
Journaf of Sound and Vibration (1989) 135(3), 375-383 

ASYMPTOTIC ANALYSIS OF A TRANSLATING CABLE ARCH 

N. C. PERKINS 

Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, 
Michigan 48109, U.S.A. 

(Received 25 JuZy 1988, and in revised form 17 March 1989) 

The stability of a translating cable which stands in the shape of an arch between two 
supports is investigated. Asymptotic solutions for free in-plane and out-of-plane cable 
vibrations are derived under the assumption of small arch height. Without translation 
speed, the cable arch collapses under compressional loading. As translation speed is 
increased, however, the cable arch becomes tensioned and stable. A previous experiment 
confirms this prediction. The asymptotic solutions derived here show that the in-plane 
and out-of-plane vibration modes are stabilized in fundamentally different manners. 

1. 1 NTRODUCTION 

The motion of a string translating between two eyelets is the archetypical problem in the 
dynamics of axially moving materials [l]. The translating string, commonly referred to 
as the moving threadline [2], has served as a useful model for textile machinery, chain 
and belt drives, fiber winders and magnetic tape drives. These diverse applications and 
others have been discussed by Wickert and Mote [3], who presented a detailed summary 
of current research in the vibration and stability of axially moving materials. 

The present investigation is concerned with the dynamic stability of a translating and 
sagged cable which is used to model the cable-like elements found in overhead conveyor 
systems, ski lifts, aerial tramways, and slack belt drives. Initial curvature creates linear 
coupling of longitudinal and transverse motions in the plane of the cable equilibrium. 
This linear in-plane motion is decoupled from the linear out-of-plane motion. Simpson 
[4] analyzed the free linear in-plane vibration of a translating cable using an asymptotic 
solution valid for cables with small sag? and level support eyelets. Later, Triantafyllou 
[ 51 extended the asymptotic solution to include cables having inclined supports and either 
small or very large sag. The numerical analysis by Perkins and Mote [6] considered 
complete three-dimensional cable motions and allowed arbitrary cable sag and support 
inclination. Due to initial cable curvature, the equilibrium cable tension increases with 
translation speed [4,6] and the translating cable can never experience the buckling 
instability of the simpler moving threadline [2]. An experimental investigation of a 
translating cable is included in a recent paper by Perkins and Mote [7] and confirms the 
theoretical findings of reference [6]. 

These investigations of translating cables have been concerned with the free linear 
in-plane and out-of-plane vibration of an elastic cable about an equilibrium which hangs 
between the supports under the influence of gravity. This equilibrium is termed the 
minimum catenary. In reference [7], a second equilibrium, referred to as the maximum 
cutenary, was noted: i.e., a cable which stands in the shape of an arch between the 
supports. Without translation speed, the maximum catenary collapses under compress- 
ional loading. The maximum catenary, however, becomes tensioned with increasing 

t Small sag is defined by a cable sag to span ratio of i or less. 
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translation speed and is eventually stabilized as evidenced by the numerical analysis and 
experiment of reference [7]. The experiment clearly demonstrates that, while rare in most 
applications, a stable maximum catenary equilibrium may exist under very high speed 
conditions. 

This paper re-examines the stability of the maximum catenary for the case of a “shallow 
cable arch”. An asymptotic solution for free linear three-dimensional vibration is derived 
and confirms the purely numerical solution obtained in reference [7]. The out-of-plane 
and the in-plane vibration modes are observed to become stabilized in fundamentally 
different ways. The eigenvalues governing the stability of out-of-plane modes change 
from imaginary to real values tnrough a singularity at a critical cable translation speed. 
By contrast, the eigenvalues associated with the in-plane modes assume complex values 
during their transition from imaginary to real values. 

2. EQUATIONS OF MOTION 

A summary of the theoretical model for a translating elastic cable is provided here and 
follows from the complete derivation in reference [6]. The equations of motion and the 
solution to the cable equilibrium problem are derived with reference to Figure 1 which 
depicts an elastic cable translating with speed u, between two level support eyelets. 

S=I 

Figure I. The arch-like maximum catenary equilibrium is formed by a cable which translates with speed O, 
between two fixed support eyelets. U represents motion from the cable equilibrium and is decomposed into 
components aligned with the Frenet triad (I,, I,, I,). 

Analysis of the cable equilibrium problem [7] reveals that there are two possible 
equilibria referred to as the minimum catenary and the maximum catenary. The minimum 
catenary describes a cable which sags between the supports [4-61. In this study, attention 
is focused on the maximum catenary of Figure 1 which stands in the shape of an arch 
between the level supports. The maximum catenary lies in the vertical plane with gravity 
g aligned with the e, direction and is given by the co-ordinates [7]: 

x,(x,) = m*[cosh (x,/m”)]. (1) 
The constant m7 is 

,z=,f_us C1 (2) 

where 

uf = PolpgA’, vf = pA’c”/pgA’. (3,4) 
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Here, PO is the cable tension (or compression) at the mid-span x, = 0, p is the cable 
mass/length, A’ is the cable cross-sectional area, L’ is the cable length and ci is the cable 
translation speed. As defined by equation (2), the constant m2 is positive for the minimum 
catenary and negative for the maximum catenary [7], and for convenience in this study, 
the positive constant 

,I = af - t); (5) 

is introduced. The equilibrium problem also provides the initial cable tension u:p and 
curvature k: 

u:p(s)= uf-[(n2)2+(S-~)2]I’2, 
(67) 

k(s)= -nz/[(n2)2+(s-;)2]. 

Here s is the non-dimensional cable arc length co-ordinate which is related to the 
dimensional co-ordinate S’ through 

s = (&P/L’)+;. (8) 

Note from equation (6) that the cable is in compression (u:p < 0) when the translation 
speed vanishes (vf = 0) but may become tensioned (v:p > 0) for sufficiently large transla- 
tion speed. This speed tensioning capability of the cable equilibrium allows the maximum 
catenary to be stabilized [7]. 

The vector u(s, t) in Figure 1, representing the three-dimensional motion of the cable 
about its equilibrium, is resolved into the components (u, , u2, u3) aligned with the local 
tangential I,, normal 12, and bi-normal I3 directions of the cable equilibrium. These 
components are governed by the equations of motion derived in reference [7] which, 
after linearization about the maximum catenary, become as follows: 
tangential component, u, , 

[dhJ - W1.s - kUddh.s+ 411 
= Ul ,l , +2u,(u,..~-ku,),,+v~[(ul,,-ku,),,-k(uz,.~+ku,)l; (9) 

normal component, u2, 

Kh7)(~2..7 + WI,, + W&h,, - WI 
=~2,,,+~~,~~2,s+~~,~,r+~~~~~2..~+~~,~.s+~~~,.-~~2~1; (10) 

bi-normal component, I.+, 

RdP)b3,Jl..5 = u3.1, + wJ3,,,+ du3,s.s ; (11) 

boundary conditions 

Uj(0, t)=Uj(l, f)=O forj = 1,2,3. (12) 

The remaining non-dimensional quantities appearing in equations (9- 12) are 

t = T(g/Li)“2, uj= U,IL’, j=l,2,3, u: = EA’/(pgA’L’), (13-15) 

where T, U,, and E denote dimensional time, displacement and Young’s modulus, 
respectively. 

General analytical solutions have not yet been found for the coupled equations (9,10) 
describing free in-plane motion and the uncoupled equation (11) which governs free 
out-of-plane motion. Asymptotic solutions have been derived for special cases of the 
related minimum catenary problem [4,5] by employing assumptions which, in essence, 
simplify the form of the non-constant coefficients v:p(s) and k(s) appearing in these 
equations of motion. In a previous study [7], the Galerkin method was employed to 
obtain approximate solutions for the natural frequencies and mode shapes for free 
vibration of the maximum catenary. 
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2.1. APPROXIMATk THEORY FOR SHALLOW C‘ABLF 4RC.H 

An asymptotic solution for the maximum catenary problem is obtained by restricting 
attention to maximum catenaries having small arch height. For such catenaries, the 
equilibrium tension (6) is nearly constant and the curvature (7) is small. For n7 >> 1, first 
order approximations to equation (6) and (7 ) are 

ufp(.s)= L’f-[n’+;E(s-;I)‘], k(s) = --, (16, 17) 

where F = l/n’. Following Irvine and Caughey [8], one can neglect the inertia terms on 
the right side of equation (9) on the assumption that the cable stretches in a quasi-static 
fashion. In essence, small extensions of the cable centerline are assumed to propagate 
instantaneously along the cable and reduce the dynamic component of cable tension to 
a function of time alone. This assumption remains valid for low order cable modes [8]. 
Upon using equation (16) and ( 17), equation (9) becomes, to first order, 

(4.t + &k)., = 0, ( 18) 

where it is noted that vf/ uf = PO/ EA' is of order e. Integration of equation (18) with 
u,(O, t) = u,(l, t) =0 yields 

u,(.& t)=f(t)S-F 
I‘ 

UT, 1) dn, (19) 
0 

where 

f(r) = E j-,’ u,(v, t) dv. (20) 

Equations (19) and (20) show that u, is of order F. Substituting equations (16), (17), 
(19), and (20) into equations (10) and (11) and neglecting terms of order E or less produces 

2 1 ’ -n u2,s.s-7 J 4~) drl = UZ.,,+~W~,,, and 
pn (, 

-n-u3,s3 = h.,, + 2w43,,, , 

(21,22) 

where the parameter p = Im’l/ vf = n’l v: was introduced by Simpson [4]. 
Equations (21) and (22) represent first order approximations to the equations of motion 

for a shallow cable arch with level support eyelets. Using u2 = u eiw’ in (21) results in the 
following eigenvalue problem governing free in-plane response: 

-n’u”--i2wv,.u’+w’u = C, (23) 

where 

with the boundary conditions 

u(O)= u(l)=O. (25) 

Exact analysis of equations (23)-(25) provides the eigenvalues w which govern the stability 
of free linear in-plane motion. The eigenvalues governing the stability of out-of-plane 
motion are also determined from equations (23)-(25) by noting that the in-plane problem 
(21) reduces to the out-of-plane problem (22) in the limit p + CO. The out-of-plane problem 
is identical to the classical threadline problem [2], except here the coefficient -nz = uf - vf 
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is negative and the parameter u, = [ vf - n2]1’2 may be real or imaginary. The general 
solution of equation (23) is 

u(s) = e’““[A eih + B emibS]+ C/w’, 

where 

a = -wv,/n’ and b = wv,/n2. 

Upon application of the boundary conditions, equation (26) becomes 

(26) 

(27,28) 

Evaluation of expression (24) by using expression (29) and simplification results in the 
following characteristic equation for w : 

w sin (WV,/ n’) = 
2v,[cos (ov,/n2)-COS (wvJn’)] 

1 - w2pn2 (30) 

Note that for a minimum catenary, the constant -n2 = m2 = uf - vf > 0 and v, is therefore 
real. In this case, the above characteristic equation reduces to Simpson’s equation (44) 
[4] and provides the in-plane natural frequencies of a shallow translating sagged catenary. 
If, in addition, vz = 0, the characteristic equation reduces to that obtained by Irvine and 
Caughey; see equation (19) of reference [8]. Higher order terms are included in the 
asymptotic analysis of Triantafyllou [5] which remains valid for translating sagged 
catenaries having inclined supports. 

Letting p + cc in 
linear out-of-plane 

3. STABILITY OF OUT-OF-PLANE MOTION 

equation (30) yields the characteristic equation associated with free 
vibration, 

sin (wv,/n’) = 0, (31) 

with roots 

wk = kPn/J(v,/n)‘-1, k = 1,2,3, . . . . (32) 

The eigenvalues are imaginary for translation speeds v,/ n < 1 and indicate instability for 
all out-of-plane vibration modes. As v,/n passes through uC/n = 1, the eigenvalues 
approach infinite imaginary values, become real, and then attain finite real values. Thus, 
all out-of-plane modes become stable for q/n > 1, and the transition from instability to 
stability occurs at the singularity, v,/n = 1. It is noteworthy that the leading order terms 
of expression (16) give v:p = V: and show that, for the approximate model, v:p > 0 when 
v: = n’[( vc/ n)’ - l] > 0. Thus, the out-of-plane modes become stable precisely when the cable 
becomes tensioned. This result is also seen by inspection of the partial differential equation 
of motion (22) which undergoes fundamental changes as the translation speed is increased. 
Equation (22) is elliptic for v: < 0, parabolic for u: = 0, and hyperbolic for VT > 0. Traveling 
wave solutions to equation (22) exist only in the hyperbolic regime and lead to the stable 
oscillations predicted by the above eigenvalue problem. A small correction would be 
expected for the complete model (11) in which one uses the exact expressions (6) and 
(7) for the cable tension and curvature. In this case, the entire cable is in tension (equation 
(11) is hyperbolic) for translation speeds u,/ n > [ 1 + ( l/4n4)]“* and is in tension only in 
the interval 1s -fl< n2[(vf/n2)‘- 1]“2 for speeds 1 < u,/n <[l-C (1/4n”)]““. 
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Figure 2. Eigenvalues for out-of-plane modes versus cable translation speed. Modes become stable when /3 
vanishes. Solid curves (-) represent the asymptotic solution and dotted curves ( 0 0 0 0 0 ) denote the numerical 
solution [7] for the maximum catenary of Figure 3. 

7% ti 
Figure 3. Shallow cable arch. Maximum catenary equilibrium for the case n’ = 2 has an arch height of 6.2% 

of the cable length. 

The solid curves of Figure 2 illustrate the variation of the first five eigenvalues as a 
function of translation speed over the range 0 < u,./ n < 4. In this computation, the para- 
meter n* = 2 and corresponds to the maximum catenary shown in Figure 3, which has an 
arch height of 6.2% of the cable length. The numerical solution of reference [7] is also 
given in Figure 2 (dotted curves) and is based on a Galerkin discretization of the complete 
model (11). The asymptotic and numerical solutions give almost identical eigenvalues 
for translation speeds away from u,/ n = 1. In the neighborhood of uC/n = 1, the indicated 
complex eigenvalues of the numerical model represent eigenvalues which have not conver- 
ged, despite the fact that seventy terms were used in the Galerkin approximation. The 
numerical model converges poorly near v,/n = 1 due to the singular nature of the 
eigenvalues in this vicinity. 

4. STABILITY OF IN-PLANE MOTION 

The full characteristic equation (30) is used to obtain the eigenvalues associated with 
in-plane modes. In this case, the roots of equation (30) are obtained numerically and are 
not known a priori to be real, imaginary, or complex. The substitution 

w=a+$ (33) 
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in equation (30) provides the following two equations which are solved simultaneously 
for (Y and p by using standard Newton-Raphson iteration: 

[l- n’p(cY’-p*)]{a[sin (cuu,/n2) cash (@,/n2)]-p[cos (av,/n*) sinh (@,/n’)]} 

+[2@n2~]{P[sin ((~u,/n~) cash (/3u,/n2)]+cr[cos (cyu,/n2) sinh (@u,/n2)]) 

=2u,{cos (cru,/n2) cash (@u,/n’)-cos ((~uJn’) cash (/3u,/n2)} (34) 

and 

-[2apn’p]{cY[sin ((~u,/n~) cash (@,/n’)]-P[COS (cyu,/n2) sinh (pu,/n’)]) 

+[l -n’p(a’-P’)]{P[sin (au,/n’) cash (pu,/n’)] 

+(Y[COS (cuu,/n2) sinh (/3u,/n2)]} 

=2u,{sin ((~u,/n~) sinh (/3uC/n2)-sin (cuu,/n2) sinh (/3u,/n2)}. (35) 

For a given index k, the roots of equations (34) and (35) are found as fak f i&, where 
(Y* denotes the natural frequency of the kth mode. In the undamped cable model of the 
present study, stable modes correspond to those eigenvalues for which Pk = 0. Figure 4 
depicts the first six eigenvalues computed for the shallow cable arch of Figure 3. Shown 
in Figure 4 are the first six values of (Y and p as functions of cable translation speed over 
the speed range 0 < u,/ n < 4. Unlike the former out-of-plane problem, the eigenualues of 
the in-plane problem can be, and often are, complex. For the stationary arch ( UJ n = 0), the 
eigenvalues are imaginary ((Yk = 0) and indicate instability for all six in-plane modes. The 
eigenvalues remain imaginary until adjacent pairs of imaginary loci coalesce as shown 
by the points marked “k, k+ 1” (k = 1,3,5) in Figure 4. At these points, the kth and 
(k+ 1)st eigenvalues become complex conjugates and the two modes are still unstable. 
The eigenvalues remain complex until the final transition marked by “k” (k = l-6) in 
Figure 4 is reached. Beyond these points, the kth eigenvalue is real (& = 0) and indicates 

I.5 2.0 2.5 

Translation speed, v&n 

Figure 4. Eigenvalues for in-plane modes versus cable translation speed. Modes become stable when p 
vanishes. Solid curves (-) represent the asymptotic solution and dotted curves (0 0 0 0 0) denote the numerical 
solution [7] for the maximum catenary of Figure 3. 
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stable oscillatory response for the kth in-plane mode. Approximate eigenvalues computed 
with 70 terms in the Galerkin discretization of the exact equations of motion (9) and ( 10) 
[7] are also included in Figure 4 (dotted curves) to illustrate their superb agreement with 
the asymptotic solution derived here. The stability of the maximum catenary is witnessed 
by the photograph of Figure 5, reproduced from the experimental study described 
references [7,9]. 

in 

Figure 5. Stable translating cable arch reproduced from [7]. The cable is a 4.8 mm dia. woven nylon rope 
of length I.02 m. Cable circulates counterclockwise with speed 13.X m/s. which corresponds to u, /n = 8 for the 
present catenary with n’= 0.3. 

This stability conclusion is not changed upon the introduction of linear damping in 
the model. As determined in reference [9], the addition of linear viscous damping has a 
stabilizing effect on all cable modes. In particular, the numerical solution [9] shows that, 
as the translation speed is increased, the imaginary parts of the eigenvalues (Pk) all 
converge to the same positive value d/2, where d denotes the damping constant in the 
linear viscous damping model. 

5. SUMMARY AND CONCLUSIONS 

The stability of a translating cable arch (maximum catenary) is analyzed by the exact 
solution of an approximate model for shallow cable arches. The eigenvalues governing 
out-of-plane and in-plane stability predict that the cable arch can be stabilized at 
sufficiently high translation speeds. This fact, which is observed experimentally [7], derives 
from the speed tensioning capability of the cable equilibrium. The stabilization of out-of- 
plane modes occurs as the associated eigenvalues pass through a singularity during their 
transition from imaginary to real values. This singularity explains the slow convergence 
observed in a purely numerical analysis of the exact cable model [7]. Unlike the eigenvalues 
of the out-of-plane problem which are either real or imaginary, the eigenvalues of the 
in-plane problem change from imaginary to real values by assuming complex values over 
specific intervals of the cable translation speed. 
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