
Informorion Processing & Mmagemenr Vol. 24, No. 3, pp. 349-371. 1988
Printed in Great Britain.

03064573/88 63.oLl + .ca
Copyright 0 1988 Pergamon Press plc

AN EXTENDED RELATIONAL
DOCUMENT RETRIEVAL MODEL

DAVID C. BLAIR
Associate Professor, Computer and Information Systems,

The University of Michigan, Ann Arbor, MI 48109, U.S.A.

Abstract-Relational Data Base Management Systems offer a commercially available
tool with which to build effective document retrieval systems. The full potential of the
relational model for supporting the kind of ad hoc inquiry characteristic of document
retrieval has only recently been explored. In addition, commercially available relational
DBMS’s also provide effective tools for managing document data bases by providing
facilities for, inter alia, concurrency control, data migration and reorganization routines,
authorization mechanisms, enforcement of integrity constraints, dynamic data defini-
tion, etc. This article will present a relational logical model to support a sophisticated
document retrieval system in which flexible forms of inferential and associative searching
can be performed. Examples of ad hoc inquiry will be presented in SQL. Several prob-
lems of particular importance to document retrieval will be discussed, including the
importance of Conjunctive Normal Form in query formulation, unique aspects of doc-
ument retrieval storage and processing overhead, and techniques for reducing the size
of storage without severely impacting retrieval effectiveness.

1. INTRODUCTION

The flexibility of the relational logical model in database system design is well known, so
the application of relational design structures to information retrieval is not surprising. A
recent spate of papers applying relational logical structures and query languages to doc-
ument, or information, retrieval systems [l-3] demonstrates the broad applicability of these
techniques. These are not entirely new ideas. The first retrieval system to use a relational
logical structure, the Relational Data File [4-61, was primarily a document retrieval sys-
tem, and a 1974 paper showed the efficacy of the early relational data manipulation lan-
guage SQUARE for querying document data bases [7].

The work to date in relational models of document retrieval has been largely prelim-
inary and has modeled only relatively simple document retrieval situations. This article
describes an extended relational model for document retrieval and will discuss some re-
trieval considerations of particular importance for document retrieval.

2. DOCUMENT RETRIEVAL: THE CENTRAL PROBLEM

One of the principal advantages which relational logical structures offer over the ear-
lier logical structures, hierarchical and network (CODASYL), is the comparative ease with
which an inquirer using a relational database can construct ad hoc-queries that are not
routinely or repeatedly asked of the system. The capacity to be able to answer ad hoc
inquiries easily is an advantage in database management systems, but not usually a neces-
sity. For document retrieval, on the other hand, the ability to answer ad hoc inquiries is
a necessity [a]. Document retrieval systems have been implemented using logical database
structures and query languages which preceded relational designs [9], but such systems are
comparatively difficult to use in ad hoc inquiry and, resultingly, will be difficult to use to
implement all but the simplest logical models of document retrieval.

Ad hoc inquiry is important for document retrieval systems because of the tremen-
dous variety in the way that people search for needed documents. Inquirers may want doc-
uments because they are authored by particular individuals, are published during a
particular time frame, appear in one or several journals, concern a particular subject, are
written by authors who are affiliated with certain institutions, are of a particular type (e.g.,

349

350 DAVID C. BLAIR

article, letter, report, conference proceedings, etc.), or any complex combination of such
search categories. Document retrieval systems that do not permit this kind of search flex-
ibility greatly reduce the chances of an inquirer’s retrieving useful articles. But the formu-
lation of a wide variety of ad hoc queries is not the only important capability of an
advanced document retrieval system. Such a system should enable the inquirer to retrieve
not just information about individual documents but also information about the aggregate
of documents (meta-information, if you will). Information such as, for example, what sub-
ject headings are most frequently applied to documents authored by individuals working
at institute X. This is not specifically a request for documents, but a request for impor-
tant tacit information that may be derivable from the document descriptions in the data-
base. The ability to retrieve such tacit information is an important capability of an
advanced document retrieval system. The following discussion will show how such tacit
information may be retrieved through the use of relational logical structures and Data
Manipulation Languages.

3. BASIC RELATIONAL STRUCTURE

The basic (normalized) relational structure of the initial document retrieval facility
would look like this (see Appendix D):

Relation name Attributes

CITATION DOCUMENT #*, TITLE, DOCUMENT TYPE, PUBLICATION DATE,
JOURNAL NAME, VOLUME, NUMBER, PAGES, ACQUISITION DATE

ABSTRACT DOCUMENT #*, ABSTRACT

AUTHOR DOCUMENT #*, NAME

DIRECTORY NAME* (author’s name), INSTITUTION

INSTITUTION INSTITUTION* (name), TYPE, ADDRESS, PHONE

JOURNAL JOURNAL NAME*, PUBLISHER

be

Key attributes are indicated by an *.

Such a set of relations would represent a basic document retrieval schema, which could
enhanced in several ways. But before we look at the enhancements we should look at

some of the inquiries which the basic logical structure can support. For readability, I will
use the SQL query language [lo] when describing how actual queries would be constructed,
since SQL is relatively understandable even to those with no familiarity with relational
query languages.

3.1 Typical queries

1. What are the titles of articles written by Raymond Larsen?

SELECT TITLE
FROM CITATION
WHERE DOCUMENT # =

SELECT DOCUMENT #
FROM AUTHOR
WHERE NAME = ‘Raymond Larsen’

2. Retrieve the abstracts of the articles written by Raymond Larsen.

SELECT ABSTRACT
FROM ABSTRACT
WHERE DOCUMENT # =

SELECT DOCUMENT #
FROM AUTHOR
WHERE NAME = ‘Raymond Larsen’

Document retrieval model 351

3. Where does Raymond Larsen work?

SELECT INSTITUTION
FROM DIRECTORY
WHERE NAME = ‘Raymond Larsen’

4. What is Raymond Larsen’s address?

SELECT ADDRESS
FROM INSTITUTE
WHERE INSTITUTION =

SELECT INSTITUTION
FROM DIRECTORY
WHERE NAME = ‘Raymond Larsen’

5. Which authors of articles in our database are affiliated with the University of
California?

SELECT NAME
FROM DIRECTORY
WHERE INSTITUTION = ‘University of California’

A frequent service provided by many information centers is to send individuals a list
of the contents of specified journals or magazines. Such a service could be easily provided
in the sample database model:

6. What are the titles of the articles appearing in April 1987 issue of Communications
of the ACM?

SELECT TITLE
FROM CITATION
WHERE JOURNAL NAME = ‘Communications of the ACM’
AND PUBLICATION DATE = 04/87

This request could be made by specifying the VOLUME and NUMBER of the jour-
nal if that information is more readily available than the date. Sometimes, though, the
inquirer may not even know the date or volume number of the journal whose contents he
or she wants. The inquirer may only want to know the contents of the most recent copy
of the desired journal that exists on the database. Such a request can be accommodated
by using an arithmetic function that exists in most major relational database management
systems:

7. What are the titles of the articles appearing in the most recently published issue of
Communications of the ACM?

SELECT TITLE
FROM CITATION
WHERE JOURNAL NAME = ‘Communications of the ACM’
AND PUBLICATION DATE = MAX

Conjunctive queries such as the two above are known in the document retrieval ver-
nacular as Boolean Queries. Such queries are quite frequent in document retrieval.

Another type of current contents request might be made by an inquirer who wants to
see the titles of articles appearing in a specific journal (or journals) over a period of time.

352 DAVID C. BLAIR

Such an information need may occur when an individual is doing a literature search for
certain types of articles, is catching up on his or her reading in a journal he or she has not
seen in a while, or is looking for a specific article whose title he or she can recognize but
whose date of publication he or she has forgotten:

8. Give me the titles of all articles published in Communication of the ACM since
1980.

SELECT TITLE
FROM CITATION
WHERE JOURNAL NAME = ‘Communications of the ACM’
AND PUBLICATION DATE 12/3 l/79
ORDER BY PUBLICATION DATE DESCENDING

The final statement in the above request ensured that the titles will be in chronologi-
cal order with the most recent first.

For individuals who want to be informed regularly about the content of journals
which are added to the document database, a complex Boolean request could be kept on
file for that individual that includes the names of all the journals (and any other document
parameters) of which he or she wants to be informed. The request would merely be run
at periodic intervals and the results forwarded to the requesting individual. To ensure that
only the contents of journals added since the inquirer’s last request are returned, the
request should be made using the Acquisition Date rather than the Publication Date as a
search parameter. For example:

9. Give me the titles of all the articles published in Communications of the ACM and
Computer Journal since my last request (l/3 l/87).

SELECT TITLE
FROM CITATION
WHERE JOURNAL NAME IN (‘Communications of the ACM’, ‘Computer

Journal’)
AND ACQUISITION DATE > l/3 l/87

Searching by acquisition date has three advantages. (1) The inquirer is not overloaded
with previously retrieved material. (2) The request can be processed very efficiently since
only a small part of the database (those articles added since l/31/87) needs to be accessed.
(3) It will retrieve older journal articles that have only recently been added to the database
(such as, in our example, a back issue of Computer Journal). This is not possible if
retrieval is based on Publication Date.

4. THE EXTENDED RELATIONAL MODEL

By adding several relations to the schema described previously, we can greatly increase
the kinds of queries that can be answered by the retrieval system. The most important addi-
tion to the database scheme at this point would be to introduce some kind of subject-access
capability. This can be done through the following relation:

KEYWORDS: DOCUMENT #*, KEYWORD*, WEIGHT

This relation relates subject descriptions (keywords) to specific documents. It also
includes a weight (usually between 0 and 1 .O) which reflects how applicable a particular
subject description is to a given document. For example, a document might be represented
as follows:

Document retrieval model

#4357 Special Computers 0.5
#4357 Programming 0.7
#4357 File Organization 0.9

353

This would indicate that document #43.57 deals with programming and file organiza-
tion on special computers, and that it is largely about file organization. With this kind of
structure there is no limit to the number of keywords that could be assigned to a particu-
lar document, but if we look at existing systems we see that usually 6-10 keywords are typi-
cally used to describe the subject content of a document.

Now we can retrieve documents from the system based on subject specifications:

10. Retrieve the documents which concern occupational retraining and have an
assigned subject weight of greater than 0.7.

SELECT *
FROM CITATION
WHERE DOCUMENT # =

SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORD = ‘occupational retraining’
AND WEIGHT 0.7
ORDER BY WEIGHT DESCENDING

(The * in the SELECT statement indicates that the entire tuple is to be retrieved.)
It is very useful for a document retrieval system to be able to order retrieved citations

according to some priority (such as above, where they are ordered in descending keyword
weight). One of the most persistent problems in document retrieval is output overload- the
condition where too many documents (i.e., document citations) are retrieved for the
inquirer to browse through to find the documents he/she wants 111, 121. In many modern
computerized retrieval systems, a request like number 10 with a single keyword specifica-
tion may retrieve thousands (or, even tens of thousands) of document citations. All of the
retrieved citations will have had, by definition, the specified keyword assigned to them, but
many of the citations refer to documents that are only marginally concerned with the sub-
ject indicated by the keyword. By ordering the retrieved citations according to keyword
weight, the inquirer ensures that even where large numbers of citations are retrieved, the
ones that more closely match the request are presented to him/her first. Consequently, even
large retrieved sets of documents may not be an impediment to effective retrieval since the
citations that are more likely to satisfy the inquirer will be ranked first. The ORDER BY
AND GROUP BY commands in SQL give the inquirer wide latitude in prioritizing output.

Because of the sociological nature of research and industry, the name of an individ-
ual who works in a relevant area of research can be used as a clue to find other relevant
information on the database, by using the KEYWORDS relation in combination with the
other relations to retrieve relevant documents. For example:

11. Give me the titles of articles on expert systems that are published by individual
who are affiliated with the same institute with which John Murphy is affiliated.

SELECT
FROM
WHERE

TITLE
CITATION FIRST
FIRST.DOCUMENT # = ANY
SELECT DOCUMENT #
FROM CITATION SECOND, KEYWORDS

354 DAVID C. BLAIR

WHERE KEYWORDS.KEYWORD = ‘expert systems’
AND SECOND.CITATION NAME = ANY

SELECT NAME
FROM DIRECTORY FIRST
WHERE FIRST.INSTITUTION =

SELECT INSTITUTION
FROM DIRECTORY SECOND
WHERE SECOND.NAME = ‘John

Murphy’

(The ‘WHERE FIRST.DOCUMENT # = ANY command indicates that titles should
be retrieved whose document numbers are any of the ones found by the following SELECT
commands. The CITATION FIRST and CITATION SECOND specification is a SEQUEL
convention that allows the results of one search of the CITATION relation to be used as
arguments for a second search of the CITATION relation.)

Sometimes a subject search must be reversed for those inquirers who are familiar with
the literature of the database but are not familiar with the exact subject descriptions being
used (even a minor spelling error in keyword specification might lead to poor retrieval
results). To get into the system an inquirer might retrieve the keywords that are used to
index a document in which he or she is interested and that is already on the database. The
inquirer would then use those retrieved keywords to formulate a conventional subject
request to the system to retrieve other documents on the same subject.

12. Give me the keywords used to describe the document “Process control in shop-

floor automation” by Molly Bloom.

SELECT KEYWORD
FROM KEYWORDS
WHERE DOCUMENT # =

SELECT DOCUMENT #
FROM CITATION, AUTHOR
WHERE CITATION.DOCUMENT # =

AUTHOR.DOCUMENT #
AND CITATION.TITLE = ‘Process control in shop-floor

automation’
AND AUTHOR.NAME = ‘Molly Bloom’

This search could be combined into one query as follows:

13. SELECT TITLE
FROM CITATION
WHERE DOCUMENT # =

SELECT FIRST.DOCUMENT #
FROM KEYWORDS FIRST
WHERE FIRST.WEIGHT > 0.5
AND FIRST.KEYWORD = ANY

SELECT SECOND.KEYWORD
FROM KEYWORDS SECOND
WHERE SECOND.DOCUMENT # =

SELECT DOCUMENT #
FROM CITATION, AUTHOR
WHERE CITATION.DOCUMENT # =

AUTHOR.DOC #

Document retrieval model 355

AND CITATION.TITLE = ‘Process
control in shop-floor
automation’

AND AUTHOR.NAME = ‘Molly
Bloom’

The principal disadvantage of Query 13 is that the inquirer loses some of the query-
formulation control that he or she would have if the search were conducted as a two-stage
process (i.e., if the target document had many keywords assigned to it, the retrieved set
of documents which have any of those keywords might be unmanageably large).

5. INFERENTIAL RETRIEVAL IN RELATIONAL DATABASES

A relational document retrieval system does not just contain documents, it also con-
tains a great deal of valuable information of an inferential or tacit nature. For example,
an inquirer may want to know what the major journal sources are in the field of flexible
manufacturing so he or she will be certain to keep up to date on their articles:

14. SELECT UNIQUE JOURNAL NAME, COUNT(DOCUMENT #)
FROM CITATION
WHERE DOCUMENT # = ANY

SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORD = ‘flexible manufacturing’
ORDER BY COUNT(DOCUMENT #) DESCENDING

The command COUNT(DOCUMENT #) keeps a running total of the number of doc-
uments that have appeared in a given journal and have been assigned the subject descrip-
tion flexible manufacturing. The ORDER BY . . . command ensures that the output will
consist of a rank ordering of journal titles arranged in descending order by how many arti-
cles on flexible manufacturing have appeared in them. Often, an inquirer can infer a lot
about what kind of research may go on at a particular institution just by looking at the
kinds of publications, memos, or reports that are produced by individuals affiliated with
that institution. By tabulating the information in certain ways, some interesting relation-
ships may be revealed. For example:

15. Rank the institutions by how many authors they have who publish in “flexible
manufacturing.”

SELECT UNIQUE INSTITUTION, COUNT (UNIQUE NAME)
FROM DIRECTORY
WHERE NAME = ANY

(SELECT NAME
FROM AUTHOR
WHERE DOCUMENT # = ANY

SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORD = ‘flexible manufacturing’)
ORDER BY COUNT(UNIQUE NAME)

DESCENDING

The results of the above search could be compared to the total number of authors at
each institution to get an idea of the percentage of concentration that an institution has
in “flexible manufacturing.”

The subject terms that have been assigned to documents in the database can also be

IPM 24:3-J

356 DAVID C. BLAIR

used to derive a rough subject profile of the research at a particular institution by asking
the following query:

16. List the different keywords which have been assigned to articles produced by indi-
viduals affiliated with the General Motors Institute, and count the number of doc-
uments to which each of these keywords have been assigned.

SELECT UNIQUE KEYWORD, COUNT(DOCUMENT #)
FROM KEYWORDS
WHERE DOCUMENT # = ANY

(SELECT DOCUMENT #
FROM AUTHOR
WHERE NAME = ANY

SELECT NAME
FROM DIRECTORY
WHERE INSTITUTION = ‘General Motors Inst.‘)
ORDER BY COUNT (DOCUMENT #) DESCENDING

Occasionally, it may be important to use the information on the database to gener-
ate a list of institutions that might be interested in receiving information on a particular
area. This might be done with the following query:

17. Get the names and addresses of all research groups who have at least one mem-
ber who has published a recent (1986 or after) paper on “integrated
manufacturing.”

SELECT INSTITUTION, ADDRESS
FROM INSTITUTE
WHERE INSTITUTION =

SELECT INSTITUTION
FROM DIRECTORY
WHERE NAME =

SELECT NAME
FROM CITATION
WHERE DATE > 12/31/85
AND NAME =

SELECT NAME
FROM AUTHOR
WHERE DOCUMENT # =

SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORD =

‘integrated
manufacturing’

6. ASSOCIATIVE SEARCHING USING THE RELATIONAL MODEL

One of the most important facilities of a good document retrieval system is its associa-
tive searching capability. This permits the inquirer to discover semantic relationships
between the subject index terms that have been assigned to documents on the database.
One of the simplest and most useful statistics for inferring semantic relationships between
subject terms (keywords) is the percentage of co-occurrence of assignment of these terms.
This percentage expresses a probability that if keyword X is assigned to a particular doc-
ument, then there is a calculatable probability that keyword Y will also be assigned to that
document. This probability is merely the percentage of times that Y has been assigned to
documents which have keyword X assigned. (Note that the probability of Y being assigned
given the assignment of X is not the same as the probability of X being assigned given the

Document retrieval model 351

assignment of Y.) The primary use of associative searching is to semantically broaden an
inquirer’s subject search. For example, if an inquirer exhausts his or her search for doc-
uments with the keyword “flexible manufacturing,” he or she can retrieve a list of co-
occurring subject terms by using the following relation:

THESAURUS KEYWORD*, COOCCURRING TERM*, PERCENT

A typical query might be:

18. Retrieve the keywords which co-occur with the keyword Air Pollution that have
a probability of co-occurrence greater than .040. Rank these terms by decreasing
probability of co-occurrence.

SELECT COOCCURRING TERM, PERCENT
FROM THESAURUS
WHERE KEYWORD = ‘Air pollution’
AND PERCENT > .040
ORDER BY PERCENT DESCENDING

The output of such a search might look something like [13]:

Keyword Cooccuring term Percent

Air Pollution Dust ,479
Waste Disposal .384
Water Supply .23 1
Quarrying ,132
Noise ,132
Poison .126
Environment .lOl
Pesticide ,089
Occupational Safety ,081
Gas Industry ,063
Chemical Industry .061
Education .057
Natural Resources ,045

Such a list has two principal uses: (1) It can, as mentioned before, be used by inquirers
who want to find semantically related keywords (the assumption being that keywords which
have a high probability of co-occurring are semantically related). (2) It can be used by
indexers to assist them in the indexing process (an indexer would only have to identify the
keyword which identifies the main subject of the document to be indexed, and could then
select the appropriate secondary subject categories from the list of keywords which co-
occur with the principal keyword).

An inquirer could expand his or her search without consulting a co-occurrence list by
entering the following formal query:

19. Retrieve all the documents that have any of the keywords that co-occur with
“Flexible Manufacturing” at a percentage higher than .40.

SELECT TITLE
FROM CITATION
WHERE DOCUMENT # = ANY

SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORD = ANY

SELECT COOCCURRING TERM
FROM THESAURUS
WHERE KEYWORD = ‘Flexible Manufacturing’
AND PERCENT > .40

358 DAVID C. BLAIR

7. BOOLEAN SEARCHES

Keyword or subject searches comprise a substantial proportion (often a majority) of
the searches that are conducted on a document retrieval system. Such searching is often
Boolean in nature and can be accomplished on a relational database system by using the
SQL facility of joining a table with itself:

20. Retrieve the titles of all the documents that have been indexed with both keywords
“shop automation” and “integrated manufacturing.”

SELECT TITLE
FROM CITATION
WHERE DOCUMENT # = ANY

SELECT DOCUMENT#
FROM KEYWORDS FIRST, KEYWORDS SECOND
WHERE FIRST.KEYWORD = ‘shop automation’
AND SECOND.KEYWORD = ‘integrated manufacturing’
AND FIRST.DOCUMENT # = SECOND.DOCUMENT #

A simple disjunctive query could be handled as follows:

21. Retrieve the titles of all the documents that have been indexed with either of the
keywords “shop automation” or “integrated manufacturing.”

SELECT TITLE
FROM CITATION
WHERE DOCUMENT = ANY

SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORDS IN

(‘shop automation’, ‘integrated manufacturing’)

Subject searching is a nondeterministic process in which several topic alternatives often
must be described in an inquirer’s query. These alternatives are represented by complex
conjunctive and disjunctive Boolean combinations of keywords. For example:

22. Retrieve the titles of all the documents that are indexed with either “shop auto-
mation,” “ computerization,” or “automation,” and either “integrated manufac-
turing” or “flexible manufacturing.” (This query is the conjunction of two
disjunction sets of three keywords and two keywords, respectively)

SELECT TITLE
FROM CITATION
WHERE DOCUMENT # = ANY

SELECT DOCUMENT
FROM KEYWORDS FIRST, KEYWORDS SECOND
WHERE FIRST.DOCUMENT # = SECOND.DOCUMENT #
AND FIRST.KEYWORD IN (‘shop automation’, ‘computer-

ization’, ‘automation’)
AND SECOND.KEYWORD IN (‘integrated manufacturing’,

‘flexibility manufacturing’)

A general formulation is possible for constructing Boolean subject queries, providing
a format for even the most complex keyword queries:

SELECT
FROM

WHERE
AND

AND
AND
AND

AND

Document retrieval model

FIRST.DOCUMENT #
KEYWORDS FIRST
KEYWORDS SECOND

KEYWORDS Nth
FIRST.DOCUMENT # = SECOND.DOCUMENT #
SECOND.DOCUMENT # = THIRD.DOCUMENT #

N- 1 .DOCUMENT # = Nth.DOCUMENT #
FIRST.KEYWORD IN (‘xxxx’, . . . ,‘xxxx’)
SECOND.KEYWORD IN ((xxxx’, . . . ,‘xxxx’)

Nth.KEYWORD IN (‘xxxx’, . . . ,‘xxxx’)

359

The logical format of this kind of query can be represented in the propositional cal-
culus as follows:

(K,, v Kb, v . . v K,,) . (K,, v Kbz v . . . v K,,,) (KOr v Kb, v . . . v K,,)

[where the symbols v and . represent disjunction and conjunction, respectively, and K
stands for a keyword.]

This particular logical pattern is, of course, conjunctive normal form, and although
many Boolean expressions are not in conjunctive normal form, they all can be transformed
into conjunctive normal form without loss of meaning or well-formedness. This means that
any Boolean retrieval query can be represented in the above format. For example:

(K,+K,) v K,

which is not in conjunctive normal form, can be represented by the equivalent logical
construct:

(K, v K,) * (K/, v Kc)

Or, in another example, the Boolean query:

(K;K,l v (Kc.&)

can be represented by the equivalent conjunctive normal form expression:

(& v Kc). (K, v &I. (& v Kc) * (Kb v Kd)

Readers familiar with propositional logic will, no doubt, have observed that the
expression (K,. Kb) v (KC-K,), while not in conjunctive normal form, is in disjunctive
normal form. Since all Boolean expressions can be nonloss transformed into either con-
junctive or disjunctive normal form, it appears that the recommendation to convert all
complex Boolean SQL queries into conjunctive normal form is somewhat arbitrary. This
is not the case. Conjunctive normal form expressions are more easily represented in SQL
than disjunctive normal form expressions. The general SQL format for disjunctive normal
form expressions looks like:

360 DAVID C. BLAIR

SELECT UNIQUE FIRST.DOCUMENT

FROM KEYWORDS FIRST

WHERE FIRST.DOCUMENT # = ANY

(SELECT N, .DOCUMENT #

FROM KEYWORDS N,

KEYWORDS (N, + 1)

0

0

KEYWkRDS (N, + M,)

WHERE N,.DOCUMENT # = (N, + l).DOCUMENT #

AND (N, + l).DOCUMENT # = (N, + 2).DOCUMENT #

0

0

A;D (N, + M1 - l).DOCUMENT # =

(N, + MI).DOCUMENT #

AND N, .KEYWORD = KA,

AND (N, + l).KEYWORD = K,,

0

0

A:D (N + M).KEYWORD = K,,

OR

SELECT N,.DOCUMENT #

FROM KEYWORDS.N2

KEYWORDS.(N2 + 1)

0

0

KEYW:RDS.(N, + Mz)

WHERE N,.DOCUMENT # = (N2 + l).DOCUMENT #

AND (N, + l).DOCUMENT # = (N2 + 2).DOCUMENT #

0

0

AiD

AND

AND

0

0

A;D

OR

0

0

0;

SELECT

FROM

WHERE

(N, + M - l).DOCUMENT # =

(N, + M,).DOCUMENT #

(N2 + l).KEYWORD = KAz

(N2 + l).KEYWORD = KBz

(N + M).KEYWORD = KNz

N, .DOCUMENT #

KEYWORDS.N,

KEYWORDS (N, + 1)
0

0

0

N,.DOCUMENT # = (N, + l).DOCUMENT #

AND
0

0

A:D

AND
AND

0

0

A;D

Document retrieval model

(N, + l).DOCUMENT # = (N, + 2).DOCUMENT #

(N, + M, - l).DOCUMENT # =
(N, + M,).DOCUMENT #

N, .KEYWORD = KAn
(N, + l).KEYWORD Ks,

(N, + M,).KEYWORD = KN,)

361

This is clearly a more complex query format than the one for conjunctive normal form
(q.v.). The minor inconvenience of converting an expression from disjunctive normal form
to conjunctive normal form should be more than offset by the comparative ease of trans-
forming conjunctive normal form expressions into SQL (or any other relationally complete
DMLs) commands.

From this discussion of SQL query formulation we can see that although SQL is a
friendly language, some Boolean queries may be translated into SQL commands only with
great difficulty. To facilitate query construction complex Boolean queries should be
reduced to their simplest form before they are translated into SQL commands. For exam-
ple, the laws of propositional logic enable us to reduce the Boolean expression:

to

(K,. K,) v K, (see Appendix A).

This, in turn, is translatable into the conjunctive normal form expression:

(K, v Kr). W, v Kr).

This is a much easier expression to translate into SQL than the original one.

8. SUBSCHEMAS

Although the SQL query language is relatively easy to use compared to most Data-
base Data Manipulation Languages, its syntax still may be a bit forbidding for the occa-
sional or nonprogramming inquirer. Most relationally complete Database Management
Systems (e.g., DB2, ORACLE, or INGRES) have the capability to construct virtual rela-
tions known as subschemas, which can be used to design a friendlier interface to the sys-
tem (the recognition of the importance of subschemas in the logical structure of a database
is not a relational notion, but goes back to the early recommendations made for Network
Databases by the Data Base Task Group of the Conference on DAta Systems Languages
[CODASYL] published in their 1971 report [14]. For example, Query Number 22 (supra)
could be thought of as a description of the types of documents which an inquirer would
want to see should new ones that satisfy these criteria be added to the database (a kind of
current awareness specification). To save the inquirer the trouble of submitting the SQL
query as shown (and the query could be much more complex than this one), we could
define a virtual, or derived, relation to simplify repeated searches that varied only slightly,
if at all, from the original query. In DB2 [lo], the relational subschema is called a view
and can be defined using the following statement:

362 DAVID C. BLAIR

DEFINE VIEW CURRENT_DOCS
AS SELECT *
FROM CITATION
WHERE DOCUMENT # = ANY

SELECT DOCUMENT #
FROM KEYWORDS FIRST, KEYWORDS SECOND
WHERE FIRST.DOCUMENT # =

SECOND.DOCUMENT #
AND FIRST.KEYWORD IN (‘shop automation’,

‘computerization’, ‘automation’)
AND SECOND.KEYWORD IN (‘integrated

manufacturing’, ‘flexible manufacturing’)

The inquirer can now do a current awareness search using the keywords specified in Query
22, by simply submitting the following SQL statements:

SELECT TITLE, JOURNAL NAME
FROM CURRENT_DOCS
WHERE ACQUISITION DATE > 12/31/85

This will retrieve the titles and corresponding journal names for those documents that
satisfy the criteria of Query 22 and have been added to the database starting in 1986. This
is clearly a much simpler query for an occasional inquirer to submit to the system (the orig-
inal query might have been constructed by a more frequent database user).

The advantages of using subschemas in this way are clear: the inquirers can personally
submit very complicated queries to the system even if they are not experienced SQL
programmers; and professional SQL programmers will not have to serve as translators of
the same user queries over and over again. In addition, the use of subschemas does not
expand the physical size of the database since it does not have the effect of adding a new
stored relation to the database. All that is added is the logical definition of the view (as
stated before). This is entered into the system dictionary (where logical definitions are
kept), but no entry is made to the directory (where links to the stored relations are kept).
This is the sense in which the subschemas are considered virtual or derived. They can be
added or dropped from the system quite easily.

9. PROCESSING AND STORAGE CONSIDERATIONS IN A DOCUMENT DATABASE

Although no precise measures of database size or processing overhead can be made
without considering, inter alia, specific commercial DBMSs, the supporting hardware con-
figuration and the operating system under which it would run, we can get a rough idea of
some of the unique processing and storage requirements of a document database by esti-
mating the number of tuples or records it contains. The number of tuples in a document
database is an important factor in estimating processing and storage overhead for the fol-
lowing reasons: In the first place, the number of tuples required to support a document
database is significantly larger than the number of documents being represented. Because
so many different attributes of the documents (author, title, date, journal, keywords, etc.)
require representation in the database, one document may be represented by 10 to 15 dif-
ferent tuples (assuming a normalized logical structure). These tuples, in turn, will require
further supporting information in the form of tuple identifiers and a varying number of
indexes (the latter being essential to support the ad hoc inquiry necessary in document
retrieval; see Section 1). As a result, the size of the document database, as well as the pro-
cessing overhead necessary to maintain the tuple-at-a-time access typical of relational sys-
tems, will increase significantly as documents are added to the collection (although this
increase may be slowed by the careful use of data compression facilities and the judicious
linking of the physical instantiations of the document attributes). If we assume the above
logical structure and a mean subject indexing depth of 6 keywords, then the addition of
one document to the collection results in a (theoretical) addition of at least 12 tuples, 12

Document retrieval model 363

tuple identifiers, and numerous index entries in our database (the number of tuples that
must be added to the physical instantiation of the THESAURUS relation depends on how
many of the new document’s keywords are new to the vocabulary of the database).

Another reason why the number of tuples is an important component in estimating
processing overhead for a document database is that many document retrieval requests
involve the joining of two or more relations (a tuple, or record, type defines a relation).
This is a direct result of the normalization process that significantly increases the number
of tuple or record types over nonnormalized logical structures. Although normalization
offers the advantage of avoiding the update and deletion anomalies [see Appendix D] of
nonnormalized structures, the trade-off is that normalization causes an increase in the
number of join operations required during retrieval. Joins involve some of the most inten-
sive processing of any single operation on a relational database, and the amount of pro-
cessing required is proportional to the number of tuples in the relations being joined (the
size of the individual tuples is an important factor, too, but the process of normalization
tends to make most of the tuple types relatively small, so their size becomes a less impor-
tant factor in a join than the sheer number of tuples involved).

The estimation of the number of tuples in a document database is not an easy or
straightforward endeavor. It requires making some assumptions about the statistical prop-
erties of indexing languages. Since such assumptions may be unfamiliar to the typical data-
base administrator, it may be instructive to work through an example of how such rough
estimations are made.

The largest relation in the database (in terms of the number of tuples) will be the KEY-
WORDS relation, which needs a tuple for each assignment of a subject term to a docu-
ment. With a database of 10,000 documents, and a mean indexing depth of 6, we would
expect to have a vocabulary of 3400 to 7000 unique subject terms, and a total number of
indexing assignments of 59,880 (see Appendix B). The latter figure will be the number of
tuples in the KEYWORDS relation.

The total number of tuples in the THESAURUS relation is equal to the number of
unique co-occurrences of indexing terms in the database (i.e., the number of distinct pairs
of terms that appear together indexing a particular document). Given a database of 10,000
documents and a mean indexing depth of 6, the estimated number of tuples for the
THESAURUS relation would be 32,600 (see Appendix C).

In aggregate, then, the total number of tuples needed to build a database of 10,000
documents is estimated to be 129,480 (see Table 1). Clearly, to implement a document
retrieval system on a relational database requires a significant commitment of available
resources. This may not be a problem on a database management system running on a
large mainframe computer or a smaller computer with a backend database machine (such
as a VAX with Britten Lee’s IDM 600) but to implement a working document retrieval sys-
tem on a smaller computer (perhaps even a microcomputer) and still maintain the same
retrieval capabilities will require some changes in our basic model.

Table 1.

Relation Tuples

CITATION 10,ooo
ABSTRACT 10,000
AUTHOR 10,ooo’
DIRECTORY 5,000z
INSTITUTE 1,000s
JOURNAL l,ooo~
KEYWORDS 59,880s
THESAURUS 32,600

TOTAL 129,480

IPM 24:3-K

‘Assumes only single-author documents.
‘Assumes only 5000 unique authors in the database.
‘Assumes many authors will be affiliated with the same institution.
“Assumes many documents will be published in the same journal.
‘Tuples in the KEYWORDS relation will be equal to the total num-
ber of index term assignments in the database.

364 DAVID C. BLAIR

10. REDUCING THE NUMBER OF RECORDS IN THE DATABASE

One of the observed characteristics of document retrieval systems is that retrieval pat-
terns often follow a Pareto distribution. That is, about 20% of the documents on the data-
base will account for approximately 80% of the retrieval activity. In other words, a small
core of documents will be retrieved repeatedly. Since the THESAURUS relation contains
information about the statistical (and, by inference, semantic) relationships between
assigned index terms, these relationships may be accurately modeled by using co-occurrence
data from just the core documents rather than all the documents on the database. The core
documents can be easily identified by maintaining a count of the number of times each
document on the database is retrieved. The core documents are those that have been
retrieved, or retrieved a number of times above an established cutoff value. In our exam-
ple, if we assume that the core documents represent 20% of the database, then the
THESAURUS relation can be constructed on data from 2000 documents rather than
10,000. Using the same methods that we used before, we find that we would only need an
estimated 1500 index terms to describe the subject content of these core documents, assum-
ing a mean indexing depth of 6 (see Appendix B). The approximate number of unique co-
occurrences that are likely to occur for 1500 terms and 2000 documents is 7550 (see Appen-
dix C). This is the number of tuples needed to build a THESAURUS relation using data
from only the core documents. The total number of tuples estimated to exist in the reduced
database is 104,430-a reduction of 19%.

If greater reductions in the number of tuples is desired, it would probably not be wise
to base the THESAURUS construction on a subset of the database smaller than the set of
core documents. Further reductions in the number of tuples can be effected by reducing
the mean indexing depth of keyword indexing (although, naturally, this may not be an easy
or desirable policy to implement). If we were able to reduce indexing depth from 6 to 4
then the following changes would occur: (1) The KEYWORDS relation would be reduced
from approximately 59,880 tuples to 39,824. (2) The THESAURUS relation would be fur-
ther reduced from the core document level of 7550 tuples to 3570. In aggregate, the data-
base would now contain an estimated 80,394 tuples as compared with 104,430 tuples (core
documents only, mean depth of 6) or with the original database size of 129,480 tuples (all
documents, mean depth of 6). This would represent a 38% reduction in the number of
tuples from the full database size.

The notion of a core of comparatively highly retrieved documents can also be a use-
ful tool for inquirers. We can add a RETRIEVAL relation to the database defined as
follows:

RETRIEVAL DOCUMENT #*, TIMES (retrieved)

An inquirer would greatly speed up the search by limiting requests for documents to
those documents that have been retrieved one or more times:

SELECT . . .
FROM . . .
WHERE . . .

AND DOCUMENT # = ANY
SELECT DOCUMENT #
FROM RETRIEVAL
WHERE TIMES > 0

This would ensure that the inquirer would see the more highly retrieved (and, by infer-
ence, more useful) documents first. This would mitigate the problem of output overload,
which we discussed before. If the inquirer did not find all the desired documents, he or she

Document retrieval model 365

could then expand the search to the rest of the database by dropping the final SELECT
clause.

The RETRIEVAL relation could also be used as the basis for ranking output. The
inquirer would merely include a command in the document request to rank the output by
the number of times the documents have been retrieved. This assumes that more highly
retrieved documents are more likely to be useful to the inquirer.

11. OTHER ADVANTAGES OF DATABASE MANAGEMENT SYSTEMS

The image of Database Management Systems is that they provide better or easier
access to databases. But access is only part of what they provide. Database Management
Systems also furnish facilities for managing databases. It is just such database management
facilities that make the use of DBMSs as a foundation for document retrieval systems even
more attractive. These facilities might include:

l Recovery routines (specific to the DBMS)
l Performance measuring facilities (e.g., to tabulate the number of disk accesses

needed to answer a database request)
l Database reorganization routines (e.g., to reduce the size of overflow areas in direct

access files, or limit the number of extents a physical file may have)
l Data migration routines [to move less frequently used data (citations) down the stor-

age hierarchy to cheaper storage facilities]
l Concurrency control (automatic management of concurrent updates or access and

deadlock prevention)
l Elaborate authorization mechanisms (read and write access controlled down to the

attribute or element level; access audit logs maintained)
l Logical and physical data independence (to facilitate independent restructuring of

the logical and physical databases)
l Data compression and encoding routines
l Automatic enforcement of integrity constrains on data
l Report generators
l Flexible definition of transaction boundaries (e.g., commit and rollback)
l Facility to embed the inquiry language (here, SQL) in a sequential applications lan-

guage (e.g., COBOL or PL/l)
l Telecommunications interface

12. A COMMENT ON THE PROCESSING SPEED OF RELATIONAL DATABASES

Any discussion of database management system implementation usually must address
the controversial issue of processing speed. Traditional beliefs tend to hold that relational
systems trade flexibility of query and database structuring for reduced processing speed
(when compared with older DBMS models based on hierarchical or network logical struc-
tures). Although IBM has made claims that its own relational product, DB2, has delivered
62 transactions per second in a banking environment, more realistic benchmarks have been
established at 18 transactions per second [15] and 6 to 9 transactions per second [16]. But
most of these numbers are, in reality, relatively soft, since transaction processing rates can
vary greatly even on the same database due to variations in tuning the physical structure
of the database to support logical access. In general, it is relatively well accepted that, all
things being equal, relational systems have a transaction rate approximately one-third to
one-half that of older, established hierarchical or network systems. It is also clear that hier-
archical and network DBMSs, by virtue of their having been around longer, have benefited
from a substantially greater effort at optimization than relational systems have. As a result,
some of the major proponents of relational systems have claimed that there is no theoret-
ical reason why relational systems cannot perform as well as, or even better than, older
nonrelational systems [16]. Most of this performance controversy has less significance for
document databases. Relational systems offer clear advantages in ad hoc query process-

366 DAVID C. BLAIR

ing over nonrelational systems, and it has been the thesis of this discussion that ad hoc
inquiry is essential to effective information retrieval. The only relevant question, then, is
whether or not the transaction processing rate for relational systems is adequate, and not
whether it is faster than hierarchical or network systems. Transaction rates of 6 to 18 per
second should be satisfactory for most information retrieval applications.

One interesting development that may have direct bearing on the performance of
document-based DBMSs is the recent development of database machines (or, backend
database machines) and associative disk technology. These technologies attempt to utilize
specialized hardware, content-addressable memories and limited parallel processing to
enhance the performance of relational DBMSs. According to Date [17], these advances
may be particularly important for document-based DBMSs:

We have assumed throughout this book . . . that the database is formatted- that is, that
it exhibits a highly regular structure. Such an assumption is appropriate for many appli-
cations; but there are also certain text search or information retrieval applications, in
which the database contains (for example) scientific abstracts or other textual informa-
tion, and the overall structure is much less regular. Queries against this kind of data-
base tend to be quite complex . . Associative disks may prove useful in such
applications. [p. 3601

13. CONCLUSION

Recent research has shown that database management systems are effective tools for
constructing operational document retrieval systems. This discussion has argued that the
retrieval requirements of document retrieval systems can be supported most effectively by
the relational model, especially if a system capable of more advanced document retrieval
techniques, such as associative or inferential retrieval, is desired. The logical structure for
implementing the advanced or extended document retrieval model was discussed at length,
and several storage structure issues have been addressed that are of particular importance
for the design of document retrieval systems.

APPENDIX A

1. (K,.K,) v (K,.K,) v (K,.K,) v K,
2. (K,.K,) v (K,.K,) v (K,.K,) v (K,.l) [identity]

3. (K,.K,) v (K,.K,) v [(K, v 1) +&)I [distribution]

4. (K,*K,) v (K,.K,) v [(I -K,)l [identity]

5. (K,.K,) v (K,.K,) v K, [identity]
[repeat steps 2-51

9. (K,-K,) v K,
10. (K, v K,) . (K, v K,.) [distribution]

Another example:

F = [(Kb.Ec) v (&-Kc)] . [(KQ.Kb) v (xo.Kc) v (K,.&.I&)l

Set

and,

1.

2.

3.

4.

5.

6.

7.

8.
9.

10.
11.
12.
13.
14.
15.

Document retrieval model 367

F, = (K,.Kb.xc) v (&KbeKc) v (K,.&.K,) v (&&Kc) [change to com-
plete disjunctive normal form]
F; = (i?o.Kb.Kc) v (&lr,~~c) v (K,+K,.K,) v (K,.&.Kc) [complement

ofFi
F,=(F;)‘=(K,~K~VK,)~(K,~K~VK,)~(K,-~K~VK,)~(K,~K~V

Kc) [complete conjunctive NF of Fl]

Fz = [R,.Kb.Kc) v (Kg.Kb.Kc) v (Ko.&.Kc) v (Ka.&.Ec)

plete disjunctive NF]

[change to com-

F; = (Kg.&.Kc) v (K,.Kb.Kc) v (Ka.Kb.Kc) v (Ka.KbeKc) [complement

of 61
Fz = (F;)’ = (K, v Kb v Kc). (Ku v &, v Kc). @?a v Kb v Kc). (iTa v & v Kc)
[complete conjunctive NF of F2]

F = F,.F,

= (K, v Kb v Kc). (K, v & v Kc,. (Ka v Kb v kc). (& v Kb v Kc) ’ (X0 v & v
Kc) . (Ku v & v Kc) [conjunction of 3 and 61

F’ = (K, v & v Kc) . (K, v Kb v EC) [complement of F]

F = (F’)’ = (EQ.Kb.Kc) v (K,.&.K,) [complete disjunctive NF of F]

Rae [(K,.Kc) v (&-&)I
%. [(Kb.Ec) v &,I . [(Kb.Kc) v Kc]

Ku* [(Kb V Kb). @b V EC,] . [(Kb V Kc). (13, V Kc)1 - - -
K,.[l.(KbvK,)l.[KbvK,).ll
Rae [@b V Kc) * (Kb V Kc)1
Ka- (& V KC) * (Kb V Kc) [simplified version of F]

APPENDIX B

Many factors influence the growth of an indexing vocabulary, and although estimates
of vocabulary growth are difficult to make they are possible to do if we take into consider-
ation certain observed processes that occur in the development of information retrieval
systems.

Each indexing term in the vocabulary is assigned to documents within the database
a certain number of times. If we take these individual term assignment frequencies and
rank them from the highest to the lowest values, we often find that they conform to a
hyperbolic or Zipfian [18] distribution [19, 201. Thus,

NA = ZF, = Fi(ln(2Nr + 1) - 0.116)
i=l

where NA = the total indexing assignments in the database, Nr = the total number of
unique terms in the vocabulary, Fj is the assignment frequency of term i, and Fl is the
assignment frequency of the most frequently assigned subject term in the database (i.e.,
term of frequency rank 1).

In our example, since we know the mean depth of indexing is 6 and the number of
documents in the database is 10,000, we can estimate NA with the following equation [21]:

where r = the maximum number of vocabulary terms assigned to any document in the
database (with a mean depth of 6 we would expect a maximum depth of about 14 or 15),
m = the mean depth (here, 6), and ND = the number of documents in the collection (here,

*For small values of m, NA can be estimated more easily as the product m x ND. This approximation
becomes less accurate as m increases.

368 DAVID C. BLAIR

10,000). Setting t = 15, NA = 59,800 (this will be the number of tuples in the KEY-
WORDS relation). Now, by substitution:

NA = 59,800 = F,(ln(2N, + 1) - 0.116)

Because the rank-frequency distribution is hyperbolic, then if the distribution were
perfect, Fi would be equal to NT. In empirical studies it has been found that F, is some-
what less than a perfect distribution would predict, and NT somewhat greater. If we solve
for a value of NT slightly greater than F, we find that:

NT = 7000

F, = 6350

As it turns out, 7000 will be an estimate of the maximum reasonable value for NT.
The Zipfian distribution is an accurate model for the growth of indexing assignments when
new subject terms are added to the system vocabulary at a fairly constant rate. This is the
case for the early stages of database growth, and for all growth in databases which cover
areas like chemical research, pharmacology, or patents. For most databases, however, the
term assignment frequency distribution is Zipfian only in the early stages, and the addi-
tion of new vocabulary terms falls off as new documents are added to the database [22-241.
This is because most of the new documents deal with the same subjects that older docu-
ments on the database deal with. This kind of vocabulary growth is log-normal rather than
Zipfian and is best modeled by [25]:

NT = [3000 log,, (NA + 7100)] - 11,000

with NA = 59,800, then the predicted size of the vocabulary would be 3480. Thus, we can
estimate that the likely size of our indexing vocabulary (NT) would be between 3480 and
7000 terms (where No = 10,000 and mean depth = 6).

APPENDIX C

The number of co-occurring index terms in a database can be estimated in much the
same way as index term assignments were estimated (Appendix B). With 10,000 documents
and a mean indexing depth of 6, the approximate total number of index term co-
occurrences (NC) can be determined by using the following equation [21]:

NC= &(e-“)
i=l

where t = the maximum number of vocabulary terms assigned to any document in the
database (here, 15), m = the mean depth (here, 6), and ND = the number of documents
in the collection (here, 10,000). Setting t = 15, NC = 358,411.

NC is the total number of co-occurrences that have occurred in the database index
term assignments, but the number of tuples estimated to exist in the THESAURUS rela-
tion is equal to the number of unique co-occurrences of terms which exist in the database
(i.e., no matter how many times (>0) index terms 7; and Tj are both assigned to the same
documents it will require only two tuples in the THESAURUS relation to model their
relationship).

Some studies have indicated that co-occurrence distributions, like that of term distri-
butions, are basically Zipfian in nature, but other studies have suggested that the distri-
bution of co-occurring term pairs may vary somewhat from the traditional Zipfian model
[26]. Our purpose here is to offer some simple heuristics for estimating the number of
unique co-occurrences that should occur in our hypothetical database.

Document retrieval model 369

NC is comparable to NA (Appendix B) and can be substituted for it in the equation
we used to represent the distribution of index term assignments:

358,411 = Ft(In(2Nr + 1) - 0.116).

We can reinterpret F, as the number of co-occurrences of the most frequently co-
occurring term pair on the database, and we can reinterpret NT as the number of uniquely
occurring term pairs (or co-occurrences). Solving the above formula for equal values of
Fl and NT we find that NT = Fl = 32,600. (Unlike our solution for index term assign-
ments we have no evidence that Fl will be somewhat less than A$-,) NT, of course is the
value that represents the number of tuples estimated to be in the THESAURUS relation.

Unlike index term assignments, we would not expect the number of new unique term
co-occurrences to fall off as markedly as the number of new terms added to the vocabu-
lary does during database growth. This is because even if new terms are not added to the
vocabulary, new pair combinations can be generated almost indefinitely. With a vocabu-
lary of between 3480 and 7000 terms (Appendix B), the total number of possible unique
pair combinations is:

p23480 7om
-+ p2 = 12,110,4~~49,~,~0

At most, the 32,600-term co-occurrences estimated to occur in the hypothetical database
represent only 0.3% of the possible terms combinations. Clearly, the growth in the num-
ber of new unique term co-occurrences is not rigidly dependent on the addition of new
terms to the vocabulary, although there is undoubtedly some relationship between the addi-
tion of new vocabulary terms and the occurrence of new term pairings.

APPENDIX D

Normalization in relational systems
Normalization is the process by which attributes are grouped into relations in such a

way that update and deletion anomalies are avoided. Traditionally, this can be accom-
plished by decomposition or synthesis. In decomposition, all the att~butes in the database
are grouped into one relation and this relation is then successively broken down into
smaller relations (projections) until, most often, 3rd Normal Form (or, Boyce-Codd Nor-
mal Form) is reached and every determinant is a candidate key [lo].

Another way to construct relations that satisfy 3rd NF or BCNF is to synthesize them.
Basically, this method begins with a list of all the attributes in the database and their func-
tional dependencies, where functional dependency is defined as:

Given a relation R, attribute Y of R is functjonally dependent on attribute X of R if and
only if each X-value in R has associated with it precisely one Y-value in R (at any one
time). [101

For example, a person’s name is functionally dependent on his or her Social Security
number. Thus,

SSN - Name (or, “SSN determines name”)

But Social Security numbers are not functionally dependent on people’s names, because
many individuals have the same name. Thus,

NAME -X--* SSN

Given at1 the attributes in the database, and a complete specification of the functional
dependencies between them, the synthesizing algorithm for 3rd Normal Form is:

370 DAVID C. BLAIR

1. (Eliminate extraneous attributes.) Let F be the given set of FDs. Eliminate extrane-
ous attributes from the left side of each FD in F; producing the set G. An attri-
bute is extraneous if its elimination does not alter the closure of the set of FDs.

2. (Find covering.) Find a nonredundant covering H of G.
3. (Partition.) Partition H into groups such that all of the FDs in each group have

identical left sides.
4. (Merge equivalent keys.) Let J = 0. For each pair of groups, say Hi and Hj,

with left sides X and Y, respectively, merge HI and Hz together if there is a bijec-
tion X - Yin H+. For each such bijection add X + Y and Y + X to J. For each
A E Y, if X + A is in H, then delete it from H. Do the same for each Y -+ B in
H with B E X.

5. (Eliminate transitive dependencies.) Find H’ c H such that (H’ + J)+ = (H +
J)+ and no proper subset of H’ has this property. Add each FD of J into its cor-
responding group of H’.

6. (Construct relations.) For each group, construct a relation consisting of all the
attributes appearing in that group. Each set of attributes that appears on the left
side of any FD in the group is a key of the relation. (Step 1 guarantees that no
such set contains any extra attributes.) All keys found by this algorithm will be
called synthesized. The set of constructed relations constitutes a schema for the
given set of FDs [27, p. 2931.

Although the above description of the synthesizing algorithm is quite formal, its appli-
cation is relatively straightforward. It is especially useful for normalizing databases with
large numbers of attributes and functional dependencies, a situation where the decompo-
sition method can be quite cumbersome.

In general, most databases do not require synthesis above 3rd Normal Form, although
violations of 4th and 5th Normal Forms are not impossible. It would be possible to con-
struct a relation in a document retrieval database to violate 4th Normal Form (which deals
with multivalued dependencies) as follows:

Given:

1. A database with mostly multiple-author articles.
2. A relation such as:

(Document #*, Author, Keyword)

Here, both keyword and author are multidependent on Document # (i.e., each doc-
ument number determines a set of keywords and a set of authors). Also, to violate the 4th
NF, the keywords and authors must not be dependent on each other. In the logical struc-
ture that we have proposed in this discussion, though, this problem does not occur. This
is because we have also included the weight attribute with the keyword. If we included it
with the above relation, we would get,

(Document #*, Keyword*, Author, Weight)

Here, Weight depends on both Document # and Keyword, so both attributes must
form a concatenated key. But if this happens, Author only depends on the Document #
part of the key and this violates 2nd Normal Form. Hence, we don’t even have to get to
4th NF to have a problem with the combination of these attributes. It is solved through
decomposition, of course, by taking the Author attribute out of the relation.

The Fifth Normal Form deals with the problem of join dependencies and comes into
use in the unusual situation where a relation that models a many-to-many-to-many rela-
tionship (such as “parts to suppliers to jobs” or “suppliers to parts to assemblies”) is non-
loss decomposed into three projections of the original relation (where each projection
models one of the three possible many-to-many relations). The problem comes when two
of the projections are joined to produce the original relation. Sometimes this process results

Document retrieval model 371

in the creation of spurious tuples that did not exist in the original relation. Since there are
no many-to-many-to-many relations between the attributes in the database we have been
discussing, there is no need to consider the solutions to this problem provided by the 5th
Normal Form (Projection-Join Normal Form) [lo].

Acknowledgment-The author would like to express his appreciation for the helpful comments of Jim Fry,
Michael Gordon, Maurita Holland, and Alan Merten of the University of Michigan. This research was conducted
in part while the author was a visiting faculty member at the Industrial Technology Institute, and in part under
a research grant from The Graduate School of Business at the University of Michigan.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

12.

13.

14.
15.
16.

17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

REFERENCES

Crawford, R.G. The relational model in information retrieval. Journal of the American Society for Infor-
mation Science, 32(l): 51-64; 1981.
Macleod, I.A. SEQUEL as a language for document retrieval. Journal of the American Society for Infor-
mation Science, 30(5): 243-249; 1979.
Macleod, I.A. The relational model as a basis for document retrieval system design. The Computer Jour-
nal, 24(4): 312-335; 1981.
Maron, M.E. Relational data file I: Design philosophy. In: Schecter, M.G., editor. Information retrieval:
A critical view. Washington, DC: Thompson Book Co.; 1966.
Levien, R.E. Relational data file II: Implementation. In: Schecter, M.G., editor. Information retrieval: A
critical view. Washington, DC: Thompson Book Co.; 1966.
Levin, R.E.; Maron, M.E. A computer system for inference execution and data retrieval. Communications
of the ACM, lO(l1): 715-721; November 1967.
Blair, D.C. SQUARE (Specifying Queries as Relational Expressions) as a document retrieval language.
Unpublished working paper, University of California, Berkeley; Spring 1974.
Blair, D.C. The data-document distinction in information retrieval. Communications of the ACM, 27(4):
369-374; April 1984.
Dattola, R.T. FIRST: Flexible Information Retrieval System for Text. Journal of the American Society for
Information Science, 30(l): 10-14; 1979.
Date, C.J. An introduction to database systems, vol. 1. Reading, MA: Addison-Wesley, 3rd ed.; 1981.
Blair, D.C. Searching biases in large, interactive document retrieval systems. Journal of the American Society
for Information Science, 31(4): 271-277; July 1980.
Blair, D.C.; Maron, M.E. A test of retrieval effectiveness for a full-text document retrieval system. Com-
munications of the ACM, 28(3): 289-299; March 1985.
Jacquesson, A.; Schieber, W. Term association analysis on a large file of bibliographic data, using a highly-
controlled indexing vocabulary. Information Storage and Retrieval, 9: 85-94; 1973.
Data Base Task Group of CODASYL Programming Language Committee. Report; April 1971.
Babcock, C. Users: DB2 chokes on volume test. Computerworld, 21(30): 1; July 27, 1987.
Date, C.J. On the performance of relational database systems. Chapter 5 in Date, C.J., Relational database:
Selected writings. Reading, MA: Addison Wesley; 1986.
Date, C.J. An introduction to database systems, vol. 2. Reading, MA: 1983. Addison Wesley; 1983.
Zipf, G.K. Human behavior and the principle of least effort. Cambridge MA: Addison Wesley; 1949.
Van Rijsbergen, C.J. Information retrieval, 2nd ed. London: Butterworths; 1979.
Arthur D. Little, Inc. Centralization and documentation. Cambridge, MA; 1963.
Bird, P.R. The distribution of indexing depth in documentation systems. Journal of Documentation, 30(4):
381-392; December 1974.
Lancaster, F.W. Vocabulary control for information retrieval. Washington, DC: Information Resources Press;
1972.
McClelland, R.M.A.; Mapleson, W.W. Construction and usage of classified schedules and generic features
in coordinated indexing. ASLIB Proceedings, 18: 290-299; 1966.
Blagden, J.F. Management information retrieval: A new indexing language. London: British Institute of Man-
agement, 1969 (2nd ed.; 1971).
Wall, E. Further implications of the distribution of index term usage. Proceedings of the American Docu-
mentation Institute, 1: 457-466; 1964.
Nelson, M.J.; Tague, J.M. Split size-rank models for the distribution of index terms. Journal of the American
Society for Information Science, 36(5): 283-296, September 1985.
Bernstein, P.A. Synthesizing third normal form relations from functional dependencies. ACM Transactions
on Database Systems, l(4): 277-298; December 1976.

