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Abstract--A new equal order velocity-pressure finite element procedure is presented for the calculation 
of 2-D viscous, incompressible flows of a recirculating nature. As in the finite difference procedures, 
velocity and pressure are uncoupled and the equations are solved one after the other. In this splitting-up 
method, an auxilary velocity field is computed first, which accounts for all contributions to the 
acceleration, except pressure, and satisfies the velocity boundary conditions. Then, the final velocities are 
evaluated by adding to the auxilary velocities pressure contributions which are computed to satisfy the 
continuity equation. The effectiveness is illustrated via example problems of 2-D advection and natural 
convection flows. 

1. I N T R O D U C T I O N  

This paper presents the development of a 2-D code for solving the viscous, incompressible 
Navier-Stokes (NS) equations. The purpose of this research is to identify a suitable approach to 
finite element analysis of recirculating flows involving heat and mass transfer. The desire to follow 
a physically meaningful approach and to specify the boundary conditions easily, made to consider 
the so-called primitive variables--i.e, velocity-pressure formulation. 

The major emphasis during the present investigation has been on the development of both 
computational and modelling techniques that contribute to the efficiency of the finite element 
method as applied to fluid mechanics and heat transfer problems. The sequential approach is 
commonly used in the finite difference method (FDM) [1-3]. However, considerably different 
numerical techniques have to be employed here to allow finite element discretization, from the 
user's point of view, to retain all the flexibility and ease of the finite element method (FEM) in 
dealing with complex domains and boundary conditions. 

The transient flow of incompressible viscous fluid is characterized by the hyperbolic, parabolic 
and elliptic properties. The hyperbolic and parabolic properties result from the convective and 
diffusive terms of the NS equations, respectively and elliptic property is due to the incompressibility 
of fluid. Therefore, it is very natural to decompose the time integration of the incompressible NS 
equations into three separated steps. In the present scheme, the hyperbolic convective equation is 
temporally integrated in the explicit Euler manner to save the computational efforts. Since the 
application of the explicit Euler scheme induces negative numerical viscosity and leads to non-linear 
instability, the balancing tensor viscosity is added into the physical viscosity. The fully implicit (FI) 
time integration is used for the incompressibility equation, because the fluid is always incom- 
pressible. The same time integration scheme is applied to the time integration of the pressure 
gradient term, since pressure plays a role of the Lagrange multiplier for the incompressibility 
constraint from the view point of variational principle. Such time integration yields the elliptic 
pressure Poisson equation, which is solved by the skyline version of the Gauss-elimination 
technique to save the computational storage demand in the present computation. 

The performance of the above mentioned method as applied to 6 example problems will also 
be indicated. The 6 problems are those of wall driven cavity flow, sudden expansion problem, flow 
over a square step, flow through a flat plate, flow around a stationary sphere and natural 
convection heat transfer problems. Where possible the results are compared with existing solutions 
obtained by other numerical methods. A satisfactory correlation exists where such comparisons can 
be made. The results complement and extend those obtained during previous theoretical and 
numerical investigation. 
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2. BASIC E Q U A T I O N S  

The equations to be solved are derived from the basic physical principles of conservation of mass, 
momentum and energy. An unsteady flow Eulerian formulation will be employed. The equations 
are expressed in cartesian tensor notation with summation over repeated indices implied. 

Application of the principles of mass conservation results in the continuity equation: 

(pui). ~ = 0, (1 t 

where p denotes the mass density, and u i the components of the velocity vector in the xi-coordinate 
direction. 

From a balance of linear momentum surface and body forces on an arbitrarily small fluid 
volume, the Cauchy equation can be obtained as: 

Out 
cqt + puju~.j= o,j,j + p f ,  (2) 

where f denotes the components of the body force vector per unit mass and a 0 the stress tensor. 
For a Newtonian fluid the constitutive relation for the stress tensor in terms of the mean stress 
- p  and rate of strain tensor u~,/is: 

2 
a,i = -p6 i i  + 21a (ui. j + uj. ~) - g I~ (uk, k)6ii (3) 

where/a is the coefficient of viscosity. 
The energy equation may be expressed in terms of the thermodynamic property of enthalpy, h, 

as: 

0h 
Ot + pu~h,~ = uip.~ + ui.j(crij + p6¢) + ( K T  ~),~ (4) 

where Fourier's constitutive relation for the heat flux vector in terms of the temperature gradient 
in isotropic media has been employed, K being the coefficient of thermal conductivity and the mean 
stress has been set equal to the negative of the thermodynamic pressure. 

The following simplifying assumptions are made: 

1. The boussinesq approximation that density variation is negligible except in the body force 
term f where temperature induced variations give rise to a body force which contributes to fluid 
motion. 

2. The density satisfies an equation of state of the form p = p0[l + f l ( T - T o ) ]  where the 
subscript 0 denotes a reference state and fl is the coefficient of thermal expansion. 

3. The enthalpy is a function of temperature alone with dh = CpdT,  where Cp is the specific heat 
at constant pressure. 

4. The pressure gradient is sufficiently small that the term uip.~ may be neglected in eqn (4). 
5. Constant physical properties, p, Cp, fl and K. 
6. The body force vector per unit mass f is constant. 

With these assumptions the system of equations to be solved may be expressed in terms of the 
dependent variables ui, p '  and 0 as follows: 

u/.~ = 0 (5) 

0u~ 
P o - ~  + pou~Ui.j = - p ~  + 21~ (u~.j + uj, ~).j + poflOf (6) 

¢~-~ + poCpujO j = KO jj + ftdp (7) 

where 

p ' =  p - p o f x i  (8) 

0 = T -  T0 (9) 

49 = 2u~, i(u~, j + nJ,,) (10) 
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Equation (5) may be regarded as imposing a constraint on the vector field ui. The vector field of 
velocity must be divergence free or solenoidal. These equations are applicable to low speed flow 
of  gases as well as the flow of liquids which are essentially incompressible. Assumption (4) in effect 
models the energy addition to an elemental fluid element as a constant pressure process. Implicit 
allowance is made for the compressibility of a gas as required by thermodynamic considerations, 
through the use of  the enthalpy function h = e + p/p rather than the internal energy e as the energy 
variable. 

It is convenient to express the above equations in non-dimensional form. Introducing reference 
quantities u*, 0* and L, the velocity components, temperature difference and coordinates may be 
normalized. The pressure will be normalized with respect to po(u*) 2. Employing upper case 
characters to denote the normalized variables, the resulting equations are: 

U,,,=O (11) 

~3U, ( v ) {flO*gL~ 
63- ~ -  Jr UjUi, j = -P , i - k -  - ~  (Ui, j + Uj, i),j -JF ~ (U,) 2 / ~J~i (12) 

- -  U ct + j04= O j j+\u,Ll\CpO,j  ~ (13) 

where ~ = K/(po Cp) is the thermal diffusivity, v = l~/Po the kinematic viscosity and f = gf~ with f,. 
the components of a unit vector and g the gravitational constant. The non-dimensional coefficients 
in these equations may be expressed in terms of traditional dimensionless group such as: 

- -Reynolds  number, 

- -Prandt l  number, 

- - G r a s h o f  number, 

- -Ecker t  number, 

--Peclet  number, 

- -Rayleigh number, 

u*L 
Re = - -  

v 

V 
Pr = - 

Gr - flgO*L 
F 2 

U , )2  
E c -  

CpO* 

u*L 
Pe = Pr. Re = 

Ra = Gr .  Pr = flgO*L 3 
F~ 

The particular groups employed and resultant form of  the equations are determined in part by 
the choice for the reference velocity u*. In forced convection problems, a characteristic velocity 
u* -- u~ may be identified and the coefficients are usually expressed in terms of  the group Re, Gr, 
Pe and Ec. In the case of  natural convection where a characteristic velocity may not be identified 
a priori u* = ~/L or v/L is typically chosen with the coefficients being expressed in terms of  Pr and 
Ra with the internal viscous dissipation neglected. In this paper the theoretical aspects is explained 
only for natural convection but in the illustrations both advection and natural convection problems 
were discussed. If  the internal heating by viscous dissipation is neglected, :t/L chosen as u* and 
the Rayleigh and Prandtl numbers employed as dimensionless groups, eqns (12) and (13) may be 
rewritten as: 
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0Ui 
(3---[- + UjUi /=  - P  , + Pr[(Ui j + Uji) 4 + Ra f O ]  (14) 

#O 
?.-5- + UjO /= O ~ i (15) 

The transient flow of incompressible viscous fluid is characterized by the hyperbolic, parabolic 
and elliptic properties. Therefore, eqn (14) can be decomposed into the following three fractional 
steps. 

--advection: 

-~liffusion: 

---continuity: 

0U, 
?~ + Uj U,, j = 0 (16) 

c?-t + g~o j  = 0 (17) 

OU~ P r ( U , j + U j , ) . j = P r R a  f~O (18) 
~t " ' 

#O 
c3t O j 2 = 0  (19) 

0Ui 
?~[ + P ,=  0 (20) 

Ui, i = 0. (21) 

The above three steps have different properties from the view point of the classification of partial 
differential equations. The convection step has the hyperbolic property and is integrated in the 
explicit Euler method. However, the explicit Euler method is the first-order in accuracy and 
unconditionally unstable owing to the introduction of negative numerical diffusivity. In order to 
compensate for the negative diffusivity, the same amount of balancing tensor viscosity is added 
artificially into the physical diffusivity as follows. 

¢3U, ( A t )  
~-~- + UjU,.j = - P,i + Pr + ~- UiU / (Ui.~ + Uj,,),j + PrRa .nO (22) 

~0 ( A t )  
0 ~ - + ~ O j =  I + ~ - U ,  Uj O jj (23) 

where At is the time increment. 
To complete the formulation of the basic equations a set of boundary and initial conditions are 

required. For the hydrodynamic part of the problem, the continuum boundary conditions are of 
two types; those specifying velocity and those specifying stress. Application of the specified velocity 
condition in discrete form is straightforward. The equation for the particular velocity component 
at a boundary node is replaced by a constraint condition enforcing the proper boundary value. 
This in general can be defined as: 

U i = Ui, on $1 (24) 

For boundary conditions specified in terms of stress components, the surface force is supposed to 
be given on boundary Sz i.e.: 

te = ~,u'nj = ~, on $2 (25) 

where Xij denotes the non-dimensional stress t e n s o r  (aij)/[pO(U*)2]. 
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The thermal part of the problem requires a temperature or heat flux to be specified on all parts 
of the boundary. Symbolically, these conditions are expressed by: 

0 = 6 ,  on $3 (26) 

q = O i . n i = ~ ,  on $4 (27) 

for the heat transfer region. In eqns (24)-(27) ni is the direction cosine of the outward normal on 
the boundary with respect to )(1.-axis. Moreover, the subsets Sl, $2, $3 and $4 of S which satisfy 
the following conditions: 

Sj U $2 = S (28) 

S~ N $2 = 0 (29) 

and 

$3 U $4 = S (30) 

s~ns4=0 (31) 

The superposed bar in eqns (28) and (30), represents the total boundary enclosing the fluid and 
the energy transfer region, respectively and 0 in eqns (29) and (31) denotes the empty set. 

The initial conditions for convective-conductive heat transfer problems consists of specifying the 
value of velocity and temperature at the initial time: 

U,(Xi, O) = UI°)(Xi), (32) 

0 (Xi, O) = ~9(°)(X,), (33) 

with the initial velocity UI°)(Xi), satisfying the incompressibility condition, 

U(O) i. i = 0 (34) 

and 

Ui(Xi, O)'n~= O,(Xi, O)'ni, on $1 (35) 

3. VELOCITY CORRECTION METHOD 

To obtain the velocity, pressure and temperature at time t "+~, the velocity correction method 
is successfully used in the present analysis. At first, an intermediate velocity fields U7 +~ not 
satisfying the incompressibility constraint, is derived from a time-discretized version of the 
momentum equation in which the pressure terms are omitted. Then, the field 07 + i is decomposed 
into the sum of a vector field with zero divergence and a vector field with zero curl. The 
divergenceless component is the end-of-step velocity vectors U7 ÷ J, whereas the irrotational one is 
related to the gradient of the pressure field P"+' .  

The intermediate nodal velocity vector fields (~7 + ~, not satisfying the incompressibility condition 
is derived resulting from the previous cycle's velocity vectors, pressure, body forces and tem- 
perature by employing a purely explicit Euler's first-order scheme: 

U7 +~ UT-At{U~U" . - (Pr+ At U~) } = ,.j --f U7 " (Ui"j+ UT.i),j-PrRaO"f7 (36) 

~ i "+ '=  gr/, on Sl. (37) 

Once the intermediate velocity has been computed, the end-of-step velocity U7 + ~ is obtained by 
adding to 07 +1 the dynamical effect of the still unknown pressure P"+~ which is to be determined 
so that the incompressibility condition remains satisfied. 

u 7  +' = 0 7  +' - , a t e " i  +' (38) 
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Taking divergence on both sides of eqn (38) together with incompressibility constraint U,'+L = 0, 
the following equation for pressure can be derived. 

At - " '  " (39) 

To solve the above eqn (39) by the finite element method, the following boundary conditions are 
applied. 

P = P ,  on Si (40) 

r =Pn, :~J 'n i=i  , on $2 (41) 

Once the pressure has been determined from eqn (39), nodal velocities can be calculated from eqn 
(38). The new velocities given by eqn (38) clearly satisfies the weak form of the incompressibility 
constraint, as well as the boundary conditions. Then, the temperature at all nodal points can be 
calculated by employing a purely explicit Euler's scheme to the transport eqn (23). 

At\ .+, U~+,) 
O " + ' = O " - A t  UT+'OTj+ l + ~ - ) ( U ~  O~'jj (42) 

O '+1=  63, on SI (43) 

This completes the updating of all quantities. 

4. FINITE ELEMENT METHOD 

Based on the velocity U'/, pressure P" and temperature O" computed at the previous time point, 
the velocity, pressure and temperature for the next time step can be calculated. Equations (36), (38), 
(39) and (42) were discretized by the standard Galerkin finite element method. Assume that the 
flow field is divided into a number of small domains called finite elements. For velocity, pressure 
and temperature, the interpolation equations can be introduced as follows: 

Ui = ~ U~i (44) 

P = 4~,P~ (45) 

O = ¢~0~ (46) 

where 4~, is the interpolation function, U,j denotes the nodal value of velocity at the ~th node of 
the finite element in the ith direction, P, means the nodal value of pressure at the ~th node, and 
O, is the nodal value of temperature at the e th node. The application of the finite element 
procedure to equations (36), (38), (39) and (42) leads to the following set of equations: 

M~p U~ +' = M,~- Up, ~" +' - AtH~¢P~ +~ (48) 

A,~p ,+ l  = 1 
At H~,~ 0~, +' + l~ (49) 

(50) 

where 

M~p = ;E.. (~b~ qSp) d V. (51) 

H~i~ = ;v (4)~,i4~) dV, (52) 

K~j = f~ (qS,4~,j4),,) dV, (53) 
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A'B = .Iv (~b=,,~b~,j) dV, (54) 

N, = RaPr [" (~b=) dV, (55) 
3 v 

fi,, = Pr I~ {,/,,(uT.j + u," ,).n AdS, (56) 

Z, = f (c~,p"+m'ni) dS, (57) 

j~(~b,p."i+ m • ni) dS, (58) 

S~i~j= Pr ~ (~b,,k~bB, k)3,TdV + Pr [" (~b,,i4~a,j) dV, (59) 
.1 v , ) v  

At f At f S'~,~j= ~ U~")U~(") jv (~b,.k(a~,e)a~jdV + -2 U~(")U)'("I v (dp,,,4~, j) d V , ,  (60) 

A~' = ~At U~(,+olT(,+o (61) 
d v  

In eqns (47)-(50), a71~ means the lumped mass matrix obtained simply by summing across each 
row of the consistent mass matrix M,a, and placing the results in the diagonal. In eqns (60) and 
(61), U, .") means the value of the velocity which is computed at the centroid of each element using 
UT. 

Though eqns (47)-(50) was derived by considering only a single element, the equations for the 
assemblage of all elements possesses the same form. Thus eqns (47)-(50) constitutes the basic 
numerical problem for the finite element analysis of this class of problems. 

5. CALCULATION OF STREAM FUNCTION 

A particularly useful variable for a normal representation of 2-D flow is the stream function. 
This can be evaluated, knowing the velocity distribution from the equation 

~l, i  i = - - c o  (62) 

where ~ is the stream function and co is the vorticity. The relationship between velocity and these 
variables is given by: 

UI -~- ~,2 (63) 

U: = ~,j (64) 
and 

co = - [ U , , 2 -  Uz.,] (65) 

The appropriate boundary condition is ~ ----0 on all boundaries. 
Again the finite element technique and Galerkin's principle can be used with effect. For the same 

idealization of the domain the following matrix equation can be obtained by adopting the same 
approach as outlined previously. 

where, typically, 

A.B ¢~+' = n. ,~ U~, +' +/-/.:~ U~: +' + :~:= (66) 

A,~ = fv (qS~'f~B'J) dV, (67) 

H,,~ = fv(qb=d&.2) dV, (68) 
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= ~ (qS~ ~b~. i) dV, (69) H=2~ 
J V 

£2~ = .I~(G~."? .n,) dS. (70) 

Therefore, once the nodal velocities are known, the stream function and the corresponding "visual" 
contour plot representation can be obtained. 

6. D I M E N S I O N L E S S  H E A T  T R A N S F E R  C O E F F I C I E N T  

An average Nusselt number for the cavity can be calculated from: 

hx2H r'" 
= K - ~o \ e X ,  Jx,=o dX2 (71) 

and 

N u , - k T x 2 W -  1 Nu (72) 
K H/w  

where/~x2 is the average heat transfer coefficient, Nu, is the average Nusselt number and w is the 
significant length. 

7. N U M E R I C A L  E X A M P L E S  

7. I. Flow in a driven cavity 

The driven cavity flow is taken as the first application of the proposed scheme. The problem 
definition is given in Fig. 1. The spatial discretization consists of nonuniform meshes of 1800 (for 
Re = 0 and 1000) and 3200 (for Re = 5000) three-noded triangular elements. A pressure datum 
P = 0 is specified at the middle of the bottom wall. Iso-streamlines and pressure contours at steady 
state are plotted in Figs 2-4 for Re = 0, 1000, 5000, compares fairly well with the results obtained 
by Yang and Atluri [4, 5]. The plot of the streamlines for Re = 1000 and 5000 clearly indicates the 
presence of two secondary vortices at the lower corners of the cavity and three secondary vortices 
at the lower corners and upper left corner of the cavity as reported by these and other authors. 
The computation was performed in single precision (32 bits per word) and 0.4 MB were used for 
all cases at the Tokyo University computer center (M680H computer). The CPU time was 50 s for 
Re = 0; 4 min for Re = 1000; and 22 min 10 s for Re = 5000. 

The pressure fields are found to be completely free from chequerboard oscillations. No pressure 
splitting is encountered with the present formulation, even when using purely Dirchlet-type 
boundary conditions. 

The profiles of the horizontal velocity along the vertical center line of the driven cavity (X~ = 0.5) 
and the vertical velocity along the horizontal center line of the driven cavity (X2 = 0.5) is illustrated 
for Re = 1000 in Fig. 5. They show almost exact agreement with those of Ghia et al. [6]. Finally, 
a comparison of the properties of the primary and secondary vortices in the driven cavity flow is 
provided in Table 1. In general the agreement between the present solutions and other numerical 
solutions are excellent. 

7.2. Sudden expansion problem 

The second example is a rearward facing step. This problem has been treated in numerous 
previous studies including both experimental and computational work. In addition, this problem 
is cited in Ref. [7] as one that is susceptible to producing spurious pressure modes. The problem 
definition is given in Fig. 6, which shows an upward facing step of expansion ratio (1:2). At the 
top as well as bottom walls, the boundary conditions are U~ = U2 = 0. At the inlet the boundary 
conditions are U~ = 240 )(2(1 - )(2) and U2 = 0 with the origin of X2 as shown in Fig. 6. The channel 
inlet and outlet is one and two units high, respectively. A parabolic velocity profile is described 
at the inlet resulting in a Reynolds number of 60, while low is large enough to cause the 
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~ ' l  UI =I.0, U2 "0.0 
P 

~ l r L  , X2rL ) 

H,L _1 I_ HBR -I 
" -I F -I 

Fig. 1. Cavity flow configuration, coordinates, nomenclature and boundary conditions. 

development of  a significant recirculation region in the expansion corner. The computing 
conditions are as follows: At = 0.005, v = 1.0. Computed steady state velocity vectors, streamlines 
and pressure contours are plotted in Fig. 7. The computation was performed in single precision 
on the Tokyo University computer center M680H computer. The used memory size was 0.2 MB 
and CPU time was 54 s for 1000 time steps. 

Qualitatively, one would expect the pressure to be nearly uniform across the inlet section, being 
consistent with the imposed fully developed inlet conditions. Further downstream, steep negative 
pressure gradients are developed in the narrow portion of  the channel followed by adverse pressure 
gradients in the wider section. This general pattern is depicted in the pressure contours as shown 
in Fig. 7(c). A plot of the pressure at the bottom wall is shown in Fig. 8. The results have been 
compared with those obtained by Lee et al. [8]. Both results are extremely well in agreement. 

7.3. Flow over a square step 
The third example is more complex in terms of  both the geometry and the predicted flow field. 

The problem definition is given in Fig. 9. It is to be remarked that this problem has been analysed 
well by several investigators [5, 9, 10]. The flow is considered in a l unit high channel consisting 
of  a step located at 1.2 units from the inlet which is 0.4 units high and 0.4 units across. The inlet 
boundary condition is U~ = 1, U2 = 0. The length of the channel is assumed to be 4 units from the 
inlet. 

The presently computed results for velocity vectors, pressure contours and streamlines at 
Re = 85, and at times t = 1.0, 2.0, 3.0 and 4.0 units, respectively are shown in Figs 10-13. The 
computing conditions are as follows: At = 0.0025, v = 0.0118. The CPU time was 1 min 30 s for 
2000 time steps using M680H computer at Tokyo University computer center. The eddy length 
at t = 4.0, shown in Fig. 13, is in excellent agreement with the results reported by Yang and Atluri 
[5]. 
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(a) 

(b) 

Fig. 3. Driven cavity flow at Re = 1000. (a) Streamlines; (b) pressure contours. 
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(a) 

(b)  

Fig. 4. Driven cavity flow at Re = 5000. (a) Streamlines; (b) pressure contours. 
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Fig. 5. Velocity profiles along horizontal and vertical center lines at Re = I000. 

7.4. Flow around a flat plate 

The fourth problem is a flow around a flat plate. The problem statement is depicted in Fig. 14. 
The flow is considered in a 2.5 units high channel consisting of a flat plate located at 0.8 units from 
the inlet which is 1 unit high. The inlet boundary condition is U~ = 1, U2 = 0. The length of  the 
channel is assumed to be 2.5 units from the inlet. 

The presently used uniform finite element mesh for Re = 100 consists of 3160 three-noded 
triangular elements and 1600 nodal points. The computing conditions are as follows: At = 0.01, 
v = 0.01. The used memory size was 0.4 MB and CPU time was 32 s for 100 time steps using 
M680H computer at Tokyo University computer center. Presently computed results for velocity 
vectors, pressure and streamlines at Re = 100, and at times t = 0.25, 0.5 and 1.0, respectively are 
shown in Figs 15-17. The computed results are good in agreement with the appearance observed 
in the experiment and other numerical simulations. 

Table 1. Properties of primary and secondary vortices 

Re Present method Ghia et al. 16] 

1000 (Xw, X2c) (0.5326, 0.5631) (0.5313, 0.5625) 
(XtsR, X2sR) (0.8612, 0.1108) (0.8594, 0.1094) 
(XI sL, X2sL ) (0.0845, 0.0769) (0.0859, 0.0781 ) 

HsR 0.3072 0.3034 
VsR 0.3483 0.3536 
HSL 0.2108 0.2188 
Vsc O. 1623 O. 1680 

5000 (X~c, X2c) (0.5120, 0.5347) (0.5117, 0.5352) 
(X]s R, X2BR) (0.8104, 0.0751) (0.8086, 0.0742) 
(X~s L, X2a L ) (0.0738, O. 1371 ) (0.0703, O. 1367) 
(Xi rL, X2rL ) (0.0638, 0.9091 ) (0.0625, 0.9102) 

HsR 0.3527 0.3565 
VsR 0.4203 0.4180 
HaL 0.3162 0.3184 
VsL 0.2668 0.2643 
HrL 0.1208 0.1211 
VrL 0.2665 0.2693 
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(a) 

mlUDU|I  Q  
miiID|Q|||  
BBUmI|||||  
IBili ||Q|  

  {x:xxx 
4 xx i XX x× 

X4>{xx 
XX x× 
XXXxx  
XXXxx 
XXXxx x 

×X >.dxi, j -, ..-'NX 

xxxIx x X .-"x x x  

x ,"4,>( 
(b) 

Fig. 6. Flow through sudden enlargement. (a) Problem description; (b) finite element mesh. 

7.5. Flow around a stationary sphere 

The fifth problem is the axisymmetric flow past a rigid stationary sphere. The problem definition 
is given in Fig. 18. Computed steady state velocity vectors and pressure contours for Re = 10 are 
reported in Fig. 19. The pressure contours for Re = 10 are almost indistinguishable from those 
reported by other researchers. In Fig. 20 the distribution of pressure and vorticity around the sphere 
is depicted and compared with the infinite-domain semi analytical results [11]. Ahead of the sphere, 
the solution for both Reynolds number are equally accurate, whereas in the recirculating region 
behind the sphere, the agreement is better for the higher values of the Reynolds number. This is 
presumably a consequence of the finite extent of the computational domain which is more relevant 
when the region of dominant viscous effects is larger. The CPU time for this problem was 8 s to 
get a steady state solution using M680H computers at Tokyo University computer center. 

7.6. Natural convection in rectangular enclosures 

The final example is concerned with the laminar, 2-D motion (generated by a temperature 
gradient) of an incompressible fluid in a rectangular enclosure. The left and right vertical walls have 
a specified temperature of -0 .5  and 0.5, respectively, and top and bottom walls are either insulated 
or subjected to a linear variation of temperature. All of the boundary conditions on the velocity 
field are of essential type. The problem description is shown in Fig. 21. 

7.6.1. Isothermal plots. To illustrate the effect of the Rayleigh number and Prandtl number 
Pr = 0.71 and aspect ratio H / W  = 1.0, the isotherm lines for insulated temperature boundary 
conditions for increasing values of Ra, upto 107, are shown in Fig. 22. For low Ra ~< 10 3 the 
isotherm lines are almost linear everywhere inside such that ~ = X~, i.e. heat transfer is by 
conduction. As the Rayleigh number increases, the convective effects become more apparent and 
the isotherm lines progressively distort. These distortions result in high temperature gradient near 
the wall. Near the extremities the patterns are strongly influenced by the temperature condition 
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Computed results for flow through sudden enlargement at Re = 60. (a) Velocity vectors; 
(b) streamlines; (c) pressure contours. 
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Fig. 9. Flow over a square  step. (a) P rob lem descript ion;  (b) finite e lement  mesh .  
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Fig. 10. U n s t e a d y  flow at Re = 85, t = 1.0. (a) Velocity vectors;  (b) pressure  contours ;  (c) s t reamlines .  
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Fig. I 1. Unsteady flow at Re = 85, t = 2.0. (a) Velocity vectors; (b) pressure contours; (c) streamlines. 
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Fig. 12. Unsteady flow at Re = 85, t = 3.0. (a) Velocity vectors; (b) pressure contours; (c) streamlines. 
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Fig. 14. Flow around a flat plate. (a) Problem description; (b) finite element mesh. 
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Fig. 15. Unsteady flow at Re = 100, t = 0.25. (a) Velocity vectors; (b) pressure contours; (c) streamlines. 
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Fig. 16. Unsteady flow at Re = 100, t = 0.5. (a) Velocity vectors; (b) pressure contours;  (c) streamlines 
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Fig. 17(b) 
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Fig. 17(c) 

Fig. 17. Unsteady flow at Re = 100, t = 1.0. (a) Velocity vectors; (b) pressure contours; (c) streamlines. 



378 B. RAMASWAMY 

u2 = o.o 

U1 = 1.0 

U2 = 0.0 

Ux = U2 = 0,0 

U2 = o.o U2 = o.o 

b 4.62D . L  D 4" 4.62D _] 

(a) 

/" / \\ i I 
\i 

/// ~.~// 

, i;4J 

_ i C_'~ c_N 

(b) 
Fig.  18. F l o w  a r o u n d  a s t a t i o n a r y  sphere .  (a) P r o b l e m  desc r ip t ion ;  (b) finite e lement  mesh .  

on the horizontal boundaries. The S-shaped pattern observed for high Ra by Stevens l12] and Elder 
[13] are clearly seen from the isotherm lines. For Ra >1 0.5 x 106 it is apparent that an isothermal 
core exists in the cavity with uniform temperature O = ~. This was postulated by Batchelor [14] 
for Ra ~ ~ .  

It is to be expected that, for the present problem a symmetry exists in the sense that the field 
in the lower half of  the cavity is a negative image of  the field in the upper half provided the 
boundary condition on top and bottom of the cavity are the same. This requires value at midpoint 
equal to 0.5. This value is satisfied exactly for all the cases considered. 

7.6.2. Stream function. The streamlines in a square cavity for increasing values of Rayleigh 
number upto 107 are shown in Fig. 23 for insulated boundary conditions. For Ra < 105 the flow 
is unicellular and clockwise and shows a circulation pattern up the hot wall and down the cold 
wall. For  higher Ra = 105 the development of  a boundary layer near the wall is clearly 
demonstrated and a second set of streamlines also with clockwise circulation represents the 
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Fig. 19. Computed steady-state solution for flow around a stationary sphere at Re = 10. (a) Velocity 
vectors; (b) pressure contours. 
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Fig, 22. Steady-state isotherm lines for square cavity. (a) R a =  103; (b) Ra=10~; (c) Ra = 106; 
(d) R a =  107. 
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Fig. 23. Steady-state streamlines for square cavity. (a) Ra = 103; (b) Ra = 10~; (c) Ra = 106: (d) Ra = 107, 

secondary flow occurs in the central region of the cavity. This is in agreement with Elder's cats-eye 
pattern [13] and the results of DE Vahl Davis [15] and Rubel and Landis [16]. 

7.6.3. Comparison of stream function and average Nusselt number with previous results. Figure 24 
s bows the values of stream function at the cavity mid-point as a function of Rayleigh number for 
insulated boundary condition. These are compared with previous other numerical techniques. The 
agreement between the present finite element solution and the finite difference solution is excellent 
in all respects. 
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Fig. 24. Stream function at the cavity mid-point. 
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Fig. 25. Averge Nusselt number  for square cavity. 

Figure 25 shows the average Nusselt number calculated by Gauss/an integration as a function 
of the Rayleigh number. These results agree well with published finite difference solutions for 
insulated boundary conditions. 

7.6.4. The effect of aspect ratio. Figures 26-28 show the effect of aspect ratio (height to width 
of the enclosure) on the temperature and flow fields. Figure 26 shows the isotherms and streamlines 
for a rectangular enclosure of aspect ratio 3. The Rayleigh number and Prandtl number are the 
same as those used by Hellums and Churchill [17]: Ra = 1.466 x 104, Pr = 0.733. The present results 
agree qualitatively with those of Hellums and Churchill. Figure 27 shows similar results for a 
rectangular enclosure of aspect ratio 1.83 and with linear temperature distribution on the horizontal 
walls as indicated in the figure (Ra = 8,200, Pr = 2,450). This example is the same as that considered 
by Shekely and Todd [18] who have compared experimental and finite difference solutions. The 
plotted values of the steady state isotherms seem to agree well with those of Szekely and Todd. 
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Fig. 26. Steady-state isotherms and streamlines for aspect ratio 3.0: Ra = 1.466 × 104, Pr = 0.733. 
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Fig. 27. Steady-state isotherms and streamlines for aspect ratio 1.83: Ra = 8,200, Pr = 2,450. 
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Fig. 29. Steady-state pressure distribution for a square cavity. (a) Ra = 105; (b) Ra = 1 0  7, 
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Finally, Fig. 28 shows the results for an aspect ratio of 10, Ra = 105 and Pr = 0.71. In general it 
was observed that for larger aspect ratios the numerical solutions converged slower. 

7.6.5. Pressure distribution. Figure 29 shows the steady state contour plots of pressure at Ra -=- 105 
a n d  107. It is expected that the pressure field is influenced by the cavity corners. For high Ra >~ 105 
the pressure becomes more uniform across the cavity except near the corners. The present results 
are found to be in good agreement with those obtained in Ref. [19] by means of a finite element 
method. These pressure contours were included to demonstrate that equal order velocity-pressure 
solution does not generate spurious pressure modes. 

8. C O N C L U D I N G  R E M A R K S  

In this paper, a new equal order velocity-pressure finite element model has been presented for 
advection and natural convection flows. The solution is based on Galerkin method of weighted 
residuals using Ui, P and O as the main dependent variables. The required distribution of the 
stream function is also obtained using the finite element method. The results presented here 
illustrate that the method does not yield any spurious pressure modes for the example problems 
treated. In addition to the examples presented here, the author has successfully applied the method 
to a number of other cases. In all cases, no spurious pressure modes are produced. The overall 
iterative solution methods used in this work provide considerable savings in execution times and 
storage requirements, compared to other finite element methods. 
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