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Abstract, The S-system is emerging as a general canonical form for analysis of nonlinear models. 
Models expressed within this regularly structured system of nonlinear ordinary differential equations 
are obtained by applying either of two different strategies: (A) Direct derivation of an S-system 
utilizing the Power Law Formalism; or (B) exact recasting of an existing, well established model into 
S-system form. By capitalizing on the regular structure of S-systems, efficient formulas for 
numerical solution of this general class have been developed. For any S-system it can be shown 
that these formulas are more efficient than conventional multistep formulas of the same order. For 
implemented methods, the actual improvements in efficiency are considerably more than the 
minimum estimates. Preliminary tests show that time required for solution of S-systems is reduced 
by one or two orders of magnitude -- the relative improvement in efficiency increases with size and 
complexity of the problem, and with degree of accuracy required. 
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GENERALITY OF S-SYSTEMS 

S-systems originally were developed for analysis of 
organizationally complex systems such as cellular and molecular 
networks in biology (Savageau 1969a, b, 1971a,b). Each 
equation of an S-system describes the change in concentration 
of an element of the system, Xi, with time and is comprised of 
two terms, one representing net production or influx and the 
other representing net degradation or efflux. An element may be 
a molecule, cell, organism or some other quantifiable component 
of a system. 

Mathematically the net production and net degradation terms for 
each element are products of power-law functions, giving S- 
systems the following form: 

Xi(‘) = Cli ;I Xj 
Sii 

_ pi;rx:i’ i = l...n (1) 
j=l j=l 

where Xi(t) is the change in Xi with time, Cli and pi are apparent 
rate constants for net production and net degradation, gi) and hfj 
are apparent kinetic orders for the effect that Xi has on net 
production and net degradation of Xi, and n is the number of 
variables in the system which is equal to the number of 
differential equations if it’s assumed for simplicity that the 
system is autonomous. Values for the x’s are real positive 
numbers, for the a’s and p’s real nonnegative and for the g’s 
and h’s real. 

S-systems have been used to represent biochemical pathways, 
genetic circuits, immune networks, patterns of growth and 
development, and ecological interactions (for references and 
reviews see Savageau 1971b, 1976, Irvine and Savageau 
1985). In addition, many other “laws” of nature can be 
represented exactly as S-systems -- examples include rate laws 
for enzyme kinetics, special functions in physics, all of the well 
known growth laws, all of the well known probability distributions 
and the Cobb-Douglas production functions from economics 
(see Savageau 1979a, 1982). 

Although the full extent of the class of equations that can be 
recast as S-systems remains to be determined, initial 
investigations suggest that it is extremely broad. It has been 
possible to recast every ordinary differential equation examined 
by applying the algorithm described by Savageau and Voit 
(1986). The resultant S-systems are equivalent representations 
that are no more approximate than the original equations. 
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Whether derived by applying the Power Law Formalism or by 
recasting established equations, S-systems provide a very 
general nonlinear formalism for analysis of organizationally 
complex systems (Savageau 1985, Voit and Savageau 1986). 
Whatever tools have been or can be developed for analysis of 
S-systems can be applied to a wide class of complex 
phenomena all unified in this standard canonical form. General 
mathematical methods for explicit steady-state solution, 
sensitivity analysis and stability analysis of S-systems have 
been know for several years (Savageau 1969a, b, 1979a, b, 
1976). Since it also is known that a general analytical solution 
for the dynamic behavior of S-systems is not possible, attention 
has been focused on efficient methods for numerical solution. 
Recently it has been discovered that by capitalizing on the 
regular structure of S-systems, very efficient methods can be 
derived based on analytical continuation with Taylor series 
(Irvine 1986). 

CONVENTIONAL FORMULAS FOR NUMERICAL SOLUTION 

Subroutines for solution of ordinary differential equations are 
among the most widely used programs in mathematical software 
libraries (Rice 1983). Typically these routines numerically 
integrate a system of equations by piecing together a local 
estimate for a truncated Taylor series of the solution. Although 
most of these methods are general and work for virtually any 
functional form, including S-systems, no one method is best for 
every class of equations. The method that is most efficient 
depends on the problem solved. For a given class of equations 
the best method can be found only by comparing numerous 
existing methods or by developing specialized techniques that 
take advantage of structure inherent in the class. 

Most conventional methods are very convenient to use since 
they apply to ordinary differential equations of virtually any 
functional form. However, because they must solve equations 
with many different forms, they do not take advantage of any 
regular structure within a given class. This means that efficiency 
is traded for convenience. When a problem must be solved only 
once, this usually is prudent, since developing a method to 
capitalize on structure may require more time than ultimately 
would be saved. On the other hand whenever a given problem 
must be solved repeatedly (e.g. for different error tolerances, 
initial conditions, time intervals or parameter values), or an entire 
class of problems must be solved and can be written in a 
standard canonical form, substantial savings are realized by 
developing methods that capitalize on structure within the 
problem. As shown in the next section, the regular structure of 
S-systems allows both efficient and accurate extraction of 
information about solutions. 
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CAPITALIZING ON THE S-SYSTEM FORM 

Although one could apply available general-purpose algorithms 
for numerical solution of Eq. (1) directly, the efficiency 01 solution 
is improved by noting the special character of the nonlinear 
functions and simplifying them by logarithmic transformation 
(Savageau 1970, 1976). Even greater improvements in 
efficiency can be achieved by abandoning available algorithms 
and developing new algorithms that take advantage of the 
special character of S-systems throughout. The derivation of 
such an algorithm based on analytical continuation with Taylor 
series in logarithmic coordinates is outlined below. 

A truncated Taylor series for solution of an S-system in 
logarithmic space can be written as follows: 

Yt(t+h) = Vi(t) + g [ Yi(m)(t) I m 1 hm 
m=l 

i= I...n (2) 

where Yi is the logarithm of Xi, t is time, h is the increment in 
time to the next solution point, p is the order of the truncated 
expansion, and Yi(m)(t) is the mth derivative of Yi evaluated al 
time t and divided by (m-i) factorial. Formulas for each 
derivative of Yt with respect to time must be obtained to evaluate 
Eq. (2) exactly. 

The first derivative of Yl with respect to time can be obtained 
simply by dividing both sides of Eq. (1) by Xi: 

Yi(l) = Xi(l) I Xi 

= (-q r; x,eil _ pi ;I x; 
j=l j=l 

= cti exp( 2 gtj’ Yj ) - pi exp( L htj’ Yj ) (3) 
j-1 j=i 

= Ai Bi(t) 

where glj’=gtj-&j and hij’zhtj-6tj, with 6ij=O for i not equal to j and 
Sij=l for i equal to j. 

Because ai, Pi, gij’ and hij’ are all constants, Eq. (3) can be 
differentiated easily to obtain the second derivative of Yi: 

Yi(2) E At(f) [ i gij’ Yj(‘)] - Bi(1) [ IZ hij’ Yj(‘)] 
j=i j=l 

= Ai Gi(l) - Bi(l) Hi(t) (4) 

= Ai(a) Bi(2) 

where 

Gill) = i gij’ Yj(‘) 
j=l 

Hi(l) = i hij’Yi(‘) 
j=l 

This process of differentiation can be repeated indefinitely, and 
each of the higher derivatives (m = 2, 3. 4 . ..) of Yt with respect 
to time can be calculated recursively. However, to improve the 
efficiency of calculating coefficients for the corresponding Taylor 
series, the mth derivative of Yi divided by (m-i) factorial is 
calculated instead of the derlvative alone. These coefficients 
can be written as Yt(m) and can be calculated follows: 

Yi(m) = Ai - Bt(m) 

m-l 

Ai = [ Z Ai(m-k) Gi(k) 
k=l 

I/ (m-1) 

m-l 

Bi(m) = [ Z E?i(mek) Hi(k) 
k=l 

1 I (m-1) 

where 

Gi(k) = 2 gij’ Yj(k) 
j=l 

Hi(k) = Z hij’ Yj(k) 
j=l 

6) 

By applying the above equations, the mth derivative of Yi divided 
by (m-l) factorial can be obtained recursively from previously 
calculated and stored values for the lower-order quantities in 
Eq. (5). This process is very efficient as can be seen by 
comparison with conventional methods. 

EFFICIENCY OF TAYLOR-SERIES AND RUNGE-KUTTA 
FORMULAS 

How does numerical solution by the Taylor-series method 
compare with popular general-purpose methods? For 
comparison the subroutine RKF45 (Fehlberg 1969, Shampine 
and Watts 1977) is used because it is a well known method that 
has been compared with many other Runge-Kutta, predictor- 
corrector and extrapolation methods (Hull et al. 1972, Shampine 
et al. 1976). Even though RKF45 is not always the most 
efficient among these methods, reported differences are small 
compared with those between the Taylor-series method and 
RKF45. 

The efficiency of any method for numerical solution of ordinary 
differential equations is a complex function of several factors, 
including the number of derivative evaluations, the cost of 
evaluating derivatives, the cost of estimating the local error, the 
cost of selecting a step size, the cost of advancing the solution 
and the cost of reporting solution points. The problem 
dependence of these factors is difficult to express, and the 
relative contribution of each factor usually cannot be determined 
in general. 

This section focuses on the cost of evaluating derivatives, 
estimating the local error and advancing the solution for each 
method. These costs, which can be enumerated explicitly, are 
expressed as the number of operations required for each step of 
a solution by a fifth-order Runge-Kutta method and as the 
number of operations required for calculation of a fifth-order 
truncated Taylor series by Eqs. (2), (3) and (5). By determining 
these irreducible costs the minimum difference between Runge- 
Kutta and Taylor-series methods can be estimated, independent 
of the other more problem-dependent advantages of the Taylor- 
series method. The additional advantages, which prove to make 
substantial improvements in efficiency over the minimum 
estimate, must be examined by comparing the performance of 
implemented methods in the next section. 
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Calculation of first derivatives for a system of n differential 
equations like Eq. (1) requires 2n* exponentiations, 2na 
multiplications and n additions. When the same system is 
transformed into logarithmic coordinates, as in Eq. (3), 2n 
exponentiations, 2ns+2n multiplications and 2ns-n additions are 
required. This logarithmic transformation reduces the number of 
exponentiations by 2n(n-1) but increases the number of 
multiplications by 2n and the number of additions by 2n(n-1). 
Roughly speaking this is a trade of 2n(n-1) exponentiations for 
additions. Because exponentiation typically requires from 2 to 
30 times more computer time than addition, solution of an S- 
system in logarithmic coordinates is more efficient than solution 
in Cartesian coordinates. Hence, in subsequent comparisons 
solution of Eq. (3) is considered rather than solution of Eq. (1). 

A fifth-order Runge-Kutta method requires a minimum of six first- 
derivative evaluations for each step (Butcher 1965). Table I 
shows the minimum number of operations required to calculate 
first derivatives using Eq. (3) at six different sets of values of Yi. 
One of these sets always is provided as initial values of Yi. or as 
the last solution point, but the other five sets are intermediate 
values that must be calculated. Incrementing Yi to these 
intermediate values, estimating the error and then incrementing 
Yi to the next solution point, requires an additional 24n 
multiplications and 19n additions for each step. The total 
number of arithmetic operations increases as a quadratic in n. 
Table I also shows the number of operations required to 
evaluate the first through fifth derivatives for each step of a fifth- 
order Taylor-series method. With this method the last term of 
the truncated Taylor series provides the error estimate, so no 
additional operations are required, and incrementing Yi to the 
next solution point requires only 5n multiplications and 5n 
additions. Once again, the total number of arithmetic operations 
increases as a quadratic in n. 

Table I. Comparison of Fifth-Order Methods using Runge-Kutta 
and Taylor-Series Formulas a 

Formula exp mult add 

RKF45 b 

Yi(I) 12n 
error & step 0 
total 12n 

TAYLOR SERIES c 

YiV) 2n 
Yi(s) 0 
Yi(s) 0 
Yi(4) 0 
Yi(s) 0 
error & step 0 
total 2n 

12ns+12n 12ns-6n 
24n 19n 
12ns+36n 12ns+13n 

2ns+2n 
2ns+3n 
2ns+7n 
2ns+9n 
2ns+ll n 
5n 
lOn2+37n 

2ns-n 
2n2-n 
2ns+n 
2ns+3n 
2ns+5n 
5n 
lOn2+12n 

a Based on the minimum number of exponentiations (exp), 
multiplications (mult) and additions (add) required for one step 
by each method. 
b Requires six evaluations of the first derivative. 
c Requires one evaluation of the first through fifth derivatives. 

An estimate of the minimum savings for the Taylor-series 
method is obtained by subtracting the total number of operations 
listed in Table I for the Taylor-series method from that for the 
fifth-order Runge-Kutta method: 

S(n) = 1 On Ce + (2ns - n) Cm + (2ns + n) Ca (6) 

where S(n) is the savings for the Taylor-series method in units of 
computer time for a system of n differential equations, with Ce, 
Cm and Ca equal to the unit cost of exponentiation, 
multiplication and addition. Because n, Ce, Cm and Ca are all 
greater than zero, some savings always is realized by applying 
the fifth-order Taylor-series method instead of the fifth-order 
Runge-Kutta method. Absolute savings increase commensurate 
with total cost, as a quadratic in n. As shown in Table II, similar 
conclusions hold for second-order through fourth-order methods 
except that absolute savings increase linearly with n. 

Table II. Minimum Number of Operations Saved per Step by 
Taylor-Series Method a 

order exp mult add 

lb 0 
2 c2n 
3 + 4n 
4 +6n 
5 + IOn 

0 
0 
- 2n c 
-and 
+ 2ns-n 

0 
+n 
+n 
-3n 
+ Zns+n 

a The first-order through fourth-order Runge-Kutta methods used 
for comparison are fixed-step-length methods that do not 
estimate the error. The fifth-order Runge-Kutta method used for 
comparison is RKF45. 
b Both Runge-Kutta and Taylor-series methods are identical to 
Euler’s method when the order is one. 
cThe savings due to elimination of 4n exponentiations alone is 
greater than the cost of 2n more multiplications. 
dTypically the cost for exponentiation is at least twice that for 
multiplication and addition, so the savings due to elimination of 
6n exponentiations is greater than the cost of an more 
multiplications and 3n more additions. 

These results show that calculation of derivatives for a truncated 
Taylor series by applying Eqs. (2), (3) and (5) always is more 
efficient than a Runge-Kutta method of the same order. With the 
fifth-order Taylor-series method the lower bound for the relative 
savings is 20%, as can be seen by dividing the absolute savings 
listed in Table II by the total cost listed in Table I. 

PERFORMANCE OF IMPLEMENTED METHODS 

A computer algorithm based on the formulas presented in the 
preceding sections has been implemented (Irvine 1986). This 
algorithm is referred to as ESSYNS, for Evaluation and 
Simulation of Synergistic Systems. Times required for solution 
of S-systems by ESSYNS and by RKF45 have been compared 
for many different problems. The focus in this section is on 
comparisons demonstrating the influence of accuracy (i.e. error 
tolerance) and problem size (i.e. the number of differential 
equations) on efficiency. The combination of these two types of 
results allow very general conclusions to be made about the 
advantages of the implemented Taylor-series method. 

The influence of error tolerance on efficiency is difficult to state 
explicitly. This influence has been examined by solving 
problems for a wide range of error tolerances. For example, 
Table Ill shows the time required for solution of an S-system 
representing an immune network with n=3 (Irvine and Savageau 
1985) by RKF45 and also by ESSYNS. These times are listed 
as a function of the negative base ten logarithm of the local error 
tolerance. Column R/E gives the ratio of these times. For this 
problem and range of error tolerance (10-s to 10-12) ESSYNS is 
between 3 and 45 times faster than RKF45. These results are 
representative of numerous other problems examined -- 
ESSYNS always is at least twice as fast as RKF45 and for 
stringent error tolerances can be more than two orders of 
magnitude faster. 
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Table Ill. influence of Local Error Tolerance on Efficiency l Table IV. Influence of Dimension of Problem on Efficiency l 

-log e RKF45 ESSYNS RIE n RKF45 ESSYNS R/E 

2 il.53 3.02 3.82 
4 15.04 4.56 3.30 
6 29.66 6.48 4.58 
8 74.45 8.90 8.37 
10 222.56 11.70 19.02 
12 671.47 14.99 44.79 

2 9.56 3.24 2.95 
4 17.91 5.93 3.02 
6 26.25 8.62 3.05 
8 34.55 11.26 3.07 
10 42.89 13.89 3.09 
12 51.25 16.53 3.10 
14 59.54 19.28 3.09 
16 67.88 21.86 3.11 
18 76.23 24.55 3.11 
20 84.53 27.24 3.10 

* Seconds required for solution of a representative S-system by 
RKF45 and by ESSYNS as a function of stringency of error 
tolerance. Stringency of error tolerance is the negative base ten 
logarithm of the local error tolerance (-log e). Column R/E 
represents the ratio of times for RKF45 and ESSYNS. 

Although the minimum savings for one step by ESSYNS 
compared with one step by RKF45 was stated in Eq. (6) 
explicitly as a function of dimension of the system, this 
expression is a gross underestimate of the actual savings for 
ESSYNS. One major reason for this underestimation is that 
RKF45 typically requires more than one set of derivative 
evaluations for each step, whereas ESSYNS always takes one 
step for each set of derivative evaluations (Irvine 1986). 

Numerous benchmark tests for systems of different sizes have 
been run in an attempt to determine the net influence of the 
dimension of the system, n, on the efficiency of ESSYNS 
compared with RKF45. The dimension of a system usually 
effects not only the size of the iterative loops within a given 
algorithm but also the stability, stiffness and rates of change for 
the problem. Due to these multiple effects it can be difficult to 
identify changes in efficiency that are strictly due to a change in 
scale of the problem. This confusion is avoided by examining a 
special set of problems in which the differential equation for 
each element of the system is independent of the other 
elements. With such a system, stiffness, stability and rates of 
change all are independent of dimension, and only the scale of 
the problem changes as n changes. For this reason systems of 
the following form have been selected: 

kii 
Xi(l) = cli _ pi Xi i = l...n (7) 

where CY.t=l, Pi=1 and hii= .l Eq. (7) represents an uncoupled 
nonlinear system of dimension n. 

Table IV gives times for RKF45 and for ESSYNS to solve the S- 
system given by Eq. (7). These times are listed as a function of 
the dimension of the system, n. The local error tolerance is 10-s 
throughout. Column R/E gives the ratio of limes. With an error 
tolerance of lo-s, ESSYNS always is approximately 3 times 
faster than RKF45. With error tolerances of 1 O-3, 1 O-s and 1 O-12, 
ESSYNS is 6, 8 and 27 times faster (results not shown). 
Because RKF4.5 is restricted to a step no larger than the report 
interval, even when a larger step could be taken without 
exceeding error tolerance, RKF45 is not any faster at an error 
tolerance of 10-3 than at 10-s. But because ESSYNS can fill in 
points by interpolation, it is never bound by the report interval 
and is faster at an error tolerance of 10-3 than at 10-e. This 
explains why the ratio of times for solutions by RKF45 and 
ESSYNS is greater at 10-s than at 10s. 

* Seconds required for solution of a representative S-system by 
RKF45 and by ESSYNS as a function of the number of 
equations. These results were obtained by solving S-systems 
for uncoupled nonlinear systems with n equations. ai=Pi=l, hii= 
1 .I, and all other parameters equal zero -- values for each 
element of the system initially were set equal to two, and 
solution proceeded from an initial time of 0 to a final time of 10 
with points reported every 0.1 unit. The local error tolerance is 
10-s throughout. Column R/E gives the ratio of times for RKF45 
and ESSYNS. 

In the above comparisons, a sparse matrix method always is 
used to calculate first derivatives of S-systems regardless of the 
method used, ESSYNS or RKF45. The linear increase in time 
for solution by each method as a function of the number of 
equations (Table IV) demonstrates that both routines utilize the 
sparse method effectively. Without this method the increase in 
time would be quadratic in n. We chose to implement RKF45 
with the sparse matrix method for S-systems so only irreducible 
differences between ESSYNS and RKF45 would be observed 
or, in other words, so only the advantage of techniques which 
cannot be implemented with RKF45 are displayed. 

The advantage of the sparse matrix method for S-systems has 
been examined separately by solving problems with no g’s or h’s 
equal to zero. This allows us to draw more general conclusions 
about the efficiency of ESSYNS relative to conventional 
methods, To minimize the influence of differences in stability, 
stiffness or rates of change due to variation in dimension of the 
problem, equations that are virtually identical to those in Eq. (7) 
have been chosen. The only difference is that every g or h that 
is zero in Eq. (7) is set equal to 10-1s. Solutions for these 
problems do not differ appreciably from solutions for the original 
problem, but the time for solution of the second set increases as 
a quadratic in n since the problem no longer is sparse. Table V 
gives results for a tolerance of 10-s. The poorer performance of 
each method in this Table compared with Table IV is attributable 
lo loss of the sparse matrix method. The ratio of times for 
solution by RKF45 and by ESSYNS is given in column R/E. For 
the problems with nonsparse matrices and an error tolerance of 
106, ESSYNS is 3 times faster than RKF45 when n=2 and 5 
times faster when n=20. Unlike with the sparse method, the 
relative efficiency of ESSYNS now increases with dimension of 
the problem. This result, together with the previous results for 
problems with sparse matrices and for problems with a wide 
range 01 error tolerance, supports the conclusion that the lower 
bound for the efficiency of ESSYNS relative to RKF45 is two, 
and that the advantage increases with size and complexity of the 
problem and with degree of accuracy required. 
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Table V. Influence of Dimension of Problem on Efficiency Under 
Nonsparse Conditions l 

n RKF45 ESSYNS R/E 

2 10.98 3.52 3.12 
4 26.31 7.69 3.42 
6 47.40 12.52 3.79 
a 74.21 18.23 4.07 
10 106.78 24.82 4.30 
12 145.11 32.29 4.49 
14 189.16 40.64 4.65 
I6 239.03 49.82 4.80 
18 294.51 59.92 4.92 
20 355.81 70.80 5.03 

* Seconds required for solution of a representative nonsparse S- 
system (i.e. no parameters equal zero) by RKF45 and by 
ESSYNS as a function of the number of equations. These 
results were obtained by solving S-systems representing weakly 
coupled nonlinear systems with n equations. c+pi=l , hiizl.1, 
and all other parameters equal 10-1s -- other details are as 
outlined in Table IV. 

Because many equations can be recast as S-systems, ESSYNS 
can be used to solve a wide variety of ordinary differential 
equations. There is, however, a cost associated with recasting 
equations as S-systems. Whenever this cost does not exceed 
the efficiency gained by solving with ESSYNS, solution of the 
problem in S-system form will be more efficient than 
conventional methods. An example is given here to 
demonstrate that substantial savings can be realized by 
recasting equations as S-systems and then solving with 
ESSYNS. 

Consider a system of equations describing an unbranched 
metabolic pathway. If this pathway is assumed to have an initial 
reaction, Vo, modulated by endproduct inhibition and nine 
intermediate reactions, Vi, governed by Michaelis-Menten 
kinetics, the equations are as follows: 

V, = Vmo Xc Kc-1 Ki / ( Ki + Xo Ko-I KI + Xg ) 

Vi = Vmi Xi I ( Xi + Ki ) i= 1...9 

Xi(I) = Vi-1 Vi (8) 

where Vmo, Xc, Ko, Ki, Vmi and Ki are constants. If the following 
variables are introduced 

Xi0 = ( Ki + Xc Kc-’ KI + Xs ) 

Xj = ( Xi-IO + Kj-to ) j = 11...19 

Eq. (8) can be recast as the following S-system: 

XI(I) = V~-Q Xo Kc-1 Ki Xlc-I VmI XI XII-1 

Xi(I) = Vmi.I Xi-I Xi+g-I - Vmi Xi Xi+Ic-I i = 2...9 

X10(‘) = X9(‘) (9) 

Xi(l) = xj-IO(‘) j = 11...19 

Since the number of dependent variables increases from 9 to 
19, one might expect that solution of Eq. (9) would be less 
efficient than solution of Eq. (8). However, because Eq. (9) is an 
S-system it can be solved with ESSYNS, and the cost 
associated with recasting is more than recouped, as is shown in 
Table VI. The column labeled RKF45D represents the time for 
direct solution of Eq. (8) by RKF45 as a function of the negative 
base ten logarithm of error tolerance, the column labeled 
RKF45S represents the time for solution of Eq. (9) by RKF45, 
and the column labeled ESSYNS represents the time for 
solution of Eq. (9) by ESSYNS. The column labeled COST 
gives the cost of recasting, which is the ratio of times for 
RKF45S and RKF45D; and the column labeled BENEFIT gives 
the savings for the recast system solved with ESSYNS, which is 
the ratio of times for RKF45S and ESSYNS. For every error 
tolerance the cost of recasting is approximately two fold, but the 
benefit with ESSYNS always is greater. The greatest 
improvement in efficiency is seen with an error tolerance of IO-12 
__ solution of the recast equations with ESSYNS is IO times 
more efficient than direct solution of the original equations with 
RKF45. This example demonstrates that the cost of recasting 
can be small compared with the efficiency of solution gained by 
using ESSYNS, especially at stringent error tolerances. 

Table VI. Cost and Benefit Associated with Solving Equations 
by Recasting into Equivalent S-System Form l 

-log e RKF45S RKF45D ESSYNS COST BENEFIT 

2 67.40 29.44 22.90 2.29 2.94 
4 78.10 34.94 30.09 2.24 2.60 
6 149.45 65.08 48.22 2.30 3.10 
8 374.59 157.25 71.90 2.38 5.21 
10 1098.57 461.43 101.45 2.38 10.83 
12 3350.84 1385.94 137.47 2.42 24.38 

l Times for solution of a nonlinear system of ordinary differential 
equations comprised of rational functions as described in the 
text. Solutions were obtained by three different methods: (1) 
Solution of the equivalent S-system form of equations with 
RKF45 (RKF45S), (2) Solution of original equations directly with 
RKF45 (RKF45D) and (3) solution of S-system form with 
ESSYNS. The column labeled COST is the ratio of times for 
RKF45S and RKF45D, and the column labeled BENEFIT is the 
ratio of times for RKF45S and ESSYNS. 

Because solution of S-systems with ESSYNS is at least twice as 
fast as solution with RKF45, we expect that when recasting does 
not more than double the number of operations for the recast 
system, solution in S-form with ESSYNS will be faster than 
direct solution with RKF45. For such problems we expect that 
ESSYNS will be one to two orders of magnitude faster at 
stringent error tolerances. Even for recast problems which more 
than double the number of operations, ESSYNS still will be 
faster when high accuracy is required. 

A novel approach to numerical solution of ordinary differential 
equations has been presented. The advantages are high 
efficiency and wide-spread applicability. The approach is 
particularly well suited for solution of large, complex systems 
requiring high accuracy. The advantages of the Taylor-series 
method presented here are offset somewhat by a computational 
cost associated with recasting into S-system canonical form and, 
at least in the current implementation, by a limitation to nonstiff 
and moderately stiff systems. These limitations are expected to 
diminish as systematic methods are developed to identify and 
recast into S-systems that minimize cost, and as methods are 
incorporated to detect and treat stiffness. 
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