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Ahstrac-The paths of 15 pm diameter laser beams traversing goldfish eye lenses were photographed. 
Measurements of these photographs gave experimental data for the distance of the exit point of each ray 
from the lens axis as a function of the corresponding entrance distance. A number of mathematical models 
with distinct distributions of refractive index within the lens were analysed by tracing rays to simulate 
the experimental data. The only distributions for which the simulated and experimental data were in 
agreement have a refractive index N which varies continuously with distance r from the lens center in a 
manner consistent with that originally proposed by Matthiessen: N* = (I - br*. Estimates for the central 
(1.55-l .57) and surface (1.35-l .38) refractive indices of the goldfish eye lens are derived from the preferred 
model, but these differ from those previously given by Matthiessen for other species. The optical 
performance of the lens models is also compared by third-order analyses. 

Refractive index distribution Goldfish lens Lens models 

INTRODUCTION 

It is generally accepted that the refractive index 
in the lenses of the eyes of the higher animals 
varies from the lens center to the lens surface 
although the exact form of this variance is a 
matter of debate (Fagerholm et al., 1981; Fem- 
ald and Wright, 1983; Campbell and Sands, 
1984). Measurement of this index distribution is 
difficult and is generally based on destructive 
sampling. The refractive index of a sample may 
be either measured directly by interferometric 
techniques (Nakao et al., 1968), or indirectly by 
inference from measurements of the protein 
concentration within the sample (Philipson, 
1969). 

Non-destructive techniques for measuring the 
refractive index within the crystalline lens of 
necessity yield the index distribution indirectly. 
For example, Chu (1977), Anderssen and 
Campbell (1984), and Campbell (1984) describe 
method8 where the exit angles of thin laser 
beams are measured as a function of their 
entrance apertures. (The aperture of a ray or 
beam is the distance from the point of inter- 
section of the ray or beam with the lens to the 
axis of the lens.) The refractive index distribu- 
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tion is then derived via a mathematical process 
called an Abel integral inversion. This method 
assumes that the distribution has a certain 
mathematical form and yields numerical esti- 
mates of any parameters characterizing this 
form. It is not easy to adapt this technique to 
arbitrary distributions. 

In this paper we describe the results of ap- 
plying an alternative non-destructive technique 
to the measurement of the refractive index 
distribution within the lens of a goldfish eye. 
The paths of narrow laser beams traversing a 
meridional plane of the lens were photographed 
and the entrance and exit apertures of each ray 
were measured. A series of distinct mathe- 
matical models of the refractive index distribu- 
tion within the lens were postulated. Ray-trace 
analysis of these models then generated data 
which were compared with the experimental 
data. 

EXPERIMENTAL 

A lens was dissected from a goldfish eye and 
placed in a commercial 1 cm x 5 cm glass 
cuvette with four glass faces (designed for 
fluorescence spectroscopy) which had been filled 
with buffered saline solution at physiological 
ionic strength. The refractive index of this solu- 
tion was N a = 1.334. The top of the cuvette was 
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sealed with parafilm. The sealed cuvette was 
placed on its side on a fixed upright microscope 
stage (American Optical 110) such that the 
goldfish lens (called “the sample”) was in the 
center of the field of view. 

A well-defined ray of light from a 0.5 mW 
helium-neon laser was directed towards the 
sample perpendicularly to the optical axis of the 
microscope. Before incidence upon the sample 
the ray passed through a 2 mm focal length glass 
lens positioned so that the sample was at its 
focal point. This focusing lens reduced the laser 
beam’s diameter from about 1 mm to about 
15 pm while preserving its approximate col- 
limation as it passed through the sample. The 
height of the beam was adjusted so that it 
propagated in a plane parallel to the microscope 
stage and halfway between the near and far 
surfaces of the lens. Assuming the lens to be a 
sphere (see below), this plane is a meridional 
plane of the sample and will be referred to as 
“the meridional plane”. 

The sample was observed through the micro- 
scope fitted with a 4 x objective such that 
the meridional plane (in which the laser beam 
propagates) was in focus. Scattering of light in 
the sample and Rayleigh scattering in the buffer 
solution marked the apparent path of the beam 
through the goldfish lens. This was photo- 
graphed with a microscope mounted 35 mm 
camera. Although the apparant path was dis- 
torted by the bulk of the sample, the positions 
of entrance and exit points were observed with- 
out distortion. 

A total of 124 photographs were taken with 
randomly selected but closely spaced entrance 
apertures. These were obtained by adjusting the 
lens position transverse to the incident beam 
with the microscope stage translator. A typical 
photograph is shown in Fig. 1. Also shown are 
the aperatures y, and y, of the entrance and exit 
points of the ray. These are defined with respect 
to the optical axis of the goldfish lens parallel to 
the incident laser beams. The data were not all 
gathered from the same lens: as each lens 
suffered from surface cloudiness after about 
20 min in the buffer solution, the data are a 
combination of measurements taken on 9 sep- 
arate lenses from the same strain of fish, but 
their ages and sex were not recorded. The cause 
of surface cloudiness was not known, but there 
was no change in refractive properties over time. 

The photographs allowed us to determine 
that the goldfish lenses were spherical. The 
greatest departure from sphericity corresponded 
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Fig. 2. The dots (a) are the observed values of the exit 
aperture yr of thin laser beams traversing a goldfish lens 
plotted as a function of the entrance aperture y, of the beam, 
both normalized by dividing by the radius of the lens. The 
solid line (-) is the simulated data obtained by ray 
tracing a model spherical lens in which the refractive index 
at a distance r from the center of the lens is given by 
N(r)* = Nf + (Nf - N:) (r/R)* where R is the radius of the 
lens, N, = 1.36 is the refractive index at the surface of the 
lens, and NC = 1.555 is the refractive index at the center of 

the lens. 

to a 1% difference in polar and equatorial 
diameter consistent with observations of Sadler 
(1973). The mean diameter of the 9 lenses upon 
which measurements were based was 2.2 + 
0.2 mm. It was also assumed that the refractive 
index distribution within the lens was spherical 
and hence the orientation of the lens was unim- 
portant. The surface and central refractive indi- 
ces were not measured. 

The actual measurements of y, and yz from 
the photographs were made using a bubble 
chamber photograph scanner (most commonly 
used in high energy particle physics). This 
allowed us to digitize the locations of the entry 
and exit points of the beam, the location of one 
arbitrary point on the incident beam (to define 
its direction), and the location of an arbitrary 
point on the circumference of the goldfish lens 
(to define its centre). The digitized coordinates 
of these four points were then used to compute 
y, and y2. In order to correct for slight vari- 
ations in the diameters of the 9 lenses used, y, 
and y2 were expressed as a fraction of the radius 
of the lens. These normalized values of the 
observed y, and y, are plotted in Fig. 2. 



Fig. 1. Photograph of a laser beam traversing a goldfish lens. The refraction of the beam at each surface 
and the curvature of its path within the lens are clearly visible. The entrance and exit apertures y, and 

y, of the beam are indicated. 
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THEORETICAL METHODS 

Mathematical models of a unit-radius 
goldfish lens were constructed with various dis- 
tinct families of refractive index distribution in 
the lens characterized by two or more par- 
ameters. Each model was analyzed by assigning 
plausible values to each of its parameters, and 
then tracing meridional rays at various aper- 
tures Y1 and recording the corresponding exit 
aperture Y,. This gave a simulated set of data 
corresponding to the observed data of Fig. 2. 

The numerical values of the various par- 
ameters of each model were systematically 
adjusted and the model re-analyzed until the 
simulated relationship between Y, and Y, best 
agreed with the observed data in Fig. 2. The 
solid curve in Fig. 2 is the best fit obtained for 
any model examined: the simple spherical model 
described below. 

All ray tracing was performed numerically 
using the computer program Drishti written 
by one of us (Sands, 1984). Drishti is a program 
for analyzing symmetrical optical systems 
incorporating inhomogeneous media and had 
been used to conduct a systematic study of 
image formation by the rat eye (Campbell, 1988; 
Sands, 1988, 1984). 

ANALYSIS OF GOLDFISH LENSMODELS 

Guidelines for the choice of refractive index 
distributions 

The choice of the refractive index distribu- 
tions used in the lens models was guided by 
general observations from a consideration of the 
processes of refraction of light within a medium 
with a continuous refractive index, or at a 
surface separating media with distinct refractive 
indices. These observations are independent of 
any assumption of spherical symmetry and are: 

(a) If the refractive index within the lens is 
homogeneous, the graph of Yz as a function of 
Y, is continuous and concave downwards. 

(b) If the refractive index within the lens has 
a discontinuity, then so does the graph of Y2 as 
a function of Y, , and the bigger the discontinuity 
in refractive index, the bigger the discontinuity 
in y,. 

(c) If the refractive index within the lens is 
continuous but its gradient is discontinuous, 
then y, is a continuous function of y, but its 
slope is discontinuous, and the bigger the dis- 
continuity in gradient the bigger the discon- 
tinuity in slope. 

(d) If the refractive index distribution is both 
continuous and smooth, then the graph of Y2 as 
a function of y, is also continuous and smooth. 

Accordingly the observed data of Fig. 2 sup- 
port the assumption that the refractive index 
distribution within the goldfish lens is both 
continuous and smooth, or that any discon- 
tinuities in the refractive index or its gradient 
are either small or are confined to the extreme 
outer regions of the lens. 

Refractive index near the lens surface 

If the lens has a homogeneous outer shell it 
can be shown by applying Snell’s law and 
elementary geometry that the normalized exit 
and entrance apertures are related by 

y, = 2ny, J_ J_ 

+m*Y:- l)Y, (1) 

where n = N,/N, and N, is the refractive index of 
the shell and N, that of the medium in which the 
lens is immersed, provided 

Y I 2 O’JW, (2) 

where R is the lens radius and r, the inner radius 
of the shell. The condition (2) guarantees that 
the rays propagate only in the homogeneous 
shell. Equation (1) can be inverted to express N, 
in terms of N,, y, and y, 

N: = 2Nty:l (1 +Y,Y,) 

We used these results to explore the possibility 
that the lens has an homogeneous outer shell. 

For instance, if the ray with y, = 0.95, 
y2 = 0.78 (Fig. 2) passes through a homo- 
geneous shell, then equations (2) and (3) imply 
that N, = 1.4416, r, < 0.88R. This refractive in- 
dex is much higher than values reported else- 
where, e.g. 1.366 or 1.386 (Matthiessen, 1880). 
Now suppose the shell is so thin that only rays 
with y, close to 1 transverse it. Extrapolation 
of the observed data of Fig. 2 suggest 
0.9 < y2 < 0.95, and equations (2) and (3) give 
1.35 < N, < 1.37, 0.975R G rC < 0.987R. These 
indices are consistent with those of Matthiessen, 
and the homogeneous shell is indeed quite thin 
and can be ignored. 

A simple spherical inhomogeneous lens model 

The first lens model we analyzed had a 
spherical lens and a refractive index distribution 
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in which the surfaces of constant index are modifications to equation (4) close to the lens 
concentric spheres. The refractive index at a surface. Accordingly, we examined a spherical 
distance r from the lens centre is given by model with the polynomial index distribution 

N(r)’ = Nf + (Nf - Nz) (r/R)’ (4) 

where R is the lens radius, and N, and N, the 
surface and central refractive indices, re- 
spectively. This model was suggested by those of 
Campbell and Sands (1984) and Matthiessen 
(1880). Because of the normalization of the 
observed values of y, and y, to a lens of unit 
radius, we assumed R = 1. 

N(r)’ = Nf + (Ni - Nz) (r/R)2 + n4 (r /R)4 (6) 

where n4 is a new free parameter. We varied n4 
(with N, = 1.36, N, = 1.555) from -0.07 to 
0.0825, corresponding to lens surface indices in 
the range 1.334-1.39. However, ray tracing 
showed that the fit to the observed data did not 
differ significantly from that shown in Fig. 2 for 
the simple model, i.e. the case n4 = 0. 

The selection of values for the parameters N, 
and N, was helped by the existence of a simple 
expression for the slope y, of the functional 
relationship between y, and y, for paraxial rays 
(i.e. for small y,) and for the paraxial focal 
lengthy of the lens. If the lens is immersed in a 
medium of index N,, then 

Spheroidal inhomogeneous model 

We studied the importance of spherical sym- 
metry by considering a model in which the lens 
was a prolate spheroid with the optical axis as 
its axis of rotation, and in which the refractive 
index distribution was spheroidal (Sands, 1984) 
with surfaces of constant index having the same 
shape as the lens surface. For such distribution 
the refractive index at the point (x, y, z) is 

y, = 2N,N,/N,Z - 1 
(51 

f = R/U -Y,>. 
\-I 

These equations can be derived by solving the 
differential equations for rays in a spherically 
symmetric index distribution (e.g. Marchand, 
1978) and then taking the paraxial limit. The 
second of equation (5) is valid for any 
spherically symmetric lens model. 

When the parameters of the model were being 
estimated we used equation (5) to choose com- 
binations of N, and N, so that the values of y, 
for the simulated and observed data sets were 
in agreement (from Fig. 2 y, = 0.45-0.55, 
f z 1.82R - 2.22R). The free parameter was 
then varied in an attempt to obtain consistency 
between the two data sets for large apertures. 
For example, if N, = 1.36 and yP = 0.5, equation 
(5) gives a central index of N, = 1.555. 

This lens model was analyzed by ray tracing 
and the solid curve of Fig. 2 is a plot of the data 
obtained for this model. The agreement between 
the model and the observations is striking and 
the choice N, = 1.36, N, = 1.555 is typical of the 
best fits obtained with any model. Because of 
the scatter in the observed data a range of values 
of N, and N, were found for which an equivalent 
fit to the observed data was obtained, e.g. 
N, = 1.35-1.38, N, = 1.55-1.57. 

Spherical polynomial inhomogeneous model 

Our experimental technique did not give re- 
liable values for the exit aperture y2 of rays with 
an entrance aperture close to 1. It was therefore 
of interest to examine the consequences of 

N(x, y, z)’ = N; + (N; - N,Z) 

x [(RY/RJ2x2 + yz + z’]/R; (7) 

where the origin is at the lens center. N, and N, 
are the refractive indices at the surface and 
center of the lens, and R, and R, are the 
semi-axes of the lens surface along and trans- 
verse to the optical axis, respectively. 

We considered models with different lens 
shapes as determined by (RJR,,). We set 
N, = 1.36 and varied N, until the simulated data 
had yP = 0.5. Increasing RJR, only slightly 
changed the quality of the fit of the observed 
values of y,, but reduced the N, required for 
agreement between observed and simulated 
data. For example, if RJR, = 1 .l the central 
index was reduced to 1.5 15. In our case 
RJR, < 1.02 and the central indices must be 
high. 

Lens model with an inhomogeneous core and an 
homogeneous shell 

We examined models in which the lens had an 
inhomogeneous spherical core surrounded by 
an homogeneous shell. An example had 

N(r)2 = NI (R L r 2 rJ 
Nz+(Nf-Nz)(r/r,)’ (r,>r 20) 

(8) 
where N, and N, are the refractive indices at the 
lens center and surface, r, the radius of the core 
and R the lens radius. We found that the 
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agreement between the simulated and observed 
data was simultaneously possible for both large 
and small y, only if the shell thickness was 
essentially zero. This confirms the discussion 
following equation (3). 

Lens models with an homogeneous core and an 
inhomogeneous shell 

The final class of lens model we examined was 
lenses with an homogeneous core surrounded by 
an inhomogeneous shell. The refractive index in 
the shell was assumed to have a continuous 
distribution and a smooth gradient. An example 
had 

N(r)’ = 

fNf 

with the same notation as above. This model 
was suggested by that proposed for the teleost 
lens by Fernald and Wright (1983), and by 
measurements of the protein concentration in 
the human lens (Fagerhohn et al., 1981). We 
analyzed models with various core sizes and 
found that the smaller the core, the better the 
simulated and observed data sets agreed. This 
model overestimates y, for small y, and under- 
estimates y, for large y,. These results are 
illustrated in Fig. 3. Very small core sizes are 
indicated (e.g. re < 0.2R). 

Comparison of third-order spherical aberration 
for the lens models 

The program Drishti which we used to ana- 
lyze the various models computes the third- 
order or Seidel aberration coefficients (Sands, 
1984). Because of the spherical symmetry of the 
systems, the quality of the image is determined 
by spherical aberration. Table 1 lists the values 
of the coefficient C, of third-order spherical 
aberration for the various lens models we con- 
sidered. 

For comparison, a homogeneous spherical 
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Fig. 3. The dots (0) are the observed data. The solid line 
(-) is the simulated exit-aperture relationship for a lens 
with an homogeneous spherical core surrounded by an 
inhomogeneous shell; see equation (9). The radius of the 
core is r, = 0.3R, and the refractive indices of the lens core 
and at the lens surface are N, = 1.56 and N, = 1.36. The 
dashed curve (-----) is the simulated data for the same 

model but with a core radius r, = 0.6R. 

lens of refractive index 1.779 (for which 
yP = 0.5) has bee n included. The model with an 
inhomogeneous shell [equation (9)] is even more 
undercorrected for spherical aberration than the 
homogeneous lens. The other models, all of 
whose index distributions are approximated by 
equation (4), are slightly overcorrected for 
spherical aberration, but give much better 
imagery than would a homogeneous lens. 

The coefficient rr, for model lenses with index 
distributions given by equation (4) is relatively 
insensitive to the central and surface indices. 
For example, if NC and N, are chosen so that the 
focal length of the lens varies over the range 
2.05-2.75R, o1 varies between 0.08 and 0.11. 
High indices reduce cr,. 

DISCUSSION 

We have analyzed a number of distinct refrac- 
tive index distributions as possible models for 

Table 1. Coefficient of third-order spherical aberration for the various lens models 
considered 

Equation No. Model =I 

4 Simple spherical inhomogeneous, N, = 1.36, N, = 1.555 0.096 
6 Spherical polynomial inhomogeneous, = 0.0825 n, 0.17 

n, = -0.07 0.028 
7 Spheroidal inhomogeneous 0.12 
8 Inhomogeneous core, = 0.88R, N, = 1.442, N, = 1.578 r, 0.091 
9 Inhomogeneous shell, = 0.6 r, -0.54 

- Snherical homogeneous lens, N = 1.779 -0.34 
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the distribution within a goldfish lens. The best 
model was selected on the extent to which the 
relationship between the exit and entrance aper- 
tures determined by tracing rays through the 
model agrees with the experimentally obtained 
relationship of Fig. 2. On this basis the simple 
distribution of refractive index given by equa- 
tion (4) with neither an homogeneous core nor 
an homogeneous shell is preferred. The refrac- 
tive indices N, and N, at the lens center and 
surface must be in the ranges N, = 1.55-1.57, 
N, = 1.35-1.38, and the choice N, = 1.555, 
N, = 1.36 is probably optimal. 

The form of our preferred distribution is 
consistent with that found by Matthiessen 
(1880, 1882, 1887) for a range of species of fish 
and for the dolphin. However, our preferred 
central refractive index is higher than the typical 
values reported by Matthiessen (1.555, cf. 
1.50-1.54), whilst our surface index is lower 
than his (1.36, cf. 1.38-1.386). Using our pre- 
ferred indices the paraxial focal length of the 
goldfish eye computed from equation (5) is 2R, 
where R is the radius of the lens. Note that focal 
lengths in the range 1.86R to 2.15R are con- 
sistent with the observed data of Fig. 2. The 
focal length calculated using Matthiessen’s re- 
fractive indices is in the range 2.3-2.8R, and 
similar values are reported by others, e.g. Sadler 
(1973). However, Sroczynski (1977) reports fo- 
cal lengths in the range 2.17-2.2911 for roach 
lenses. 

We have attempted to determine a direct 
measure of the focal length and spherical aber- 
ration of the goldfish lens from a random 
sample of the original photographs. Whereas 
equation (5) gives the paraxial focal length, 
these direct measures give the distance F from 
the lens centre to the point where a ray of finite 
aperture crosses the optical axis, and are 
affected by the presence of spherical aberration. 
For a range of apertures y, > 0.65, we estimated 
F to be of the order of 2.14R, and increasing 
with aperture. 

Our findings are inconsistent with the conclu- 
sion of Fernald and Wright (1983) that the lens 
of the teleost fish-eye has an homogeneous core 
of radius 0.67R and refractive index N, = 1.60 
with an inhomogeneous shell whose surface 
index is 1.38. Our examination of models with 
this class of distribution, e.g. equation (9), 
showed for the galdfish eye that they cannot 
reproduce our observed exit aperture data, and 
they are poorly corrected for spherical aber- 
ration. Campbell and Sands (1984) also exam- 

ined the Fernald and Wright (1983) model and 
concluded (a) that it did not have the high 
quality imagery reported by Fernald and 
Wright and (b) that a simple model with a 
smoothly varying refractive index of the form of 
equation (4) with N, = 1.5383 and N, = f .38, (i) 
has the required image quality and (ii) agreed 
with the observed focal ratios of peeled lenses 
(Fernald and Wright, 1983) if the finite size of 
their laser beams were taken into account. 

An homogeneous core model for the refrac- 
tive index distribution in the human lens is also 
implied by the observations of Fagerholm et al. 

(1981) of the protein distribution within the 
lens. However, one of us (Sands) has made a 
preliminary study of a wide-angle model of 
the human eye using a realistic geometry and 
a refractive index distribution derived from 
Fagerholm et al. (1981). Image quality from 
this model was markedly inferior to that from 
a model of identical geometry but which lacked 
an homogeneous core. 

Our experimental data lacked a significant 
number of observations for entrance apertures 
exceeding 0.9R. Such data is essential to judge 
the validity or otherwise of models with a 
homogeneous shell, e.g. the model of equation 
(8). However, we believe the lens has no homo- 
geneous shell, or if it does the shell must be quite 
thin. For instance, Matthiesson consistently 
used a surface index in the range 1.38-1.385. 
Our preferred model has a refractive index of 
1.38 at a distance 0.95R from the lens center, 
suggesting a maximum shell thickness of 0.05R. 
We doubt that our experimental technique 
could detect such a thin shell as from equation 
(2) the entrance apertures of rays confined to 
this shell must exceed 0.98R. Moreover, other 
analyses, e.g. of the model of equation (6), 
demonstrated that the surface index of the lens 
could be varied over a wide range without any 
appreciable affect on the fit of the model to the 
observed exit aperture data. 

These observations emphasize the importance 
of a bulk measurement of the refractive index at 
the lens surface. Suppose bulk measurement of 
refractive indices can be made to an accuracy of 
0.01 units. In our preferred model the refractive 
index increases from 1.36 to 1.37 over a distance 
of 0.025R from the lens surface, but decreases 
from 1.555 to 1.545 over a distance of 0.23R 
from the lens center. Thus bulk measurement 
would require tiny samples to determine the 
surface index of our goldfish lens, and would 
have to be quite accurate to distinguish an 
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homogeneous core from the distribution in our 
model. 

Our preferred model was over-corrected for 
spherical aberration (Table 1). Our estimation 
of F, the lens-centre to axis-crossing distance, 
suggested that F increases with increasing aper- 
ture. This is consistent with an over-corrected 
lens. However, Sivak and Kreuzer (1983) 
showed that spherical aberration in three fish 
species, including the goldfish, was under- 
corrected and Sroczynski (1977) showed that 
spherical aberration in the roach was under- 
corrected except for lenses with focal length 
f = 2.16R which were slightly over-corrected. 
We cannot explain this inconsistency. If the exit 
angles of the laser beams had been available, 
we would have been able to directly measure 
spherical aberration. 

There are many other smooth functions we 
could have used to represent the refractive index 
distribution in the lens. However, on the basis 
of those we considered, we claim that the func- 
tion N(r) representing the index distribution 
must be concave downwards or, if not, the point 
of inflexion must be far from the lens center, and 
that the refractive power of the distribution in 
some sense must be uniformly distributed 
throughout the lens. The second requirement 
eliminates homogeneous regions and helps re- 
duce spherical aberration. 

CONCLUSIONS 

We have demonstrated that the use of thin 
laser beams is a practical method to simulate the 
paths of rays through the fisheye lens, and that 
the refractive index distribution within the lens 
can be inferred from data relating exit aperture 
to entrance aperture. We strongly recommend 
when the technique described in this paper is 
used that the directions of the laser beams after 
exiting from the lens be recorded. This requires 
that one extra point for each beam be digitized. 
The additional information provided by the exit 
angles would help resolve ambiguities in the 
choice of models and would enable spherical 
aberration to be determined experimentally. 

Using our method we concluded that the 
refractive index distribution within a fisheye lens 
can be described by the simple model of equa- 
tion (4) and does not have an homogeneous 
shell or an homogeneous core. This distribution 
readily reproduces the exit aperture relationship 
observed for the goldfish lens, is consistent with 
the observations of Matthiesson (1880, 1882, 
1887), and results in images in which spherical 

aberration is low, although the resulting 
spherical aberration is inconsistent with that 
discerned by Sivak and Kreuzer (1983). 
Acknowledgemenrs-Supported in part by USPHS No. 
14565 (to D.A.). The assistance of W. S. Jagger for access 
to his unpublished translation of Matthiessen’s work is 
acknowledged. We also thank Dr W. C. Parkinson for 
the use of his bubble chamber photo scanner, and Dr 
S. Faster for his original suggestion to study this problem 
and his numerous helpful comments. Our thanks are also 
due to Anita Gracie for typing this manuscript. 

REFERENCES 

Anderssen R. S. and Campbell M. C. W. (1984) Com- 
putational aspects associated with the direct use of in- 
direct measurements: refractive index of biological lenses. 
Proc. Comp. Tech. and Appl. Conz (CTAC-83), Sydney 
University (Edited by Noyle J. and Fletcher C. A. J.). 
North-Holland, Amsterdam (1983). 

Campbell M. C. W. (1984) Measurement of refractive index 
in an intact crystalline lens. Vision Res. 24, w-515. 

Campbell M. C. W. and Sands P. J. (1984) Optical quality 
during crystalline lens growth. Nature, Land. 312, 5991, 
pp. 291-292. 

Campbell M. C. W. (1988) A full-field gradient refractive 
index eye model. In Modelling the Eye with Gradient Index 
Optics (Edited by Hughes A.). Cambridge Univ. Press. 

Chu P. L. (1977) Nondestructive measurement of index 
profile of an optical fibre preform. Elec. Lert. 13,736738. 

Fagerholm P., Philipson B. T. and Lindstriim B. (1981) 
Normal human lens-the distribution of protein. Expl 
Eye Res. 33, 615-620. 

Femald R. D. and Wright S. E. (1983) Maintenance of 
optical quality during crystalline lens growth. Nature, 
Lond. 301, 618-620. 

Marchand E. W. (1978) Gradient Index Optics, p. 166. 
Academic Press, New York. 

Matthiessen L. (1880) Untersuchungen ueber den Apla- 
natismus und die Periscopie der Kerystallinse in den 
Augen der F&he. Pfleugers Arch. 21, 287-307. 

Matthiesscn L. (1882) Uebcr die Bexiehungen, welche xwis- 
then dem Brechungsindex des Kemcentrums der Kristal- 
linse und den Dimensionen des Auges bestehen. PpeUgers 
Arch. 27, 51&523. 

Matthiessen L. (1887) Bcitraege zur Dioptrik der Krystal- 
lime. Z. vergl. Augenheilk. 1, 7-126. 

Nakao S., Fumimoto S., Nagata R. and Iwata K. (1968) 
Model of refractive-index distribution in the rabbit crys- 
talline lens. J. opt. Sot. Am. 58, 1125-l 130. 

Philipson B. (1969) Distribution of protein within the 
normal rat lens. Invest. Ophthal. 8, 26&269. 

Sadler J. D. (1973) The focal length of the fish eye lens and 
visual acuity. Vision Res. 13, 417423. 

Sands P. J. (1984) Drishti, a computer program for an- 
alysing symmetrical optical systems incorporating in- 
homogeneous media. Tech. Rept. 8, CSIRO Division of 
Computing Research, Canberra, Australia. 

Sands P. J. (1988) Modelling the geometrical optics of eyes. 
In Modelling the Eye With Gradient Index Optics (Edited 
by Hughes A.). Cambridge Univ. Press. 

Sivak J. G. and Kreuzer R. 0. (1983) Spherical aberration 
of the crystalline lens. Vision Res. 23, 59-70. 

Sroczynski S. (1977) Spherical aberration of crystalline lens 
in the roach, Rurilus rutilus L. J. camp. Physiol. 121, 
135-144. 


