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Abstract: An observation from a multivariate distribution may be subject to perturbation in a 
known subset of the variables. A likelihood ratio statistic is developed to test whether or not there 
has been an addition of a random quantity in a prespecified direction to an observation from a 
multivariate normal distribution. When the variance of this addition is unknown, a secondarily 
Bayes approach is used to eliminate this variance which acts as a nuisance parameter. The testing 
procedure is based on a distribution-free tolerance interval. 
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1. Introduction 

Quality control of naturally occurring products, such as fruit juices, requires 
that a single multivariate observation be classified as belonging, or not belonging, 
to a population whose parameters are estimated from previously collected sam- 
ples of unadulterated juice. Since a single observation is being tested, the central 
limit theorem is not applicable and a likelihood ratio test procedure based on the 
assumption of multivariate normality may be very sensitive to the nonnormal 
distribution that is usually observed in these data. 

A unique feature of the quality control of fruit juices is that the adulteration 
may be deliberate in order to reduce costs. The detection of adulterated juice has 
been a concern of both importing and exporting countries for many years. The 
major concern has been with economic fraud; however, in 1985, there were 
reported adulterations of wines that were hazardous to the consumer. Based on 
economic considerations, it is possible to predict common methods of adultera- 
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tion (Vandercook [15]); however, because those altering the juice choose not only 
the method of adulteration but also the amount, the amount of adulteration may 
be treated as a random variable. 

Since adulteration is easily proven when a constituent found in the test sample 
does not occur naturally in the juice, it is more common to adulterate using only 
naturally occurring constituents. A method of adulteration is to dilute the juice 
with water and then add back constituents that can be cheaply replaced, so that 
they are restored to the amounts originally in the juice. Special consideration is 
given to constituents that affect the taste as perceived by the consumer. 

Statistical methods currently used to test for adulteration of juice do not 
consider both a multivariate model for the data and the randomness of the 
amount of adulteration. The empirical alpha-levels of these tests may differ 
greatly from the nominal levels and result in too many rejections of pure juice or 
in a severe loss of power (Brown, Cohen and Volman [5], Brown and Cohen [3]). 

The specific problem of testing whether a random quantity with prespecified 
direction has been added to (or subtracted from) one or more of the components 
of a single multivariate observation is not addressed directly in the statistical 
literature. In the two most closely related areas, outlier detection and industrial 
multivariate quality control, a number of statistical techniques based on principal 
components have been proposed (Rao [13], Hawkins [7], Jackson and Morris [8], 
Jackson and Mudholkar [9]). Tests based on statistics involving projections on the 
principal components with the smallest variance will not be most powerful in a 
prespecified direction. The positive simplex method of Aitchinson [l] was devel- 
oped for compositional data, as could exist in this problem, but is not appropriate 
for testing whether a single observation is an outlier; also, in practice. only a 
subset of constituents are assayed. Univariate outlier techniques can be adapted, 
through the use of a data transformation, to incorporate the specified direction of 
the addition. However, the information contained in the unaltered components is 
not used. In addition, all of these techniques model the shift in location as 
constant rather than random. 

Formally, the problem can be restated as: Let yi,. . . , y,, be n obsemations 
from a p-variate distribution and let x be an additional p-variate observation. 
The null hypothesis is that x is from the same distribution as yi,. . . , _rn_ The 
alternate hypothesis is that x is from a distribution whose population mean has 
moved a random amount in a prespecified direction from the original distribu- 
tion. 

To develop a statistic to test the above hypothesis, we first assume multivariate 
normality for the underlying population and develop a likelihood ratio statistic 
(Section 2). The statistic is overparametrized, due to the assumption that the 
population mean has shifted a random amount. Therefore, a secondarily Bayes 
solution (Brown [2]) is used to eliminate the variance of the random shift (Section 
3). Lastly, to reduce the dependence on normality, a tolerance interval is obtained 
for the test statistic (Section 4). Since a tolerance interval is distribution free, the 
validity of the test procedure depends on the rank order of the test statistic 
relative to a set of test statistics computed from independent samples. Use of a 
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tolerance interval requires that a large number of samples of unadulterated juices 
be available; data bases of several hundred samples are currently available 
(Brown, Katz and Cohen [6]). An example using fruit juice data is presented in 
Section 5. 

2. Derivation of a likelihood ratio statistic 

Let the p-variate vector x represent an observation from the multivariate 
normal distribution. Let t be the number of variables being modified where each 
is independently changed, or the number of independent prespecified directions 
which represent linear relationships imposed by forms of the adulteration or 
change. When t = p, the problem becomes that of discriminating between two 
populations based on a single observation. When r <p, it is possible to rotate the 
parameter space such that the prespecified directions form the first r axes of the 
space. Therefore, without loss of generality, the changes are assumed to occur in 
the first r components. The null (H,) and alternate (HA) hypotheses, of no 
change and of change, respectively, in the first r components only, can be 
expressed as 

H,: X-N,(p, 2) and HA: X-N,(p+S, 2+X*) 

where N,(c(, I) represents a p-variate normal distribution with mean p and 
covariance matrix 2, 

8’ = (8, ,...) s,, 0 ,...) 0) 

and Z* is a variance-covariance matrix with zeros for all cells corresponding to 
null entries in S. The likelihood ratio statistic, when all the parameters except Z* 
are estimated, is 

IfI 1 1 
-l/Z 

A= 
l&2+2*1 exp( -+(( x + /q’P( x - I;) 

0) 
Taking natural logarithms, multiplying by -2 and ignoring the term that does 
not depend on x yields 

L=(x-fi)'(P-(e+~*)-1)(X-$)+28'(e+~*)-1(x-p) 

-8'(i9+~*)-*s (2) 

Since there is only one observation, both 6 and 8* cannot both be estimated. 
Therefore, it is necessary to treat Z* as a nuisance parameter which must be 
eliminated from the likelihood. Of particular interest for detecting adulterated 
juice is the special case of a single alteration (r = 1). 
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3. A secondarily Bayes approach 

We consider the case where there is only one prespecified direction (i.e., one 
component is altered or there is a single linear relationship governing the 
1 < t <p components being changed). Without loss of generality, the random 
shift is assumed to occur in the first component since an orthogonal rotation can 
be performed such that xi corresponds to the prespecified direction. The parame- 
ters 6 and E* can now be expressed as 8’ = (6, 0,. . . , 0), 

0 0.1.0 

Substituting these quantities into (2) yields 

1 + a^%dd 

where 

e*. = the first column of 2-l 

and 

u Aii = the element in the ith row and jth column of 2-l. 

The maximum likelihood estimates, fi, 8, and 2, cannot all be obtained from a 
single observation. In many applied situations it is reasonable to assume that 
there is a data base of unaltered observations, J+, . . ._, yN, whose mean J is an 
estimate of ~1 and 
6 is estimated by 

8=x, -j$ 

where xi and j+ 
direction of S is 

whose variance-covariance matrix 2 is an estimate of 2. Then, 

are the first elements of x and j, respectively. Although the 
known, the sign may not be; the case of a one-sided test is 

discussed in Section 4. In the expression for, L (3), a,, is not estimable from a 
Single observation. We choose t0 reexpress L as a function Of the ratio c&,/cii t0 
which a prior distribution can be applied. 

If 

$=DRD 

where 

(4) 

D = the p X p diagonal matrix of standard deviations of y 
and 
R = The p X p sample correlation matrix for y, then the likelihood ratio 
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statistic L can be expressed in terms of the ratio ~,,,/a,, as 

L= ((X-y)‘D-‘R’j2 ((x* -Y*)‘D-‘R*.)2 

rl* r”(l + r”bdJJ) 
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(5) 

where 
x * =x with the first element set to zero, 
y* =y with th e irs e ement set to zero, f t 1 
R’. = the first column of R-l, 

and 
Y” = the first element of R-'. 

(The proof of (5) is given in Katz [lo]). 
A secondarily Bayes method eliminates nuisance (or secondary) parameters by 

integrating over a prior distribution for these parameters (Brown [2]). In the 
likelihood ratio statistic L, the secondary parameter of interest is Y = ~~~/a,,. 
Assuming a prior distribution P(V) for the ratio v and computing the posterior 
distribution yields an estimator of the likelihood ratio statistic L* that is not a 
function of ~,,/a,, where 

L* = 
/ 

m ((X -y)/D-tJq2 ((x* -jj*)PD-lRr.)* 
- 

11 P(V) dv 
0 r r”(1 + Y%) 

= ((x-j)'D-*R')* ((x* -Y*)‘D-‘R’.)~ CQ p(y) 

t-l* r’l / 0 1 + rtlv 
dv. (6) 

Functional forms of the prior distribution may be chosen that reflect the 
known information about the ratio and whose integration yields a closed form 
solution. 

Using a null prior 

When there is no information known 
distribution is that the logarithm of the 
uniform. For the ratio of two variances v 
prior of the form 

PW$. 

about a parameter, the null prior 
variance is uniform; i.e., ln(u2) is 
this assumption yields an improper 

(7) 

Since the integral in (6) in not finite for this prior, the statistic L* must be 
expressed using a limit: 

L* = ((x -j)'D-'R1.)2 

r’l 

((x* -j*)‘D-1R1.)2 lim /r”, v(1 :r’lv) dv 

rl’ 0-m 
J 

a Ldv 
l/o v 

(8) 
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After integrating and taking the limit, the likelihood ratio statistic L* reduces to 

L* = ((x-y)‘D-‘R’~)2 ((x* -y*)2r’R’)2 
r 11 2r” 

Equation 9 can be expressed in scalar notation as 

(9) 

L’=;tr 
i 
2 #‘(xi-J.)/d. ’ l 

I I 

i=l i i 

- --p i r’i(xi-J.)/d ’ I i’ 
i-2 i 

This statistic differs from the square of the standardized residual from the 
multiple regression of yi on the standardized variables by a factor of one half in 
the last term. 

Using a conjugate prior 

When prior information about the ratio is available, an appropriate conjugate 
prior distribution for the ratio of two variances may be based on the F-distribu- 
tion; i.e., 

v - JXI,” (10) 

where K is chosen to reflect prior knowledge about the value of the ratio and m 
and n to indicate the confidence one has in the prior. 

In this case the portion of the statistic that depends on the choice of the prior 
is 

m ( 1 
42 

j ’ = 

KB 7,; ( 1 

/,I 1 +$, ( v/K)““‘~‘-‘( 1 + z)-(m+n)‘2 dv. 01) 

This can be simplified using the transformation: 

p-1 

j= ’ /“” ,;II(;,;; dz 

B(P, 4) 1 

where 

r”Kn cmv + Kn CC- 
m ’ 

z= 
mu-i-J& ’ 

Equation (12) is an integral of a polynomial in z that has terms ranging from 
z(“+~-~) to z-l. Therefore the integration can be done in closed form as a sum of 
integrals. Results of the evaluation of (12) for combinations of m, n, and K over 
a range of R2 values indicate the choice of m and n is relatively unimportant 
when compared to the choice of K in determining the weight given to the second 
term of the statistic (Katz [lo]). 
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4. Estimation of the critical value 

The procedure to find the critical value for L* is designed to be used with any 
historical data base. The initial step is to estimate p and 2 by j? and 2, 
respectively, from the data. The next step is to construct a sample distribution for 
L*. This :an be achieved by deleting each observation y, in turn and calculating 
jCi, and ZCi) from the remaining N-l observtions. Then-the statistic L,? canpe 
computed for each observation by replacing X, j and 2 with yi, jCi,, and .Zti) 
respectively in the calculation of L*. This process results in a collection of n 
correlated Lt ‘s. However, this correlation is of the order l/N since it is the 
result of the correlation between yi and j. For the large sample sizes for which 
this procedure is designed, this correlation will be negligible. Therefore, the L,? ‘s 
can be used to provide a sample distribution for L*. 

The final step is to use the sample distribution to choose a critical value. Since 
the procedure deals with a sample distribution rather than the actual distribution, 
the probability that the likelihood ratio statistic is greater than some constant 
must be estimated. A tolerance interval is used to ensure that the a-level does not 
exceed the nominal a-level. The form of the distribution-free tolerance interval 
(Wilks [16]) is 

P(P{L*~LyH,}a+y (13) 

where L;i, is the jth order statistic of the sample distribution. The value of j is 
determined by choosing a y and an a; then the critical value, i.e. the critical rank, 
is obtained from the charts provided by Murphy [ll]. 

For example, if the historical data set has 500 observations and the values of (Y 
and y are chosen as 0.05 and 0.99 respectively, then j = 485, the ninety-seventh 
percentile of the sample dis$bution. Any new observation, X, can be tested by 
calculating L using j and 2 and then comparing it to L&,,. If it is greater than 
L,&, the conclusion is that x is not drawn from the same distribution as the 
historical data. 

The above procedure is for a two-sided alternative hypothesis that does not 
specify the sign of 6. When a one-sided alternative hypothesis is of interest, this 
procedure is modified by dividing the historical data set into two groups based on 
the sign of (xi -jr). All observations are still used to calculate 2 and p. 
However, for the group that is in the opposite direction from the alternate 
hypothesis, the value of the likelihood ratio statistic is set to the minimum L* 
calculated for the other group. The statistic is calculated in the usual manner for 
the observations in the other group. All values of L* are then ranked (including 
those set to the minimum). The critical value chosen in this manner for the 
one-sided test will be less than or equal to the critical value obtained for the 
two-sided test, even though the value of i remains unchanged. A modification 
must also be made to the decision rule. For example, if the alternate hypothesis 
specifies a positive addition, then H,, would only be rejected for a new observa- 
tion x if (x, -&) > 0 and L* > Lt,. 

The derivation of the likelihood ratio statistic is based on the multivariate 
normal distribution. However, since a distribution-free tolerance interval is used 
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to determine the critical value, the only necessary assumption about the yi’s is 
that they are identically distributed and the procedure remains valid even when 
normality is lacking, although the power of the test may be affected. 

5. Example 

The usefulness of this statistic in a real situation was evaluated using an 
unpublished data set of 572 samples of pure Israeli orange juice collected by 
government inspectors during eight growing seasons (each growing season runs 
from the fall of one year to the early summer of the next). Each season is treated, 
in turn, as a set of new observations while the remaining seven growing seasons 
are used as the historical data set, producing sample sizes from 480 to 520. That 
is, observations from a ‘new’ season are compared against data collected during 
all the other growing seasons; this reflects the actual quality control situation 
where data from pure samples in the current season are as yet unavailable when 
samples of juice are tested for adulteration. Previous analyses of these data have 
shown that the within-year variance is generally two to three times larger than the 
between-year variance (Brown & Cohen [4]). Six components from the data set 
are used in this analysis: ash, potassium, sodium, chloride, acidity and brix. To 
simulate the case of a random addition, the ash and potassium components were 
multiplied by a random dilution factor generated from a Gaussian distribution 
with mean 0.8 and standard deviation 0.04. This is equivalent to adding a random 
amount of solution containing all components except ash and potassium with an 
expected value of 20% of the total volume of the juice and a standard deviation of 
4%. The likelihood ratio method presented in this paper is implemented using a 
null prior and a 99% tolerance interval. 

The results obtained are compared to the results obtained with two methods 
previously suggested in the fruit juice literature, a regression method (Rolle and 
Vandercook [14]), and a cl&square test (Lifshitz, Stepak and Brown [12]). 

In the regression method the dependent variable is that constituent whose 
regression produces the highest R* when regressed on the other constituents. 
Brown and Cohen [3] show that this method produces confidence limits for the 
residuals that are too narrow and, as a result, too many pure samples are rejected. 
In the comparison presented in this paper the dependent variable selected by this 
procedure was ash and the multiple R* was 0.675 for the entire data set. 

The &i-square test of Lifshitz et al. (1974) is equivalent to using Hotelling’s T2 
as a test for an outlier. All six components were used in the test. Due to the large 
number of observations in the estimate of 2, it is possible to approximate 
Hotelling’s T2 by a &i-square test. This test, as may be expected, is very sensitive 
to the assumption of multivariate normality. 

The estimated a-levels and powers for all three methods are presented in Table 
1. The likelihood ratio test is the most conservative and is the only method that 
does not have any estimates of the a-level that are significantly greater than the 
nominal a-level. In addition, the power estimates show that the likelihood ratio 
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Table 1 

Results of the analysis of the Israeli fruit juice data 

Season n Likelihood 

Ratio Method 
U-square 
Method 

Regression 
Method 

Estimated a-levels 

1976 74 0.041 (0.189) (0.230) 
1977 92 0.054 (0.293) (0.228) 
1978 52 0.019 0.077 0.050 
1979 84 0.024 0.048 0.000 
1980 66 0.000 0.045 0.000 
1981 52 0.115 (0.135) 0.058 
1982 75 0.000 0.040 0.000 
1983 77 0.000 0.039 0.026 

Estimated powers 

1976 74 0.324 (0.378) (0.203) 
1977 92 0.228 (0.457) (0.402) 

1978 52 0.250 0.212 0.154 
1979 84 0.131 0.083 0.012 
1980 66 0.379 0.212 0.030 

1981 52 0.346 (0.173) 0.019 
1982 75 0.467 0.267 0.120 
1983 77 0.403 0.429 0.104 

(.) = the estimated a-level is significantly greater than 0.05 using a one-sided z-test (a = 0.05). 

test is generally more powerful than the other two methods in the cases when the 
a-levels are appropriate. 

6. Summary and conclusions 

In this paper a statistical test is developed to detect a random alteration in a 
prespecified direction to a single multivariate observation. When the direction of 
the adulteration is not that of the first component xi of X, an orthogonal rotation 
can be performed so that x, conforms to this direction. When the prespecified 
direction involves t (> 1) variables, the orthogonal rotation will create t-l 

variables that are uncorrelated with xi after the rotation. These t-l variables do 
not affect the value of L* and therefore may be eliminated from the computa- 
tions (Katz [lo]). Hence, when t =p (i.e., all variables are included in the 
direction), the likelihood ratio statistic is equivalent to Student’s t. 

When t <p, a secondarily Bayes approach is used to obtain a likelihood ratio 
statistic that is not a function of udd/uli. This likelihood ratio statistic incorpo- 
rates information from all p components; thus, the entire variance-covariance 
matrix 2 and not just the variance of the adulteration 2* is included. In 
addition, L* is similar to the square of the standardized residual using standar- 
dized variables, differing only by a factor in the last term. 
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A distribution-free tolerance interval is used to obtain the order statistic that 
represents the critical value. Although multivariate normality is used to define the 
likelihood ratio statistic, the tolerance interval is distribution-free. Therefore, 
departures from normality will not affect the significance level of the procedure; 
however, power may be affected. The use of a tolerance interval requires large 
sample sizes. For example, no tolerance interval exists for (Y = 0.05 and y = 0.99 
when n < 90. Although in some situations this may seem like a large data set, 
historical data sets many times this size are commonly available for fruit juices, as 
well as in other areas, including medicine. 

If the magnitude of the adulteration is assumed to be constant, the likelihood 
ratio statistic reduces to the square of the standardized residual from the multiple 
regression of the standardized variables (Katz [lo]). If, in addition, the direction 
of the adulteration is unknown, the likelihood ratio statistic is equivalent to 
Hotelling’s T*. 

In many situations the direction of expected change is known before the data 
are collected. For example, the relative costs of the components in citrus fruit 
juice can be used to determine the most probable direction of adulteration 
(Vandercook [IS]). None of the techniques that are presently used in the quality 
control of fruit juice incorporate this information. (For a review of the present 
techniques see, for example, Brown and Cohen [3]). Eventually, techniques may 
be developed that also assume that the sampling and testing methods are known 
to the adulterators, thus altering their behavior. We have not considered this 
situation. 

The problem addressed in this paper differs from the issues addressed in 
related areas such as outlier identification. Consequently, the proposed technique 
has four main features that are not found together in methods designed for other 
purposes: (1) information from all of the variates, and not only the components 
that may have been altered, is utilized; (2) the shift in location is modeled as a 
random variable to allow for an increase in dispersion; (3) unlike omnibus tests to 
detect all adulterations, power is focused in a prespecified direction; and (4) as 
evidenced by the example, the assumption of multivariate normality is not 
critical. 
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