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A b s t r a c t - - W e  adapt  a method introduced by Fuchs for calculating evaporation rates from small droplets 
to the evaluation of  the linear extrapolation distance of  the neutron density at the surface of  a black body 
immersed in an infinite, absorbing medium. Explicit results are obtained for spheres and cylinders and, by 
comparison with some very accurate calculations carried out  by others, these results are shown to be 
accurate to within about 9% for a range of  parameters. 

Modifications are introduced which enable the method to deal with absorbing and scattering bodies 
which are not  black. 

I N T R O D U C T I O N  

A simple theory of  evaporation of small droplets was 
developed many  years ago by Fuchs (1959). The need for 
this simple model arose from the failure of  classical diffusion 
theory to treat particles that were comparable in size to the 
mean free path (m.f.p.) of  a gas molecule and the difficulty 
of  employing transport  theory. Fuchs therefore assumed the 
diffusion equation to be valid up to a certain distance from 
the drop, what he called the "vapour jump"  length A, which 
was in fact roughly equal to a m.f.p. Within the layer 
a ~< r ~< a + A ,  where a is the particle radius, it was assumed 
that elementary gas kinetic theory applied. Fuchs '  model was 
very successful in predicting evaporation rates and has only 
recently been superseded by more accurate methods  using 
the linear transport  equation (Sahni, 1966; Loyalka, 1973; 
Williams, 1975). 

In an interdisciplinary spirit, therefore, it seems reasonable 
to apply the concepts used by Fuchs to the problem of 
absorption of  neutrons by small black bodies. We illustrate 
the technique by reference to spheres and cylinders in absorb- 
ing and scattering media. Also by means  of  an albedo con- 
dition we can extend our results to bodies which scatter as 
well as absorb neutrons.  

T H E O R Y  

In order to illustrate the basic ideas of  the method we first 
apply it to a very simple case. Thus,  we envisage a black 
sphere of  radius a in an infinite, nonabsorbing medium. 
Around  the sphere, and concentric with it, we construct  a 
hypothetical sphere of radius a + A. In the region r > a + A 
the classical diffusion equation is expected to be valid and 
the solution appropriate to the situation can be written : 

• . ( a + A )  
N(r) = N < . - - ( N ~ - - s v ' )  ~ , ( 1 )  

r 

where N' is the density at r = a + A. 
Now the current through the surface a + A  according to 

diffusion theory is : 

d N  
Jin = 4n(a+ A)2 D v ~  r . . . .  A (2) 

= 4n(a + A)Dv(N~ -- N'), 

where D is the neutron diffusion coefficient and v the mean  
neutron velocity. In the region a ,%< r ~ a + A we assume that  
simple kinetic theory applies and that the current into the 
sphere at r = a is 

4ha 2 ~ .  (3) 

Now since there is no absorption in the region a ~< r ~< a +  A, 
these two expressions for the current must  be equal, thus : 

a2N , 
(a+A)D(Noo-N')= 4 ' (4) 

Solving for N' and substituting into equation (1) we find : 

N(r) = N~ t l a2+4D(a+A)(a~A)}. (5) 

The linear extrapolation distance, 2, at the surface of the 
sphere is defined as : 

N~ dN 
2 =  l -d~-r  , = .  , (6) 

whence: 

aA 
2 = 4 D -  a +--A" (7) 

Recalling that D = lt/3, where It is the transport  m.f.p., we 
find : 

aA 
2= 4 a+a" (8) 

For a ~ 0, 2--* 4 lt/3 as expected from transport  theory 
(Davison, 1951). On the other hand,  for a --* oo, we find : 
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Table 1. The black sphere 

Error E Error B 
a A B C D E (%) (%) 

0.1 1.2635 1.2965 1.247 3.8 2.5 
0.2 1.2164 1.2557 1.2543 1.182 5.7 3.1 
0.4 1.1757 1.090 
0.5 1.134 1.1208 1.1549 1.056 8.6 3.0 
0.6 l. 1339 1.028 
0.7 1.0755 1.1037 1.004 2.6 
0.8 1.0761 0.983 
1 1.024 1.0229 1.0535 1.0431 0.949 9.0 2.0 
1.3 0.9826 0.9967 0.912 8.5 1.4 
1.5 0.9605 0 .9876  0.9718 0.893 8.1 1.1 
2 0.9171 0.9248 0.858 7.2 0.8 
2.5 0.8845 0.8920 0.835 6.4 0.8 
5 0.81 0.8057 0.8128 0.779 4.2 0.9 
on 0.7083 0 .7071 0 . 7 1 1 3  0 . 7 1 0 4  0.7104 0.5 

A = Marshak's variational method (Marshak, 1947). 
B = Kushneriuk and Mckay's variational method (Sahni, 1966). 
C = Conkie's iterative method (Conkie, 1961). 
D = Sahni's numerical integration (Sahni, 1966). 
E = Present method, 

4 
2 = ~ l t -A .  (9) 

Now we know the exact result in this case, namely 2 = 0.7104 
It (Davison, 1951). Thus we may fix A as 0.623 It and obtain: 

4 a 
2 3 1 + 1.605a ' (10) 

Over the complete range of a where distances are now in 
units of lt. 

Table 1 shows the values of ;t obtained from equation (10) 
compared with some other calculations. Sahni's results are 
claimed by him to be accurate to the number of significant 
figures shown and the error in our results is obtained by 
comparison with this work. The maximum error of 9% 
occurs at a = 1. Clearly, the method is not as accurate as the 
variational technique but it is very simple and can easily 
be applied to other geometries for which a solution of the 
diffusion equation is readily available. 

A better comparison with the exact result which arises 
from the neutron transport equation can be had by exam- 
ining the limiting case obtained by Davison (1951). For a 
large black sphere, Davison shows that : 

0.5047 0.2336 
20 = 0 . 7 1 0 4 + - - a  + a z 

l l o g a  0.1704 o['log2a\,, 
4 a 3 a 3 + \ a '  ,]" (11) 

An expansion of equation (10) to the same order leads to: 

2 = 0.7104+ 0.388 0.242 + 0.151 + O (  1 "~ (12) 
a a e ~ Y -  \ ~ J "  

The first terms of equations (11) and (12) are exact by defi- 
nition and the second term has the correct analytical form 
but the amplitude is in error. Thereafter, the comparison 
rapidly deteriorates since the approximate method does not 
predict the logarithmic dependence. 

For a small black sphere, Davison shows that 

4 5 z 
2n = ~ -- ~a--0.97827a loga--1.4002a 2 

+O(a21ogk a). (13) 

The approximate formula leads to : 

4 
2 = ~ --a+ 1.605aZ+0(a3). (14) 

Thus, as before, the leading term is exact but subsequent 
terms are in error either in amplitude or form. Nevertheless, 
for values of a over the complete range the error is never 
greater than 9%. 

A similar calculation in infinite, cylindrical geometry leads 
to: 

2 = ~ - a l o g  (15) 

and the comparison with Davison is as follows : 

for a cylinder with a large radius, 

0.2524 0.0949 5 
2o = 0 . 7 1 0 4 + - -  + a2 a 64a 3 log a 

0.1634 /'log 2 a'~ -- a~--+ O ~ x~ - ) ,  (16) 

2=0.7104-{ 0 . 1 9 4 1 0 . 0 8 0 6  (alx3) a a2 + O ; (17) 

for a cylinder with a small radius, 

4 
2o = ~ +0.4596aloga-O.2164a+O(a21og 2 a), (18) 

4 
2 = ~ + a log a -  0.473a-- 1,605a 2 - 1.605a 2 + O(a3). 

(19) 

The best available results of 2 for the black cylinder have 
been reported by Pellaud (1968) and later by Kavenoky 
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Table 2. The black cylinder 
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Error A Error B 
a A (%) B (%) C D 

0A 1.1355 5.8 1.1805 2.0 1.205 1.206 
0.2 1.0504 7.9 1.1118 1.6 1.136 1.136 
0.3 0.9962 8.1 1.0638 1.9 1.084 1.087 
0.4 0.9577 
0.5 0.9288 8.1 0.9971 1.4 1.011 1.015 
0.6 0.9061 
0.7 0.8877 7.8 0.9515 1.2 0.963 0.966 
0.8 0.8726 
0.9 0.8599 
1 0.8491 6.9 0.9043 0.8 0.912 0.916 
1.3 0.8244 
1.5 0.8123 5.7 0.8550 0.7 0.861 
2 0.7910 
2.5 0.8123 3.8 0.8040 0.5 0.808 0.810 
3 0.7673 
3.5 0.7600 
4 0.7543 
5 0.7462 2.0 0.7575 0.5 0.761 0.762 
~x~ 0.7104 0 0.7071 0.5 0.7104 

A = Present method. 
B ~ Variational method (Mckay, 1960). 
C = From Pellaud (1968). 
D = Kavenoky (1978). 

(1978). Some variational results using the method of Kush- 
neriuk and Mckay have also been given by Mckay (1960). 
Table 2 compares these results with those obtained by the 
methods described in this paper. We see that our present 
method is accurate to about 8%. The variational method is 
significantly more accurate but at the expense of much gre- 
ater labour. 

MODIFICATIONS TO INCLUDE ABSORPTION 
AND SCATTERING 

Scattering in the absorber 

We have assumed the absorbing body to be black, i.e. to 
absorb all neutrons incident upon it. However, in practice, 
the body will both absorb and scatter neutrons. These pro- 
cesses can be incorporated into our formalism by the intro- 
duction of the blackness, ]L The blackness is the fraction of 
neutrons incident on the body which are actully absorbed by 
it and is given by the expression (Bell and Glasstone, 1971) : 

( l  - c ~ ) T ~ ( l  - Pc) 
/] - (20) 

1 - cRPc 

cR is the ratio of scattering to total cross section in the body, 
fR is the mean chord length of the body, Z~ is the total 
macroscopic cross section of the body and Pc is the first 
flight-collision probability. This expression for/3 is approxi- 
mate but accurate (Bell and Glasstone, 1971). In the case of 
a black body Pc ---) 1 and /-RZff (1 --Pc) --+ 1 leading to ~ = 1 
which is the case we have considered above. To include these 
modifications it is necessary only to multiply the number of 
neutrons incident on the body, viz: SN'v/4 (where S is 
surface area), by 13. In this case it is readily shown that 
equation (I0) becomes: 

4 a 
2 - 3[3 1 + a / z ( [~) '  (21) 

where 

and equation (15) becomes: 

4 ( z _ ( f ) )  ~ = ~ - - a l o g  1+ . (22) 

We have tested the accuracy of equation (22) by comparing 
it with a variational treatment given by Kushneriuk and 
Mckay (1954). Table 3 shows the extrapolation distance 
for an absorbing (but not black) cylinder embedded in a 
nonabsorbing moderator. The maximum error of 18% arises 
at a rod radius of 0.7 m.f.p. This error is disappointingly 
large but the variational results of Kushneriuk and Mckay 
are themselves approximate and so no definitive conclusions 
can be drawn. Moreover, we shall see below, that when the 
method is compared with some essentially exact results in 
the absorbing moderator case the error is much smaller. 

Table 3. Absorbing cylinder 

Error 
a a ~  2w ~'app (%) 

0.07 0.1 7.424 7.212 2.9 
0.1 0.2 4.125 3.845 6.8 
0.15 0.3 2.926 2.677 8.6 
0.2 0.5 2.033 1.806 11 
0.3 0.7 1.633 1.406 14 
0.5 0.8 1.464 1.207 18 
0.7 1 1.276 1.047 18 
1 1.3 1.110 0.9270 16 
1.5 1.6 0.9907 0.8509 14 
2.5 2 0.8857 0.7931 7.2 
5 2.5 0.8088 0.7516 5.0 
8 3 0.7740 0.7358 3.3 

12 4 0.7519 0.7269 

~-om = the variational result of Kushneriuk and Mckay (1954). 
2ap p = the present method. 
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ABSORBTION IN THE MODERATOR 

When the moderator absorbs as well as scatters, the character 
of  the solution there changes. Both Pellaud (1968) and Sahni 
and Sj6strand (1983) have calculated the effect of moderator 
absorption on the extrapolation distance at the surface of 
cylinders and we shall refer to their results below. 

In order to modify our method to include moderator 
absorption it is necessary to solve the following diffusion 
equation in the moderator : 

DV2N_Z~mN+ S = 0, (23) 
/) 

where S is a constant source term. 
We illustrate the result for the sphere because the algebra 

is simple. Thus the general solution of equation (23) for the 
neutron density surrounding the sphere is : 

S e -~'~ 
U(r) = ~ + A r ' (24) 

where 1/v is the diffusion length and is found as a root of: 

e / l + v ' ~  
~vlog ~ i ~ v )  = 1. (25) 

Distances are measured in units of the total moderator 
m.f.p, and c = E~,,/Y~,,,. To be consistent we should also define 
the diffusion coefficient D as : 

1 - c  
D -  v 2 ,  (26) 

since it will then apply for moderately strong absorption. 
As before, we construct a fictitious sphere of radius a + A 

around the actual sphere and require the density there to be 
N'. Thus we can write the neutron density as : 

S ( N S ) ( a + A ) e _ ~ ( a ) ( 2 7 ) , _  ~Z~ r . . . .  " N(r) = ~ + 

The boundary condition in the Fuchs' shell is : 

4 n ( a + A ) Z D v ~  ~+a 2 N't; = 4xa ~-f l ,  (28) 

where we have included the blackness condition but have 
assumed no absorbtion in the thin Fuchs' shell, This is jus- 
tified on the basis that (1 - e )  is small. 

Solving for N' and using the definition of 2 leads to 

(29) 
2 = fla2 + 4D(a + A) [1 + v(a + A)] - fla(a + A) e va 

fl(a+A) (1 + va) eva 

To obtain A, we allow a ---, ~ when : 

~ I (  4DvX~ vA 7 
2(a = oo) = 1+ ~ - / e  - l J .  (30) 

But 2(a = oo) is the extrapolation distance for two adjac- 
ent half-spaces- one of which contains a source. This prob- 
lem is readily solved by the W i e n e r - H o p f  technique or 
approximately by the variational method. We call the value 
2M and rewrite A as : 

1 fl+aDv/fl '~ 
=  ,og (31) 

Thus we have a complete expression for 2 as a function of 
radius and absorbing and scattering properties. 

An interesting limiting case of equation (29) is when a 
0. Then we find : 

4D 
2(a = 0) = ~ -  (1 + vA) e ~a. (32) 

We can also show that as the absorption in the moderator 
tends to zero, the value of 2 becomes the same as that already 
given by equation (21). 

In the case of a black absorber, the value of 2u can be 
obtained very easily since then the problem reduces to one 
of  a half-space with a source and no incident flux. This result 
is well known (Auerbach, 1961) and leads to: 

f c _ l + v  2 ),/2 
I+v2M = c),2(1~c).)(~-v2); e ~zo, (33) 

where z0 is the conventional Milne problem extrapolation 
distance (Case et al., 1953). 

We can repeat these calculations for an infinite cylinder of 
radius a, and find : 

flaKo Iv (a + A)] + 4Dv(a + A) 

2 = × Kl[V(a+A)]-flaKo(va) 
flavKj (va) ' (34) 

where K0 and K~ are modified Bessel functions. The value of  
A is the same as that for the sphere. 

Table 4. Absorbing moderator 

a c 0.9 0.93 0.95 0.97 0.99 

0.2 1.191 11.0 1.146 10.0 1.120 9.0 1.095 8.0 1.072 7.0 
0.5 1.115 8.5 1.064 7.6 1.033 7.0 1.002 6.4 0.9698 5.9 
1.0 1.065 5.1 1.010 4.2 0.9577 3.8 0.9415 3.4 0.9030 3.3 
1.5 1.041 3.1 0.9839 2.5 0.9477 2.0 0.9121 1.6 0.8712 1.7 
2.0 1.026 2.1 0.9677 1.4 0.9307 1.0 0,8940 0.6 0.8520 0.6 
3.0 1.008 0.7 0.9484 0.2 0.9103 -0.1 0,8725 -0.6 0.8292 -0.7 
5.0 0.9906 0.0 0.9297 -0.5 0.8904 -0.8 0.8514 - 1.0 0.8069 - 1.4 

oo 0.9566 0.0 0.8920 0.0 0.8496 0.0 0.8066 0.0 0.7568 0.0 

Results from the present method. The second column under the c-value denotes the percentage error compared with the results of Pellaud 
(1968) and Sahni and Sj6strand (1983). 
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In the limit as a --* 0 we find that : 

4D 
2(a = 0) = ~ vAK~ (vA) (35) 

and we also note that, as c ~ 1, equation (22) is recovered. 
Now numerical results for this problem have been pre- 

sented by Pellaud (1968) and by Sahni and Sj6strand (1983), 
thus we may check the accuracy of  the method for cylinders. 
Table 4 shows the results for a black cylinder in a moderator 
of  varying absorbing power. We note that the error is largest 
for small radius rods but rapidly reduces to less than 9% and 
at rods of 1 m.f.p, radius the error is better than 5%. As 
expected, the error increases as c decreases. In fact our 
method fails for c ~< 0.7 because A becomes negative. 
However, such a value of e rarely arises in practice. 

It should be noted that Kavenoky (1978) has presented 
values of  the extrapolation distance for the source free prob- 
lem where the flux is allowed to become unbounded as r 
oo. Although our method is applicable to that situation, we 
have not carried the calculations through. Thus only in the 
case c = 1 can the work of  Kavenoky be used for comparison 
purposes since then both source and source-free problems 
become identical. 

SUMMARY AND CONCLUSIONS 

Whilst the problem discussed here is a very old one, dating 
back to the late 1940s, it nevertheless remains a fundamental 
transport theory calculation. We have also noted that there 
exist accurate solutions of this problem. Nevertheless, it is 
of  considerable interest to examine simple models such as 
the one discussed here particularly because of  its inter- 
disciplinary nature. Moreover, there is a practical advantage. 
If  it can be shown that the results obtained by the simple 
method are acceptable for these simple geometries then it 
may also be applied to more complicated geometries where 

the diffusion equation is much more easily solved than the 
transport equation. Extensions to include energy dependence 
and absorption are also possible at the expense of greater 
numerical effort but nevertheless still in the context of 
diffusion theory. The method is not dissimilar in philosophy 
therefore to the well known ABH or SPECTROX 
ideas  o f  Leslie (1963). 
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