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A SURVEY OF THE THEORY OF HYPERCUBE GRAPHS 

FRANK HARARY 

Computing Research Laboratory, New Mexico State University, Las Cruces, NM 88003, U.S.A. 

JOHN P. HAYES a n d  HORNG-JYH W u  

Advanced Computer Architecture Laboratory, University of Michigan, Ann Arbor, MI 48109, U.S.A. 

Almtract--We present a comprehensive survey of the theory of hypercube graphs. Basic properties related 
to distance, coloring, domination and genus are reviewed. The properties of the n-cube defined by its 
subgraphs are considered next, including thickness, coarseness, Hamiltonian cycles and induced paths and 
cycles. Finally, various embedding and packing problems are discussed, including the determination of 
the cubical dimension of a given cubical graph. 

I .  I N T R O D U C T I O N  

The n-cube or n-dimensional hypercube Q. is defined recursively in terms of the cartesian product 
[1, p. 22] of two graphs as follows: 

Q, =Ks 

Q,= K2 x Q,_,. (1) 

Thus the n-cube, or more briefly the cube, Q. may also be defined as a graph whose node set V, 
consists of the 2" n-dimensional boolean vectors, i.e., vectors with binary coordinates 0 or 1, where 
two nodes are adjacent whenever they differ in exactly one coordinate. Figure 1 shows the n-cubes 
for n ~< 3 with appropriate boolean vectors as node labels. Cube graphs have been much studied 
in graph theory. Interest in hypercubes has been increased by the recent advent of massively parallel 
computers whose structure is that of the hypercube [2, 3]. This not only provides potential 
applications for the existing theory, but also suggests some new aspects of cubes that deserve study. 

We survey the graph-theoretic literature on n-cubes, and present a summary of the major known 
results. Some new problems, motivated in part by parallel computing considerations, are also 
presented. Emphasis is placed on the special properties and subgraphs of cubes, as well as the 
problems of embedding and packing graphs in cubes. Most of the notation used may be found 
in Harary [1]. A graph G = (V, E) has p = I vI nodes and q = IEI edges, and is said to have order 
p and size q. Thus, the order of Q, is 2" and its size is n 2"-'. 

2. B A S I C  P R O P E R T I E S  

We begin by surveying some invariants of hypercubes related to the distance between two nodes. 
This distance is the number of coordinates in which the corresponding boolean vectors differ. The 
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Fig. !. n-cube graphs for n = 1, 2, 3. 
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diameter d(G) of  a graph G is the maximum distance between any pair of  nodes; obviously 
d(Q,) = n. The total distance of  graph G with node set V = {v~, v2 . . . . .  vp} is 

td(G) = Z d(v,, O" 
I~<i<j~<p 

Clearly, td(Q.) may be calculated in the following way. Let Q. be partitioned into two node-disjoint 
(n - O-cubes Q._~ and Q~-l.  Let v~ be any node in Q._~, and let v~ be its neighbor in Q" ~. We 
denote the total distance from v~ to all nodes of  Q. by 

td~(Q.) = ~, d(v,, v:). 
J 

Now the total distance from v~ to all nodes in Q._ ~ is thus td~(Q._ ~) and the distance from v, to 
any node v] in Q~_ i is d(v;, v~) + 1, since the boolean vectors corresponding to v~ and v; must differ 
in exactly d(v:, v~) + 1 coordinates. Hence the total distance from v~ to all 2"- 1 nodes of  Q "  ~ is 

[d(v:, v~) + l] = td~(Q._ ,) + 2"- '  
J 

This implies that 

td~(Q.) = 2td~(Q._ ,) + 2"- ' ,  

from which it follows by induction that td~(Q.)= n2"-~. Now 

td,(Q,) = 2"td,(Q,) = 2td(Q,) 
i 

as the summation counts the distance between every pair of  nodes twice. Consequently, 

td(Q,) = n2 2"- 2. (2) 

A related invariant is the average distance ~(G) which is defined as follows: 

if(G) = td(G) 

Since td(Q,) = n 2 2"- 2 and p = 2", the average distance of  the n-cube is given by 

n2"-  i 
~(Q") - 2" - 1 (3) 

which rapidly approaches n/2 as n increases. 
The (node) connectivity K(G) is the minimum number of nodes whose removal results in a 

disconnected or trivial graph; the edge connectivity 2(G) is defined similarly. We note that for a 
cube, r(Qa ) = 2 ( Q , ) =  n. This follows since for any graph G with minimum degree 6, we have 
k ~< ), ~< 6, so r ( Q . )  ~< 2 (Q.) ~< n. It is also obvious that deleting any n - 1 nodes or edges from 
Q, will not disconnect it. Hence K(Q,) and 2 (Q,) are both n. 

A coloring of  a graph is an assignment of colors to its nodes so that no two adjacent nodes have 
the same color. The chromatic number ~(G) is the minimum number of  colors in any coloring of  
G. The fact that X (Q.) = 2 follows from the theorem of  K6nig that a graph is bicolorable if and 
only if it has no odd cycles. Alternatively, let the weight of a node x of Q, with boolean label 
x~x2. . ,  x, be the integer 

E X i. 
i 

Then color the nodes of  even weight with the first color and those of  odd weight with the second 
color. 

The concepts of  domination and independence are closely related. A node or edge is said to 
dominate or cover the nodes or edges with which it is incident or adjacent. Four  invariants of G 
can be derived from this definition. The minimum number of  nodes that dominate the whole node 
set is the node-node domination number o~o of  the graph, usually called more briefly the domination 
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number of  G. The node--edge, edge-node and edge-edge domination numbers can be similarly 
defined and are denoted by ~0~, cq0 and ~t~, respectively. For example, ~10(G) is the minimum 
number of  edges that dominate all nodes of  G. Two nodes or two edges are independent if they 
are not dominated by each other. A set S of  nodes or edges of  G is independent if any pair of  nodes 
or edges in S are independent in G. The maximum cardinality of  such a set is the node independence 
number flo or edge independence number ill. Gallai [4] proved that for any nontrivial graph G, 

c% + fl0 = P = ~lo + ill. 

This result leads directly to general formulas for ~0 and ct0~ in a cube, and hence for fl0 and fit, 

c% (Q,) = ~o(Q,) = flo(Q,) = ill(Q,) = 2"-~. (4) 

The following related result communicated to us by Q. F. Stout is known for Ctoo(Q,). For  the 
special case n = 2 k - 1, we have ct00(Q,) = 2"/n + I. The maximum number of  node-disjoint copies 
of  a star S = K(1, 2 ~ - l) that can be embedded into Q, is 2"-k. Note that the center of  S dominates 
all other nodes of  S. If  the maximum number of  node-disjoint copies of  S is embedded in a 
hypercube, then their centers form a minimum dominating set. However, =00(Q,) is not known 
when n =~ 2 k -  l. 

The exact determination of  Cql(Q,) is even more difficult. Obviously ~H(Q:) = 2. The heavy lines 
in Fig. 2 mark minimal sets of  edges that dominate all edges of  Q3 and Q4, proving that 0 ~ l l ( Q 3 )  = 3 
and 0qj(Q4) = 6. Stout has also informed us of  the following bounds for n ~> 3: 

n2"/(3n - 1) ~< ~ll(Q,) ~< 3(2"-3) • (5) 

Equation (4) states that fl~ (Q,) = 2"- 1, so that the maximum number of  independent edges in Q, 
is one-half the number of  nodes. In [5], the minimum number of  edges in a maximal independent 
set, denoted by fl~-(G), was introduced. Clearly, for any graph G, ~ ( G ) =  fl~-(G). Thus Fig. 2(a) 
also illustrates the fact that fl i-(Q3)= 3. 

We can extend the definition of  domination to arbitrary subsets V~ and Vz of  V(G). We say that 
VI dominates V2 if for any y e liE, there exists x E V~ which dominates y. A D-partition of G is 
then defined as a partition of  V(G) into dominating sets. An invariant similar to the domination 
number was introduced in [6]. It is concerned with the order of the D-partition instead of  the order 
of  the dominating set. The domatic number r(G) is the maximum order of  the D-partitions of  G. 
Figure 3 displays D-partitions of  maximum order 4, where the nodes are labeled as residue classes 
rood 4. Clearly, D-partitions can be equivalently defined by a coloring procedure, called domatic 
coloring, where each node colored by a certain color is adjacent to nodes colored by all the other 
colors, and T(G) is the maximum number of  colors used. In [6], the theory of  domination of  a 
graph is reviewed in detail, and it is shown to be related to several fields of study. For  example, 
a matching of  a graph G corresponds to an independent dominating set of nodes in the line graph 
of G. One obvious observation is that z(G)~< 6 ( G ) +  1. The following result on r (Q, )  is due to 
Zelinka [7]: for all positive integers k, 

r(Qz~_ ,) = ~ (Q2k) = 2 ~. (6) 
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Fig. 2. Minimal sets of edges (heavy 
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fines) that dominate all edges of Q3 and Q4. 
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0 1 
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Fig. 3. Domatic 4-colorings of Q3 and Q4. 

Although the domatic numbers for cubes of other dimensions are not known, Zelinka [7] 
conjectured that if n + 1 is not a power of 2, than T (Q,) = n. 

3. TOPOLOGICAL INVARIANTS 

The genus 7(G) is the minimum number of handles which must be added to a sphere so that 
G can be embedded in the resulting surface with no edges crossing. Thus a graph G is planar when 

(G) = 0, and is called toroidal if Y (G) = 1. The genus of a cube was first found by Ringel [8] and 
later was independently rediscovered by Beineke and Harary [9]. I t  is evident from Fig. 2 that 
? (Q3) = 0 and ? ((24) = 1. From Euler's characteristic equation for spherical polyhedra, we know 
that for a polyhedron of genus ? with V nodes, E edges and F faces, 

V - E + F = 2 - 27. (7) 

If  G is a connected graph of genus ? and has no triangles then, as mentioned in [9], the following 
inequality is implied by equation (7): 

q p - 2  
7(G) >t 

4 2 
Hence, 

n2 "-I  2 " -  2 
( Q . ) / > T  T = ( n - 4 ) 2 " - 3 + l '  

and we denote the latter expression by ~,. Embeddings of Q, in an orientable surface of genus 7, 
are constructed in [8, 9], proving that 7(Q,)~< 7,, therefore 

7(Q,) = (n - 4)2 "-3 + 1. (8) 

The crossing number v (G) of G is defined as the minimum number of pairwise intersections of 
its edges when G is drawn in the plane. The determination of the exact value of v(G) is known 
to be NP-complete. It has been much studied for complete graphs and complete bigraphs but only 
upper bounds (which most likely give the exact values) are established [3, 10]. All that is known 
is 

v (Q3) = 0 

as Q3 is planar, and 

v ( O , )  = 8 

as illustrated in Fig. 2(b). It is easy to draw Q5 in the plane with 56 crossings; hence 

v (Qs) ~< 56. 

The determination of the exact value of v (Q,) for general n is a fiendishly intractable problem. 
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Two properties, thickness and coarseness, are defined by the planar subgraphs of a graph. The 
thickness O(G) is the minimum number of  planar subgraphs whose union is G. Since the maximal 
planar graph which has no triangles has q = 2p - 4 edges, it follows that 

V 1V ] O(Q,)>~ = n 2 n - 1 2 " + l - 4  = 4 _ 2 3 _ n  . 

Obviously, 0 ( Q I ) =  0 (Q2) - -O(Q3)=  1 as Q3 is planar. But O(Q4)~ 1, so 

1. 
Kleinert [11] has shown by construction that Q~_ ~ can be partitioned into h planar subgraphs. 
Hence for all n, 

1 • 
From these two bounds, Kleinert concluded that 

The coarseness ~ (G), is defined as the maximum number of  edge-disjoint nonplanar subgraphs 
of  G. Har tman [12] has determined bounds for ~(Q,). The upper bound was established by a 
homeomorphic embedding of  K3,3 into Q4, also called a cubical refinement of  K3,3. The embedded 
version of  K3.3 in Q4 has 14 edges as shown in Fig. 4(a). Since K3,3 is not planar, 

Har tman also proved the following inequality indicating how forming the iterated cartesian 
product G ~ = G x G x • .. x G of  a graph G with p nodes increases the coarseness: 

~(G")>~np~-~(G). 

The lower bound on ~ (Q~) follows from the previous inequality and the fact that Q4 can be viewed 
as the edge-disjoint union of two isomorphic cubical refinements of K5 of the kind shown in 
Fig. 4(b). Hence ~(Q4)= 2 and, in general, 

It is easily shown and well known that every cube Q~ with n/> 2 is hamiltonian; see Fig. 5. Of 
course Q2 consists of  a hamiltonian cycle and Q3 has exactly one such cycle up to automorphism, 
but six of  them when Q3 has labeled nodes. Let hn (or H,)  be the number of  hamiltonian cycles 
in a labeled Q, (or an unlabeled one). Gilbert [13] established most of the values in Table 1. For  

(a) Ka, 3 (b) K s 

Fig. 4. Cubical refinements of K3, 3 and K 5. 

( ' A M W . A  15 4~-D 

! 

Fig. 5. Hamiltonian cycle (heavy lines) in Q4. 
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Table I. The numbers H, and h, of 
hamiltonian cycles in an unlabeled and 

in a labeled cube Q, 

n H n h. 

2 I 1 
3 1 6 
4 9 1344 
5 2 7 5 , 0 6 5  906,545,760 

The cited value for h s is from A. Bell 
and P. Hallowell, "Crawling round 
a cube edge," Computing (U.K.), 
p. 9 (Feb. 1973). The value of H 5 
was determined by D. Russell 
in June 1987; his article giving 
the method of solution will be 
published. 

Table 2. The length s, of 
snakes and c, of coils in Q, 

n s n c n 

1 1 2 
2 2 4 
3 4 6 
4 7 8 
5 13 14 
6 26 26 

n >i 6, no exact values are known but Douglas [14] actually found the lower and upper bounds in 
inequality (11); see Dixon and Graham [15]. 

) i 2"-i-t  (1344)2"-4.n.2{2"-2-~-"]<~h(Q.)<~Ln(n - 1)/232"-'-2t"-'- '° ': (11) 
\ i = 5  

By definition H is an induced subgraph of  G if for any u, v • V(H) ,  if u and v are adjacent in 
G then they are also adjacent in H. The induced paths and induced cycles of  n-cubes are subgraphs 
of  significance to coding theory and related areas [16-18]. An n-snake is a longest induced path 
in Q., and an n-coil is a longest induced cycle. Let s. and c. denote the lengths of  the n-snakes 
and n-coils. Table 2, calculated with computer assistance by Davies [16], shows s. and c. for n ~< 6; 
the values for larger n are not known. As shown in Table 2, c. +1= 2s. for 3 ~< n ~< 5. Davies 
conjectured that this is true for all n >/3 and that an n-coil can be formed by joining two 
(n - 1)-snakes at their ends. The following inequalities [18] give the known upper and lower bounds 
on c. for n >t 6: 

7(2" )1) ~< c. ~< 2" - ~ 2n - 12 (12) 
4(n - 7n(n - 1) 2 + 2 

4. M A T R I C E S  A N D  C H A R A C T E R I Z A T I O N S  O F  Q,  

The adjacency matrix A = A (G) is the p x p matrix in which ~u = 1 if vi is adjacent to v~, and 
~u = 0, otherwise. The characteristic polynomial ~ (G) of  G is defined as det (xI  - A). The spectrum 
S(G),  is then the nondecreasing sequence, A I >/22 t> . . .  t> 2p of  eigenvalues of  A [the roots of  
~b(G) = 0]. For  example, S(K2) = ( +  1, - 1) and S(Kp) = [p - 1, ( -  l y - l ] .  Two graphs G1, G2 are 
called cospectral if they have the same spectrum, i.e., the same characteristic polynomial. The 
smallest pair of  cospectral graphs were given in Harary et al. [19]; they have just five nodes. 
Cvetkovic [20] and Schwenk [21] noted that the spectrum of  the cartesian product of  two graphs 
is the set-sum of  their spectra: 

where 

and 

S(Gt x G2) = Sl + S2, 

s ,  = s ( o , )  = {~,, ~ . . . .  } 

s2 = S(G2) = {Ul ,  ~2 . . . .  } 

s ,  + & = + uj}. 

Applying this relationship to Q. as in equation (1), we obtain: 
n 

~b (Q.) = l-I (x - n + 20 (7) . 
i = 0  

(13) 
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Fig. 6. The 4 spanning trees of Q3. 
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For example, 
~b (Q4) = (x - 4)(x - 2)4x6(x + 2)4(x + 4). 

Another useful matrix associated with G is its connection matrix M. It can be obtained from A 
by replacing the zero ith diagonal entry of - A  by the degree of the ith node. The matrix-tree 
theorem of Kirchhoff [1] states that if G has the connection matrix M, then all cofactors of M are 
equal to the number of spanning trees of G which is denoted by T(G). Schwenk [21] applied this 
theorem to get 

f i  (2i) (7). T(Q,) = 2-" (14) 
i=1 

For example, substituting 2 for n in equation (14), yields T(Qz) = 4. This implies that Q2 has four 
spanning trees as shown in Fig. 6. 

The diverse applications of n-cube graphs have resulted in many ways of characterizing them. 
Some representative examples follow: 

(i) Foldes [22] showed that every cube is a bipartite graph such that the number of 
shortest paths between any two nodes x, y is the factorial of the distance between 
them, i.e., d(x,y)! 

(ii) Garey and Graham [23] gave a criterion similar to example (i), namely, that a cube 
is a bipartite graph such that the number of node-disjoint paths between any two 
nodes x, y of the graph is d(x,y). 

(iii) Laborde and Hebbare [24] found the following: let C4 be the class of connected 
graphs such that each pair of adjacent edges lies in exactly one 4-cycle. Then we can 
characterize the n-cube as follows: a graph G in Ca is an n-cube if and only if its 
minimum degree 6 satisfies p = 2 ~).  

(iv) The following result is due to van den Cruyce [25]. An induced subgraph H of G is 
convex [26] if for any two nodes of H, every geodesic joining them is in H. A convex 
subgraph is proper if it is not K,, Kz, or G. The set of all pairwise nonisomorphic 
proper convex subgraphs of a graph G is denoted by PC(G). For any n >i 3, 
PC(Q,) = { Q 2  . . . . .  Q,_ ,}. If G is a connected graph such that 
PC(G) = {Qz, • • . ,  Q,-~} with n ~> 3 and p = 2", then G is isomorphic to Q,. 

5. E M B E D D I N G  AND PACKING PROBLEMS 

Embedding problems are concerned with finding mappings between two graphs that preserve 
certain topological properties. Various embedding problems of n-cubes have applications in coding 
theory [17], linguistics [27] and computer system design [28]. Following Ref. [1], a homomorphism 
h of G into G' can be considered as a function from V(G) into V(G') such that if u and v are 
adjacent in G, then h(u) and h(v) are adjacent in G'. 

Several classes of embedding are discussed here. If  there is an isomorphic embedding of G into 
Q,, then G is isomorphic to a subgraph of Q,. Graphs that can be isomorphically embedded in 
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an n-cube are called cubical. A graph H has an isometric embedding into a graph G if and only 
if H = G and for all u, v e V(H), 

dn(u, v) = dG(u, v ). 

A topological or homeomorphic embedding can be derived from an isomorphic embedding by 
subdividing some edges of G so that there exists an isomorphic embedding from the edge- 
subdivided graph of G into Q,. The composition of an edge-subdivision and an isomorphic 
embedding is then an homeomorphic embedding of G into Q,. Harary [29] defined tcd(G) for an 
arbitrary graph G, not necessarily cubical, as the minimum n such that some subdivision H of G 
is contained in Q,. 

There is another class of embeddings where the range is restricted to subcubes instead of nodes, 
and which have a broader definition of distance. A subcube of G can be represented by a vector 
X = x l . . .  x i . . .  x,, where xie 0, 1,, and • denotes a coordinate value that is either 0 or 1. For 
example, X = 01. .  represents the subcube of Q4 with the node set {0100, 0101, 0110, 0111}. Given 
two subcubes 

. ~  : X I . . . x i . . . X n ,  

Y =Yt • . .Yr . . .Y, ,  

the distance Di(X, Y) between X and Y along the ith dimension is 1 if {x~, y~} = {0, 1}; otherwise, 
it is O. Then the distance between two subeubes X, Y is given by: 

O(X, Y)= ~ D,(X, Y)= ~ d(xi, y,). 
i ~ l  iffil  

We say that X and Y are adjacent if D (X, Y) = 1. A squashed-cube embedding, a concept due to 
Graham and Pollak [30], is a one-to-one homomorphism from V (G) into a set of mutually disjoint 
subcubes which preserves distance as defined above. Figure 7 demonstrates a squashed-cube 
embedding of/(-4 onto Q3. 

Several interesting problems arise from the various kinds of embeddings. Let fbe  any embedding 
function of one of the four types, i.e., isomorphic, isometric, homeomorphic, squashed-cube. 

Problem 1 
Characterize the graphs which can be embedded in Q, by f. 

Problem 2 
What is the smallest n for which f embeds G in Q,? 

Problem 3 

If f embeds G in Q,, then for k >/n, what is the maximum number of node- or edge-disjoint copies 
of G that can be embedded in Qk? 

K, % 

Fig. 7. A squashed-cube embedding of K 4 onto Q3. 
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Problem 4 

I f f  embeds G in Q,, then in how many ways can this be done? 

We now briefly discuss each of these problems. Hartman [31] and Winkler [32] prove that we 
can always find a homeomorphic or squashed-cube embedding from K, + ~ into (2,. Hence there are 
homeomorphic and squashed-cube embeddings from any connected graph of order n + 1 into Q,. 

Djokovic [33] characterized the graphs that are isometrically embeddable in Q, as follows. 
Obviously, such graphs must be bipartite. Let L (v~, v2) be the set of all nodes x of G such that 
d(v~, x) < d(v2, x) with L standing for "less than". For sufficiently large n, a connected bipartite 
graph G has an isometric embedding into Q, if and only if for every edge (vj, v2) of G and all 
x, y, z ~ L(vt, v:), d(x, y) + d(y, z) = d(x, z) implies y ~ C(v~, v2). It is interesting to note that a 
cubical graph need not have an isometric embedding into any Q,. Figure 8 shows a example of 
a cubical graph P (3, 3, 3, 3) which is isomorphically embeddable in Q5 as indicated by the labeling. 
However, it is not isometrically embeddable since d(v, v ' )=  3, whereas d ( f ( v ) , f ( v ' ) ) =  1. 

Although characterizations have been found of the graphs for which an isometric, homeo- 
morphic, or squashed-cube embedding into Q, exists, no criterion for cubical graphs is known as 
yet. The following results pertaining to Problem 1 have been found for isomorphic embeddings: 

(1) If a graph is cubical then it is bipartite, but the converse is not true [27]. The 
smallest counterexample is K2,3. 

(2) All trees are cubical [27]. The proof by induction is trivial. 
(3) Two-dimensional meshes and hexagonal graphs are cubical [34]. 
(4) "One-legged caterpillars" span the hypercube [35]. 

Havel and Moravek [34] found a criterion for a graph G to be cubical which is based on a 
technique called c-valuation for labelling the edges of G. A c-valuation of a bipartite graph G is 
a labeling of E (G) such that: (i) for each cycle in G, all distinct edge labels occur an even number 
of times; (ii) for each path in G, there exists at least one edge label which occurs an odd number 
of times. The dimension of a c-valuation is the number of edge labels used. It is shown in [34] that 
a graph G is cubical and G c Qk if and only if there exists a c-valuation of G of dimension k. 
Intuitively, the labels on the edges are coordinated with the directions of the edges in a k-cube 
embedding of G. 

The use of c-valuations for deciding the embeddability of hexagonal graphs and two-dimensional 
meshes is demonstrated in Fig. 9. We also observe at once that the graph product operation 
preserves isomorphic embeddability, that is, if G~ and G2 are cubical, then Gt x G2 is cubical. An 
n-dimensional mesh or grid is an n-fold cartesian product of paths. It follows from the foregoing 
results that every n-dimensional mesh is cubical. Since many problems in scientific computation 
are defined on n-dimensional meshes, this important result implies that hypercube-structured 
computers are perfectly suited to such problems. 

Garey and Graham [23] proposed another way of tackling Problem 1 in terms of graphs that 
are not cubical. A graph G is cube-critical if it is not cubical and every proper subgraph H of G 
is cubical. (Thus, such a graph is minimal noncubical.) Figure 10 shows several examples of 
cube-critical graphs. Thus, a graph is cubical if and only if it contains no cube-critical subgraph. 
Garey and Graham [23] and Gorbatov [36] have given procedures for constructing cube-critical 
graphs from other cube-critical graphs. 

ooo_.ol 10001A 

00000 ~ ~  10000 
~ 0 0  l y  

01000 11000 

Fig. 8. A cubical graph with no isometric embedding. 
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4 4 4 4 
3 1 5 

2 2 2, 2 
3 1 ~ 5 

6 6 6, 6 
3 1 .,J 5 

/ 

(a) 

(b) 

Fig. 9. c-Valuations of a 2-dimensional mesh 
and a hexagonal graph. 

w W 

C3 C 5 

x 
K2,3  

Fig. 10. Four cube-critical graphs. 

Next we consider Problem 2. The minimum n required for an isomorphic embedding from G 
into Q, is defined as the cubical dimension of  G and is denoted by cd(G). The following simple result 
relates the cubical dimension of  the cartesian product  G t x G2 to those of  Gt and (32; we omit its 
straightforward proof. I f  cd(G,) = k~ and cd(G2) = k2, then cd(Gt x G2) = k~ + k2. An immediate 
corollary of  this result gives the cubical dimension of  the mesh Gr,~ = Pr x Ps (and extends at once 
to higher dimensional meshes): 

cd (G,,s) = I-log2 r-] + ['log 2 s -]. (15) 

Havel and Liebl [35, 37-39] and Nebesky [40, 41] obtained several results concerning Problem 
2 in terms of  c-valuation. The more important  o f  these results are now summarized: if T t2) is the 
complete binary tree of  height n, then 

cd(T~ 2)) = n + 2 (16) 

To prove equation (16), we note that a c-valuation of  order n + 2 exists for T~ 2). Assume that there 
is an isomorphic embedding F from Tt~ ) into Q, + t, and that a node v in Q, + ~ is the image of  the 
root o f  T~fl ~. Then there are 2" nodes Do in Q,+l which are at an odd distance from v, with the 
same number  at an even distance from v. Since T~ 2) has 2" ÷ ~ - 1 nodes, only one node v* in Q, + 
is not in the image of the tree. The number  of  nodes whose distance from the root F-J (v )  of  T~ 2~ 
is odd is 2 + 23+ 25--t - . . . .  which is (2 " + 2 -  2)/3 when n is odd and (2 "+ j -  2)/3 when n is even. 
No matter  whether v* is assigned to Do or not, the number of  nodes which are at odd distance 
from v cannot be 2". Hence, T~ 2) cannot be embedded in Q~ + ~, so its cubical dimension is n + 2. 

Figure 11 shows a c-valuation of  T~ 2). The cubical dimension of  a complete k-ary tree T~, k~ for 
k f> 3, is still unknown. However,  Havel and Liebl [39] have found some results about  the cubical 
dimension of  a complete k-ary tree with two levels, i.e., T~ k). 

By a similar method, that is, by determining an n-dimensional c-valuation and showing that no 
lower-dimensional c-valuation exists, the following cubical dimensions were calculated. Nebesky 
[40] defined Dfl ,  for n i> 1, as the tree obtained by joining the roots of  two disjoint copies of  T~ ~) 
with a new edge and proved that 

cd(Dfl)  = n + 2. (17) 
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Fig. 11. A c-valuation of the binary tree T~ 2). 

287 

Figure 12 shows D3 ~ . Similarly, Havel [39] defined B(~ ) as the tree obtained from T(~ 2) by adding 
one edge to the root  and splitting each node into k nodes. He then determined the cubical dimension 
of  B~ ) to be 

cd(B~ )) = n + [_log2 k_J. (18) 

A k-star is a star with k endnodes, i.e., Kl.k. A k-quasistar denoted S (h, t2 . . . . .  tk) is a starlike 
tree that is homeomorphic to a k-star in which each edge ei has been expanded to a path of length 
t~. A bipartite graph is equitable if it can be colored by two colors in such a way that there are 
equal numbers of  nodes of  each color. Nebesky [41] found that if S is an equitable 3-quasistar with 
I V(S)l = 2 n for some n I> 3, then S is a spanning tree of  Qn, so cd(S) = n. 

Figure 13 shows the only two spanning 3-quasistars with 8 nodes. This result has been 
generalized to a characterization of  those starlike trees that span a hypercube by Harary and 
Lewinter [42], namely, the equitable ones. 

Problem 3 is an instance of  the general graph packing problem in Qn. First we consider the 
problem of  packing subcubes into Qn. If  N(Qm c Q~) is the number of distinct (labeled) m-cubes 
in Qn for m ~< n, then 

, 9 ,  

More specifically, the node-disjoint (or edge-disjoint) packing, denoted pac0(Qm c Q,) [or 
pacl(Qm c Q~)], is the maximum number of  m-dimensional subcubes that can be embedded in Qn 
without overlapping nodes (or edges). For  example, pac0(Q2 c Q4) = 4 as illustrated in Fig. 14, and 
pacl(Q2 c Q4) = 8. 

An interesting related concept is that of  mispacking. The node-disjoint (or edge-disjoint) 
mispacking, denoted as mispaco(Q,, c Q~) [or mispact(Qm c Q,)], is the minimum number of  copies 
of  Qm in a maximal node-disjoint set embeddable into Qn- For  example, 

mispac0(Q2 c Q4) = mispacl(Q2 c Q4) = 3; 

see Fig. 15. The well-known problem of  finding a matching for a graph G is exactly the problem 
of  determining a node-disjoint packing of edges into G. The maximum matching size is 
pac0(Qi c Q~) and the minimum maximal matching size is mispac0(Q~ ~ Q,). Obviously, 

Fig. 12. The tree Dfl of cubical dimension 5. Fig. 13. Two spanning 3-quasistars (heavy lines) of Q3. 
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Fig. 14. A node-disjoint packing of Q2 onto Q4. 

FRANK HARARY et al. 
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Fig. 15. Node- and edge-disjoint mispacking of Q2 into Q4. 

pac0(Ql c Qn) = fl l(Qn) and mispac0(Qt c Q~) = fl/-(Q~); Fig. 2 shows minimum maximal match- 
ings for Q3 and Q4. Forcade [43] has determined the limit of  the ratio of  mispaco(Ql ~ Qn) to 
I V(Qn)l when n approaches infinity, viz., 

mispac0(QI c Q,) 1 (20) 
lim 2~ = ~. 

n ~ c t 3  
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