SIMULATION AND MODELLING

CONTINUOUS TIME STOCHASTIC COMPARTMENTAL MODELS OF DISCRETE POPULATIONS

Richard L. Patterson
School of Natural Resources, University of Michigan

PRELIMINARIES

Let $[X(t) ; t>0]$ denote continuous time, n-state semi-Markov process with slochastic transition matrix $P=\left(p_{i j}\right)$, state residence time distribution function matrix $W=\left[W_{i j}(z)\right]$, and stochastic interval transition probability matrix $F=\left[f_{i j}(t)\right] \quad(i, j=1, \ldots, n) . X(t)$ is the state of the process at its most recent change of state and element $f_{i j}(t)$ of F is the conditional probability that $x(t)=j$ at time t, given that the initial state $X(0+)$ is i. Elements of F are related to clements of P and W by a Markov renewal equation of the Volterra type whose solution can be expressed by conditioning on the number of changes of state of the process prior to time t :
$f_{i j}(t)=\sum_{\ell=0}^{\infty} \operatorname{Pr}[X(t)=j / X(0+)=i, 1$ changes of state in $(0, t)] x$
$x \operatorname{Pr}[1$ changes of state in $(0, t) / X(0+)=$ i] $=$
$\delta_{i j} \cdot h_{i}(t)+p_{i j} \int_{0}^{t} w_{i j}^{\prime}(z) \cdot h_{j}(t-z) d z+$
$+\sum_{k=2}^{\infty}\left[\sum_{q=1}^{m} p_{i q_{1}} \sum_{q_{2}=1}^{m} p_{q_{1}} q_{2} \cdots \sum_{q_{k-2}=1}^{n} p_{q_{k-3}} q_{k-2} \sum_{q_{k}=1}^{n} p_{q_{k}} q_{k}\right.$
${ }_{-1} \cdot^{p_{q_{k-1}}} \mathrm{q}_{1}{ }^{\mathrm{x}}$
$x\left[\int_{0}^{t}\left(w_{i q_{1}}{ }^{*} w_{q_{1} q_{2}} * \ldots{ }^{*} w_{q_{k-2} q_{k-1}} *_{w_{q_{k-1}} q_{1}}\right)^{\prime}(2)\right.$.

$$
\left.\left.\cdot h_{j}(t-z) d z\right)\right]
$$

$$
(i, j=1, \ldots, n) \quad(e q n .1)
$$

where:
$q_{1}=j$;
$\int_{0}^{t}\left(w_{i q_{1}} * \ldots{ }^{*} w_{q_{k-1}} q_{1}\right)^{\prime}(z) \cdot h_{j}(t-z) d z$, an 1-fold convolution density convolved with $h_{j}(t)$, is multiplied by the probability $\left(p_{i q_{1}} . \ldots \cdot p_{q_{k-1} q_{1}}\right.$) that the $1-$ step sequence of changes of state (i, $q_{1}: \ldots ; q_{k-1}, q_{1}=j$) occurs:
$h_{i}(t)=1-\sum_{k=1}^{m} p_{i k} \cdot w_{i k}(t) ;$
state j is assumed to be reachable from state i so that there is at least one 1-step sequence with positive probability.

When P is upper or lower diagonal the infinite sum on the right hand side of eqn. (1) terminates for $1>n+1$.

Let C denote a discrete population in which the behavioral states of individuals are in one-to-one correspondence with the states of $[X(t)]$. Let $S=\left(P^{\prime}, W, F\right)$ denote the system governing movement of individuals among behavioral states once they enter S from external sources. The conditional probability that an individual is in state j at time $t>0$, given that it initially entered S at time $z(0<z<t)$ in state i is $f_{i j}(t-z)$. Once inside S individuals are assumed to behave independently unless otherwise specificd.

Subsets of states, aggregated into K non-overlapping and exhaustive subsets G_{1}, \ldots, G_{K} are called compartments (K=2, ..., n-1). The probability $\mathrm{f}_{i G_{k}}(\mathrm{t}-\mathrm{Z})$ that an individual entering state i at time $z>0$ is in compartment G_{k} at time $t>z$ is:
$f_{i G_{k}}(t-z)=\sum_{\substack{\text { state } \\ \mathrm{i}_{k} \\ \sum_{j}}} f_{i j}(t-z) \quad$ (eqn. 2)
Let $Y_{i j}(t)(i, j=1, \ldots, n)$ be random variables denoting numbers of individuals in states $1, \ldots n$ at time $t>0$ whose initial entry into S is through state i. The number $Y_{i G_{k}}(t)$ of individuals in compartment G_{k} at time t is:
$y_{i G_{K}}(t)=\sum_{\substack{\operatorname{state}_{\text {in } G_{k}}}} y_{i j}(t) \quad$ (eqn. 3)

The mean and variance of $Y_{i G_{K}}(t)$ is determined for different assumptions about processes of arrivals to S from external sources.

INDIVIDUAL POISSON ARRIVALS

Assume a Poisson stream of individual arrivals to S. Given that N_{i} arrivals occur in $(0, t)$ to initial state i the joint p.f. of numbers in states $1, \ldots, n$ at time t is multinomial with parameters $N_{i}, f_{i l}(t), \ldots, f_{i n}(t) . \quad M u l t i p l y i n g$ the joint p.f. by the Poisson probability of N_{i} arrivals in $(0, t)$ conditional on the arrival times of the first N_{i} arrivals being distributed as the order statistics of N_{i} independent samples from the d.f. on $(0, t)$ having density $\lambda_{i}(z) / \int_{0}^{t} \lambda_{i}(z) d z(0<z<t)$ the resulting joint p.f. is a product of n independent poisson probabilities that
$y_{i 1}, \ldots, y_{\text {in }}$ individuals are in states $1, \ldots, n$ at time t :
$P\left[y_{i l}(t)=y_{i 1}, \ldots, y_{i n}(t)=y_{i n}, N_{i}\right.$ arrivals $]$ $=\prod_{j=1}^{m}\left(\lambda_{i}(z) \cdot f_{i j}(t-z) d z\right)^{y_{i j}} y_{i j}!\quad$.
$\cdot e^{-\int_{0}^{t} \lambda_{i}(z) \cdot f_{i j}(t-z) d z}$
(eqn. 4)
$\left(y_{i 1}+\ldots+y_{i n}=N_{i}\right)$
As shown by eqn. (4) the $\mathrm{Y}_{\mathrm{ij}}(\mathrm{t})$'s are mutually independent Poisson distributed r.v.'s Moreover:
i) the arrival stream to state j
is Poisson distributed with intensity $a_{j}(t)$ which satisfies the integral equation:
$\int_{b}^{t} a_{j}(z) \cdot \sum_{k=1}^{m} p_{j k} \cdot\left[1-w_{j k}(t-z)\right] d z=\int_{0}^{t} \lambda_{i}(z) \cdot f_{i j}(t-$
z) $d z$; $(j=1, \ldots n)$
ii) the expectation of $Y_{i j}(t)$ is:
$E\left[Y_{i j}(t)\right]=\int_{0}^{t} \lambda_{i}(z) \cdot f_{i j}^{(t-z) d z}(j=1, \ldots n) \quad$ eqn. (5)

Equations (5) when combined with equations (1) provide the basis for constructing families of regression models of inputs to the system S as well as inputs and outputs among states within
S, from which parameters can be estimated. Maximum likelihood estimates of parameters can be obtained from eqn. (4).

The r.v.'s $\mathrm{Y}_{\mathrm{i} \mathrm{G}_{\mathrm{k}}}(\mathrm{t})$ are independent and Poisson distributed with Poisson arrival intensities $a_{i G_{k}}(t)$ and expectations: $E\left[Y_{i G_{k}}(t)\right]=\int_{c}^{t} \lambda_{i}(z) \cdot f_{i G_{k}}(t-z) d z=$

BATCH POISSON ARRIVALS

Individuals arrive at initial state i in batches, at random (poisson arrivals) where the mean and variance of the i.i. d. batch sizes are m_{i} and v_{i} respectively. The intensity of arrivals is $\lambda_{i}(t)$. The marginal d.f. of $Y_{i j}(t)$ in this case is not Poisson unless $\mathrm{v}_{\mathrm{i}}=0$ and $\mathrm{m}_{\mathrm{i}}=1$. The mean and variance of $Y_{i j}(t)$ are:

$$
\begin{aligned}
& E\left[Y_{i j}(t)\right]= m_{i} \cdot \int_{0}^{t} \lambda_{i}(z) \cdot f_{i j}(t-z) d z \\
&(j=1, \ldots, n) \text { eqn. (7) }
\end{aligned}
$$

and:

$$
\operatorname{Var}\left[Y_{i j}(t)\right]=m_{i} \cdot \int_{0}^{t} \lambda_{i}(z) \cdot f_{i j}(t-z) \cdot
$$

$$
+\left(m_{i}^{2}+v_{i}\right) \cdot \int_{0}^{t} \lambda_{i}(z) \cdot\left[f_{i j}(t-z)\right]^{2} d z+
$$

$$
+v_{i} \cdot\left[\int_{0}^{t} \lambda_{i}(z) \cdot f_{i j}(t-z) d z\right]^{2} \quad \text { eqn. (8) }
$$

$$
(j=1, \ldots n)
$$

Equation (8) is demonstrated by first decomposing $Y_{i j}(t)$ into the random sum of "clusters" of sizes 1,2,...,B:
$Y_{i j}(t)=1 \cdot D_{i 1}(t)+2 \cdot D_{i 2}(t)+. .+B \cdot D_{i B}(t)$ eqn. (9)
where:
$D_{i k}(t)$ is a Poisson distributed r.v. with expectation:

$$
\begin{aligned}
& E\left[D_{i k}(t)\right]= \int_{0}^{t} \lambda_{i}(z) \cdot\binom{B}{k} \cdot\left[f_{i j}(t-z)\right]^{k} \cdots d z . \\
& \cdot\left[1-f_{i j}(t-z)\right]^{B-k} \\
&(k=1,2, \ldots, B)
\end{aligned}
$$

For a batch of given size B arriving at initial state i at time z a cluster of k-out-of-B of the arriving individuals will be in state $j(t-z)$ time units later with binomial probability:
$\binom{B}{j} \cdot\left[f_{i j}(t-z)\right]^{k} \cdot\left[1-f_{i j}(t-z)\right]^{B-k}$

Combining the relation:
$\operatorname{Var}\left[Y_{i j}(t)\right]=E\left[\operatorname{Var}\left(Y_{i j}(t) / B\right)\right]+\operatorname{Var}\left[E\left(Y_{i j}(t) / B\right)\right]$
with eqn. (9), eqn (8) is obtained. The distribution of the number of clusters in state j at time t wi hout regard to the cluster size for fixed size B of arriving batches is Poisson distributed with expectation:
$\int_{0}^{t} \lambda_{i}(z) \cdot d z \cdot \sum_{r=1}^{B}\binom{B}{r} \cdot\left[f_{i j}(t-z)^{r} \cdot\left[1-f_{i j}(t-z)\right]^{B-r}\right.$

Members of a given cluster have not necessarily been in residence in state j for the same length of time, however.

The mean and variance of the number of indivicuals in compartment G_{k} at time t are obtained by substituting $f_{i G K}(t-z)$
for $f_{i j}(t-z)$ in equations 7 and 8.

ARBITRARY BUT FIXED INTERVALS BETWEEN ARRIVALS OF BATCHES

Batches of individuals, where batch sizes are i.i.d. random variables with mean m_{i} and variance v_{i} arrive at initial state i at arbitrary but fixed times t_{1}, t_{2}, \ldots For a batch arriving at time t_{u} and of conditional size B_{u} the joint p.f. of numbers in states $1,2, \ldots, n$ at time $t>t_{u}$ is multinomial
with parameters $B_{u}, f_{i l}\left(t-t_{u}\right), \ldots, f_{i n}\left(t-t_{u}\right)$.

The marginal p.f. of the number $Y_{i j}(t)$ of individuals in state j at time t due only to the arriving batch at initial state i at time t_{u} of random size B_{u} has a compound form with mean and variance:
$E\left[Y_{i j}(t) / t_{u}\right]=m_{i} \cdot f_{i j}\left(t-t_{u}\right)$
eqn. (10)
and:
$\operatorname{Var}\left[Y_{i j}(t) / t_{u}\right]=m_{i} \cdot f_{i j}\left(t-t_{U}\right) \cdot\left[1-f_{i j}\left(t-t_{u}\right]+\right.$
$+v_{i} \cdot\left[f_{i j}\left(t-t_{u}\right)\right]^{2}$
eqn. (11)

If batch size is a fixed constant m_{i} then equation 11 is modified by setting v_{i} equal to zero.

The mean and variance of $Y_{i G_{k}}(t)$ are obtained by substituting $f_{i G_{K}}(t-z)$ for $f_{i j}(t-z)$ into equations 10 and 11 .

The mean and variance of the marginal d.f. of the number of individuals in compartment G_{k} due to all arriving batches at times $0<t_{1}, \ldots, t_{u}<t$ is, assuming independence of all movements of individuals entering upon S :

$$
\begin{gather*}
E\left[Y_{i G_{k}}(t) / t_{1}, \ldots, t_{u}\right]=\sum_{r=1}^{u} E\left[Y_{i G_{k}}(t) / t_{r}\right] \\
(k=1, \ldots, K) \tag{12}
\end{gather*}
$$

and:

As with equations 5 , equations 6,7 , and 12 can be used as the basis of construct ing regression estimates of parameters of the system S.

SUB AND SUPER SYSTEMS OF S

The system $S=(P, W, F)$ may be decomposable into subsystems $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{K}}$ identified
with compartments G_{1}, \ldots, G_{K} or it may itself be a subsystem of a larger supersystem of states in which S is identified with a compartment G_{S}. In either case il is importanl lo maintain stochasticity of the state transition matrices and the interval transition matrices corresponding to each subcollection of states that are to be identified with a subsystem.

Let G_{1}, \ldots, G_{K} denote a collection of compartments of S and arrange the transition matrix P into the form:
$P=\left(P_{G_{i} G_{j}}\right)(i, j=1,2, \ldots, K)$
where:
the submatrix $P_{G_{i}}{ }_{j}$ has row and column dimension equal, respectively, to the number of states in compartments G_{i} and G_{j}.

Main diagonal submatrices contain state transition probabilities governing movements of individuals among states within compartment $\left(G_{i}(i=1, \ldots, K)\right.$. Either advance or return to states in G_{j} from states in G_{i} is restricted by the number and locations of positive entries in off-diagonal submatrices $P_{G_{i}} G_{j}$. If no positive entries occur in $P_{G_{i}}{ }_{j}$ for all indices i and j then the system S consists of K independent subsystems. Each submatrix $P_{G_{i}} G_{j}$ is stochastic as well as the submatrix $\mathrm{F}_{\mathrm{G}_{i} \mathrm{G}_{i}}$ of interval transition probabilities describing the time rate of movement of individuals among states of compartment G_{i}. Equations $1-13$ are valid for each subsystem S_{1}, \ldots, S_{K} in this case.

If compartments G_{i} and G_{j} are linked by positive entries in off-diagonal
submatrix $P_{G_{i}} G_{j}$ then submatrix $P_{G_{i} G_{i}}$ is not stochastic and movements of individuals within compartment G_{i} cannot be analyzed independent of other states of S. By joining G_{i} to one additional absorbing state accounting for movements of individuals out of G_{i} and assigning transition probabilities into the apponded absorbing state equal to one minus the row sums $P_{G_{i}} G_{i}$ for each row in the submatrix, the compartment G_{i} can be analyzed in either one of two ways:
i) as a subsystem in which arrivals are from other states of s or
ii) as a subsystem in which arrivals are assumed to occur without reference to prior movements in S.

If the system S is composed of states which are themselves a compartment of a supersystem, then S functions independently of other compartments or else s contains an absorbing state as described above so that movements of individuals within S can be analyzed independently of their movements within other compartments.

