV,) = V,, the result follows. 0 

Proposition 2.4. Assume both Conjectures A and B hold. Let X be a smooth 
projective curve over a finite field F with q = p’ elements. Let I# p be prime. Let f 
denote the Frobenius endomorphism of T/. Then 

Kzn(XH4 = T,/(l -fq”)T,. 

Proof. There is a commutative diagram 



86 K. R. Coombes 

By Deligne’s proof [3] of the Weil conjectures, the middle vertical arrow is an 
isomorphism. So 

T,/(l-fq”)T,=Ker(l-fq”:V,--->V,) 
= Ker( 1 - Frob : K(n) + q(n)) 

= H’(G, V,(n)) = H’(G, Tor(J, K2n-1)) 

= H’(G, K,,(%)(I)) 

= rc,,(X){9 . rl 

Let 4 be the action of the geometric Frobenius [3] on H’(J?, CV,). The 
L-function of X is defined as 

where 
L(X, s) = P(X, q-y 

P(X, t) = det( 1 - #)t) , 

For any pair of rational numbers a, b, write a - b to mean alb is a power of p. 

Corollary 2.5. Assume both Conjectures A and B hold. Then L(X, n + 1) - 

#G.“(X). 

Proof. By the functional equation, L(X, II + 1) - L(X, -n). It is a standard fact 
that 

P(X, t) = det( 1 - ftl T[) . 

So, L(X, --a) = det( 1 - fq”\ T!)_ The I-part of the L-function is therefore given by 
#T,l(l- q”f) = #z&(X)(l). q 

Remark. This is precisely the relation between K-theory and L-functions predic- 
ted by the Quillen-Lichtenbaum conjectures [6, lo]. 
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