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Centrifugal Distortions in Molecules: An ab lnitio Approach 
with Application to Phosphine 

A. TALEB-BENDIABANDL.L.LOHR 

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 

Our procedure for employing analytic gradients of ab initio potential energy hypersurfaces 
in the description of centrifugally distorted molecules is applied to a symmetric top, namely 
phosphine. Quark centrifugal spe&oscopic coefficients are obtained and are in excellent agreement 
with the coefficients from the Kivelson and Wilson method for J I( z. We proposed a Bore1 form 
that enables us to fit the stabihzation energies up to J = 80 for the vibrational ground state of 
phosphine. The sextic spectroscopic constant for J 11 z is obtained. Both single determinantal (HF/ 
6-3 lG* * ) and multideterminantal Msller-Plesset (MP2/6-3 1G *) surfaces were utilized. o 1988 

Academic Press. Inc. 

INTRODUCTION 

In a recent publication ( 1) we outlined a procedure for employing analytic gradients 
of ab initio potential energy hypersurfaces in the description of centrifugally distorted 
molecules. The method is readily applicable at any computational level for which 
gradients are available. Stationary points are located in this structurally oriented method 
on the effective hypersurface defined as the sum of the electronic and rotational energies. 
Centrifugal distortion pathways and centrifugal stabilization energies are defined; from 
the latter quartic centrifugal distortion spectroscopic constants were obtained in the 
first study (1) for H$, NH3, C&, BF3, and SF6. In subsequent articles (2, 3) an 
extension of the method to the asymmetric tops O3 and Hz0 was outlined. In the 
present article we explore additional questions about centrifugal distortions, namely 
do the quartic centrifugal coefficients obtained from centrifugal stabilization energies 
and from the Kivelson and Wilson method agree with each other? Furthermore, which 
representation among the Pad6 approximants and the Bore1 forms better fits our data? 
These questions are approached through computational studies for an important sym- 
metric top, namely phosphine. This molecule has been extensively studied experi- 
mentally and theoretically, which makes it possible to compare our study with other 
works. The calculations are reported at both self-consistent field (HF) and Moller- 
Plesset perturbation (MP) levels. 

METHOD 

(A) Quartic Centrifugal Distortion Constants (J = 0) 

The equilibrium quartic centrifugal distortion tensor components T,@+ are deter- 
mined by means of the Kivelson and Wilson relations (4)) 
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where I,,, ZOB, Zru, and Zas are the equilibrium values of the principal moments of 
inertia, A,, is the vector involving the variation of the (YP element of the moment of 
inertia tensor with respect to the internal coordinates R of the molecular structure at 
equilibrium (5, 6), and F-’ is the inverse of the force constant matrix. 

In Table I, we list the components of the symmetry-adapted force constant matrix 
for the two ab initio levels of calculations used in our work, HF/6-3 lG* * and MP2 / 
6-3 lG*. In addition, the “empirical” ( 7) force constants are represented in Table I. 
The “empirical” force constants are derived using experimental data. 

Comparison of the ab initio to the empirical force constants shows an improvement 
using the MP2 /6-3 lG* * level of calculation rather than simply the HF/6-3 lG* * 
level, for the diagonal force constants. The improvement is of -6% for F, , and Fx;j,, 
and - 12% for F2;22 and Fd4. Even for the off-diagonal force constant F12 there is an 
improvement of -4%. However, the absolute value for the force constant F13 is lower 
at the MP2 level. 

The equilibrium centrifugal distortion constants DJ, DJK, and DK are expressed by 
a simple linear function of the T’S according to the symmetry of the molecule (8). 

(B) Centrifugal Stabilization Energies (J # 0) 

We define as before (l-3) an effective potential energy hypersurface E( R, J) as 

E(R, J) = &I(R) + EAR, J), (2) 

where E,, denotes the electronic energy, E, the rotational energy, R the set of nuclear 
coordinates, and J the rotational angular momentum. Molecular vibration is not 
taken into account in the present form of our method, while molecular rotation is 
treated classically. Therefore, the method provides a description of vibrational ground 
states in terms of vibrationless rotating deformable bodies. 

We locate stationary points on the hypersurface by the condition that VE(R, J) 
= 0. Such points are not necessarily local minima, as they may be saddle points or 
local maxima instead. However, for structures close to the true (J = 0) equilibrium 
geometry, they have typically been found (1) to be local minima. If we let m be the 
number of internal coordinates upon which the rotational energy depends through 

TABLE 1 

Symmetry Force Constants for PH3* 

HFl6-31G” MW6-31G* Empiricalb 

Fnlmdyn A.-l 3.905 3.646 3.341 

Fnhdyn 0.128 0.124 0.100 

Fu/mdyn A 0.747 0.678 0.612 

F&mdyn A-’ 3.802 3.660 3.339 

FwhdF -0.037 -0.030 -0.048 

Fuhndyn A 0.825 0.736 0.730 

a) Angle bend coordinates are unscaled. 

b) Ref. (7). 
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the moment of inertia tensor, then for N atoms in the molecule, there are n = 3 N - 6 
internal coordinates, consequently n equations to be solved, namely 

a(E,, + E,)/aRi = 0, i= 1,m @a) 

aE,,/Rj = 0, j = m + 1, n, (3b) 

where ( Ri} are the coordinates appearing in E,. 
Selecting a principal axis system to describe the rotations of a symmetric top, we 

write E, simply as 

E,(R, J) = BJ2 + (C - B)Jf, (4) 

where B and C are in general implicit functions of J as well as R. For phosphine, JZ 
is the projection of the rotational angular momentum on the C, axis. We find it con- 
venient to describe the atomic positions in the molecule in terms of the cylindrical 
coordinates ( d, z ,4) with the cylindrical axis being the C, axis, where d is the distance 
from the axis, z is the coordinate parallel to the axis, and I$ is the angular position 
about the axis. In terms of these coordinates, the moment of inertia in the z direction 
is simply 

I, = 3mHd2, (5) 

where mu is the mass of an H atom, and the bond length R and bond angle 19 are 
given by 

R = (z2 + d2)1’2 (W 

8 = cos-‘[(2z2 - d2)/(2z2 + 2d2)]. (6b) 

The condition VE( R, J) = 0 for J II C, (the z axis) yields the following: 

aE,l/ad - J:/I,d = 0 VW 

aE,,/az = 0. UV 
Due to the high symmetry of phosphine, the gradients of Eel with respect to the set 
angular coordinates { 4 i } vanish. Consequently, we select d, obtain z by criterion Eq. 
(7b), calculate dE,l/dd at the structure corresponding to z and d, and then solve Eq. 
(7a) for a given J,. 

Using the same definition as before (I ) for a centrifugal stabilization energy AE as 
the difference between the energy of a rigid molecule with J and that of the stretched 
molecule with the same J, such that 

m(J) = &I(J) + &(J), (8) 

where A&(J) is the negative difference between Eel at R = R”, the equilibrium ge- 
ometry, and at R = R(J), the quasi-equilibrium geometry for a given J; and AEr is 
the positive difference between E, at R = R” and at R = R(J). Typically, AE, has 
approximately twice the magnitude of AEel, so that the sum AE is positive. 

(C) Fitting of AE/J4 vs J 

It has been demonstrated for the asymmetric top H20 (9) that the use of the Bore1 
method ( 10) and the Pad& approximants ( 1 I ) is greatly superior in describing the 
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rotational Hamiltonian instead of the diagonal and nondiagonal rotational Hamil- 
tonian in Watson’s form, respectively. In our present work, we adapted this approach 
to fit the stabilization energy AE divided by J4 versus J for the symmetric top molecule, 
namely phosphine. 

The rotational Hamiltonian form, needed for our development, is defined as 

&* = BJ2 + (C - B) J: - D_,J4 - DJ~J2J; - DKJ:! + HJJ6 

+ HJJKJ4J: + HJKKJ’J: + HKJ: + 1/2As(J6+ + Jt), (9) 

where 

Jt = J, f iJy. 

For the case J 11 z, corresponding to the quantum states I J, K) = I J, f J), the 
Hamiltonian from Eq. (9) becomes 

&/ = CJ; - ( DJ + DJK + DK) J: + ( HJ + HJJK + H.,,~K + HK) J:. (10) 

Using the Bore1 method ( 10) and the Hamiltonian operator from Eq. (lo), we 
constructed stabilization energies divided by Jz, 

h4h6J;[llh4 + &J:(Sx + 18)l 
MB/J: = 2h4 - s,” e-xx3( 6(h4 + 3hsJ;)(h4 + h,jJ;X) )dX 

h4 = D/2! h6 = H/3!, (11) 

where 

D= (DJ+D_rK+D~) 

H= (HJ+H,~+HJKK+HK). 

The first term of Eq. (11) corresponds to the stabilization energy divided by Jz at 
J = 0, which is simply rZZZZ, the sum of the quartic distortion constants DJ, DJK, and 
DK derived using the Kivelson and Wilson method. The second term, where the integral 
is taken for positive X, is positive at any value of J; therefore it tends to decrease the 
ratio AEB/ Jz as J increases. It makes the use of this form a good choice qualitatively. 

COMPUTATIONAL DETAILS 

The electronic structure calculations were performed using both the GAUSSIAN82 
(12) and the GAUSSIAN86 (13) programs with the split-valence basis set 6-3 lG* *. 
These calculations were done at two levels: the first is the single-determinantal level 
plus a polarization basis set constructed of Gaussian d-type and p-type functions for 
P and H, respectively, and designated HF/6-3 lG**; the second is the second-order 
Meller-Plesset perturbation level with the addition of a polarization basis set of d- 
type Gaussian primitives for P only, and designated MP2 /6-3 lG*. 

Molecular energies at optimized geometries are -342.45419 and -342.56226 au. 
corresponding to Hartree-Fock and second-order Moller-Plesset levels, respectively. 
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Force constants and vibrational frequencies were computed from analytic second de- 
rivatives of the energy for the HF level. However, for the case of the MP2 level these 
spectroscopic constants were calculated from analytic first derivatives of the energy. 
The stabilization energies were calculated employing analytic gradients at each level 
in locating both the unconstrained (J = 0) and constrained (J # 0) stationary points. 

RESULTS AND DISCUSSION 

In Fig. 1, we represent the computed centrifugal stabilization energies AE divided 
by J:! versus J for the case J I( z, with results being given at both the HF/6-3 lG* * 
and the MP2 /6-3 lG* levels. However, at J = 0 the values of U/ J2 simply 
correspond to the sum of the three quark coefficients DJ, DJK, and DK which differently 
from previous studies (l-3), are computed using the Kivelson and Wilson 
method. The corresponding values are listed in Table II for each level of calculation. 
For DJ there is an improvement using MP2 over HF compared to the observed DJ; 
the errors are -5 and -3% for the HF/6-31G** and MP2/6-31G*, respectively. 
However, this is not the case for DK since it is in a good agreement with the observed 
coefficient at the HF/6-31G**, with an error of -2% but less improved at the MP2/ 
6-3 1G * level, -7% error. The DJ~ constant calculated at both levels shows a large 
difference with respect to the observed one. The difference is - 15% at the HF/6- 
3 1 G * * and MP2 / 6-3 lG*. One could relate this discrepancy to the inaccuracy of the 
vibrational frequencies because DJ~ is sensitive to the vibrational frequencies, especially 
02, However, the sum of the three quartic coefficients shows an accordance with the 
computed centrifugal stabilization energies AE divided by Jz for J # 0. Thus, the 
method described above is a reliable approximation to account for the centrifugal 
distortions in molecules. 

We carried out a fitting of the ab initio data for phosphine, by using Eq. (11) for 
which there is just one parameter H to be varied since the second parameter D is 

determined from the 9s relations. The fit of the stabilization energies, up to J = 80, 
is represented by dotted lines in Fig. 1. One could see at any region of J the ratio 
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FIG. 1. Centrifugal stabilization energies AE in megahertz as defined by EQ. (8) divided by J: for PHa. 
The open and solid squares denote values obtained at the HF/6-31G** and MP2/6-3 lG* levels, respectively. 
The dotted lines indicate the fitting values obtained using Eq. (1 I). 
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TABLE II 

Spectroscopic Constants for PH3” 

HF/6-3lG** MP2/6-3lG* Obs 

k 1.405 1.415 1.42F 

tl 95.6 94.6 93.3c 

ol(al) 2576.7 2509.3 2405.4d 

ww 1122.5 1079.6 1012.4d 

-3(c) 2514.5 2525.3 2411.4d 

04(e) 1256.7 1181.6 114l.ld 

B. 138.715 135.841 133.480= 133.480 

c, 115.793 115.941 117.489c 117.489 

DJ 3.732 3.822 3.947c 3.939 

Dlk -5.951 -6.062 -5.18F -5.174 

DK 4.284 4.501 4.1776 4.241 

I-I= 0.095 0.121 0.445 

a) Bond length R in A, bond angle e in degrees, frequencies in cm’, quadratic distortion 

constants in GHz. qumtic dintonion constants in MHz, and scxdc distortion constant 

inKHz. 

b) Ref. (14). 

c) Ref. (a). 

d) Ref. (7). 

c) H = HI + H,c + H,KK +HK 

pE/ J:! is well fitted. However, in comparison with the Bore1 form, given by Eq. (11) 
used for this fit, we computed the AE/ Ji using the following relationships: Defining 

6h4h6J; 
m”‘lJ: = 2h4 - hq + jh6 J; 

then Eq. (11) may be written as 2 of Eq. (12) plus d of the following, 

(12) 

(13) 

where h4 and hg are defined above. The Eqs. (12) and (13), which also contain two 
parameters, correspond to the Pad& [ 1 / l] (1 I ) and (Bore1 [ 1 / l] ( JO), respectively. 
These equations were used for a trial fitting of the rotational Hamiltonian for Hz0 in 
Polyansky ‘s work ( 9). Equation ( 13) may be reexpressed in terms of the exponential 
integral Ei and evaluated by a series expansion. 

Applying these two types of approximants, defined by Eqs. (12) and (13), to the 
ab initio stabilization energy AE divided by J:! versus J has shown some differences 
for each method at two regions of J. At J < 30 the use of Bore1 [ 1 / l] has shown a 
better convergence to the ab initio results, viz, A,!?/ JTj versus J, than using Pad6 [ 1 / 

11. It was demonstrated by Polyansky’s approach that the Bore1 method describes the 
diagonal rotational Hamiltonian for Hz0 more efficiently than the Pad6 approximant 
does. At a higher J neither of those two forms has shown a satisfying convergence to 
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our ab initio results. The form proposed in the present work, given by Eq. ( 1 1 ), has 
a satisfactory convergence at a low J (J < 30) ; however, at a higher J it shows a better 
convergence to our ab initio data than by using Pad& [ 1 / l] or Bore1 [ 1 / 11. In Table 
III, we list computed values of AE/ J: for some values of J, at the MP2/6-3 lG* level 
for the same value of H. We predict that the use of PadC [ m/ n] (II) with m and n 
greater than unity should give a good fitting to our ab initio data but the inconvenience 
of this type of approximant is that it requires more parameters. 

An important feature of the centrifugal distortion of PH, with J (1 C3 is the pathway. 
It is shown in Fig. 2 in the form of the change of the bond length R vs the change of 
the bond angle 8. The pathways are given for the HF/6-3 lG* * and MP2 /6-3 lG* 
levels. 

Moreover, the variation of the stabilization energies AE divided by J:, defined as 

WEIJlf) = AEIJ: IHO - m/J: L=o (14) 

vs J at the HF/6-31G* * and MP2/6-3 lG* levels, is represented in Fig. 3. As a com- 
parison we have plotted in the same figure A( AE/ Ji) vs J, using the Belov et al. ( 14) 
effective rotational Hamiltonian constructed upon the Pad& approximants. From Fig. 
3, we show that A( AE/ Jf ) for the two levels of calculations used in this work has a 
slow falloff with the increase of J. But from the Belov et al. effective rotational Ham- 
iltonian, A( AE/ Jz) has instead a substantial positive increase with respect to increase 
of J, except in the region 0 < J d 15, where it shows a falloff. Therefore, the effective 
rotational Hamiltonian ( 14) is inadequate at high J (> 15 ) for J 11 z since the positive 
increase tends to make the rotational energies become negative, and that is physically 
meaningless. Furthermore, the inconvenience of this Hamiltonian is that the Pad& 
form involves five parameters, which makes it difficult to manipulate. 

In Table II, the sextic spectroscopic distortion coefficient H for J II z is listed at the 
HF/6-3 lG* * and MP2/6-3 lG* levels, and as a comparison we list the one from the 
Belov et al. approach (14). The H coefficient for the levels of calculation and from 
the Pad& form ( 14) are of the same order of magnitude even though the sextic coefficient 
H from the latter cannot be considered as a good reference because of the inadequacy 

TABLE III 

Calculated Values of AE/ J’: for PH, , at the MP2/6-3 lG* Level 

PADE[l/ll’ BOiW&/ll’ This Work.0 Anal. prad.b 
(MHZ) 1 ww @C-h) 

2.2615 2.2615 2.2615 

2.2143 2.2146 2.2144 2.2153 

2.0836 2.0906 2.0848 2.1127 

1.8970 1.9388 1.9040 1.9249 

1.6857 1.8407 1.7116 1.7249 

a) They are represented by the Eqs. (12). (13) and (I 1). respxtively. 

‘Jhe same values of h, and ha are used for dxse three equations. 

b) 7he srabiliration energies arc computed from the method described 

in the %aioon (C). 
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FIG. 2. Centrifugal distortion pathways as bond length changes AR in angstroms versus bond angle changes 
Ati in degrees for PH3 at the HF/6-3 1G * l denoted by the open squares and MP2/ 6-3 1 G * denoted by the 
solid squares. 

of the Pad6 form at high values of J. However, no observed sextic distortion constant 
for J II z has been listed in Table II because of the absence of the observed l& value 
in the available published literature. What we are unable to determine thus far is the 
four sextic spectroscopic constants HJ, H IJK, HJKK, and HK separately because according 
to the classical description, the case of J 11 x and J II y, the stabiition energies cannot 
be computed efficiently for this symmetric top. 

In Table II, we list other physical constants used in our calculation. The equilibrium 
geometry variables, namely the bond length R and the bond angle 8, are 1.405 A and 
95.6” and 1.415 A and 94.6’ for the HF/6-3lG** and MP2/6-3lG* levels, respec- 
tively. Compared to the experimental geometry parameters ( IS), the MP2 equilibrium 
geometry is improved compared to the HF. The harmonic frequencies from the MP2 
level are closer to the observed harmonic frequencies (14) than those from the 
HF level. 

0 20 40 60 80 

J 

FIG. 3. Variation of the stabilization energies A( AE/z) in me&ertz, as defined by Eq. (14). The open 
and solid squares correspond tothe values obtained at the HF/6-31G** and MP2/6-3lG* levels, respectively. 
The lozenges indicate values obtained using the Pad6 approximant from Ref. (14). 



CENTRIFUGAL DISTORTIONS IN MOLECULES 421 

SUMMARY 

The centrifugal distortion of PH3 has been explored using analytic gradients for the 
case J I( z with the following conclusions: (i) The quartic distortion coefficients T,,,~ 
= D, + DJK + DK from the extrapolation of the M/J:! using the quasi-static model 
(l-3) and the Kivelson and Wilson method are in excellent agreement, at both levels 
of calculation undertaken in this work. (ii) We derived a Bore1 form, which is better 
than Pad&[ 1 / l] or Borel[ 1 / 11, for the fit of our ab initio data. (iii) From the fitting 
of the AE/J:! vs J curve, the sextic distortion coefficient H is determined. In our 
opinion, it is the first time the sextic coefficient H has been determined by an ab initio 
approach using a simple method. (iv) The MP2 / 6-3 1 G * level of calculation is better 
than the HF/6-3 lG* * level for computing the spectroscopic parameters for phosphine. 
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