68

Computer Physics Communications 57 (1989) 68-77
North-Holland

SUCCESSFUL VECTORIZATION - REACTOR PHYSICS MONTE CARLO CODE

William R. MARTIN !
Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI 48109-2104, USA

Most particle transport Monte Carlo codes in use today are based on the “history-based” algorithm, wherein one particle
history at a time is simulated. Unfortunately, the “history-based” approach (present in all Monte Carlo codes until recent
years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector
architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray
X/MP or IBM 3090,/600. However, substantial progress has been made in recent years in developing and implementing a
vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the
basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm
along with descriptions of several variations that have been developed by different researchers for specific applications. These
applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport
in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known
vectorization efforts will be summarized along with available timing results, including results from the successful vectorization
of 3-D general geometry, continuous energy Monte Carlo.

1. Introduction

The Monte Carlo method is one of the prin-
cipal computational techniques used for analyzing
particle transport problems. Particle transport
problems are characterized by high dimensionality
and physical complexity and in many cases the
Monte Carlo method is the only feasible approach
to obtain reasonable solutions without resorting to
drastic simplifications of either the problem geom-
etry or the problem physics or both. Historically,
the principal drawback to the use of Monte Carlo
methods has been its excessive demand on compu-
tational resources — Monte Carlo methods require
enormous amounts of central processor unit (CPU)
time as well as a large, fast memory to contain the
geometry information and cross section data base
needed to describe the complicated physics.

! Royal Society Visiting Fellow, Department of Mechanical
Engineering, Nuclear Power Section, Imperial College, Uni-
versity of London, Exhibition Road, London SW7 2BX, UK

0010-4655 /89 /$03.50 © Elsevier Science Publishers B.V.
(North-Holland)

2. Computer performance

The dramatic increase in computer perfor-
mance (and substantial decrease in the cost per
CPU second) over the past two decades would
seem to be working in favor of Monte Carlo
methods. However, this impressive improvement
in computer performance has not been due only to
advances in hardware — a significant portion of
the gains has been due to innovations in architec-
ture — how the computer is designed and organmized
to carry out its computational tasks. The principal
innovations for large-scale computation have been
vector (pipelined) architectures and parallel archi-
tectures. This paper will consider only vector ar-
chitectures and the development of Monte Carlo
methods for such architectures. As is well-recog-
nized, particle transport Monte Carlo is especially
well-suited for parallel architectures due to the
independent nature of the individual particle his-
tories, but this topic will not be considered in any
detail although a few remarks regarding parallel

W.R. Martin / Reactor physics Monte Carlo code vectorization 69

Monte Carlo are presented in the concluding sec-
tion of this paper.

Since one vector instruction executes the entire
vector operation (which might correspond to 64
multiplications on the Cray-1 or 65535 multiplica-
tions on the CDC Cyber-205), it is necessary that
the algorithm is vectorized — vectors of operands
need to be constructed and identical arithmetic
operations have to be performed on each compo-
nent of the vector. Properly constructed, a
vectorized algorithm can take advantage of the
vector architecture and realize the potential gains
in performance offered by this particular type of
architecture. As will be discussed below, the con-
ventional Monte Carlo algorithm is inherently
scalar and cannot take advantage of a vector
architecture. However, effort over the past several
years by a number of researchers has led to an
alternative algorithm, described as the event-based
algorithm (an unfortunate description for the high
energy physics community, since the term “event”
bears no relation to a high energy physics “event”).
This paper will summarize these efforts.

The next section describes the conventional
Monte Carlo method as used for particle transport
analysis. The vectorized algorithms are then de-
scribed along with results for the different imple-
mentations.

3. Conventional Monte Carlo

The conventional particle transport Monte
Carlo algorithm involves the statistical simulation
of one particle at a time moving through a given
medium. Each simulation is termed a “history”
and a realistic simulation might consist of 100 000
or more histories. In a typical Monte Carlo code
such as MCNP [1], MORSE {2], or GEANT3 [3], a
particle will be emitted via a source routine, trans-
ported through the medium of interest (tracked),
and processed through whatever collisions or in-
teractions may occur (collision analysis). As the
history unfolds, results of the simulation are accu-
mulated (tallies), and the simulation continues
until the particle is terminated, such as by absorp-
tion in the medium, by escape from the problem
geometry, or, in a time-dependent simulation, at

the end of the time step. The code will then loop
over the requisite number of histories to achieve
acceptable statistics, which may easily lead to
unacceptable computational cost for realistic
simulations.

4. Vectorized Monte Carlo

The conventional Monte Carlo algorithm is in-
herently scalar in nature and cannot be vectorized.
Since the particle simulation is a random walk, or
Markov, process, each step of a history is de-
termined by statistical means (e.g., distance to the
next collision, what kind of collision, what angle
of scatter, etc.). Therefore, treating many histories
simultaneously fails immediately, because the vec-
tor is destroyed after the first step in the simula-
tion — some particles in the vector will reach a
boundary, some may suffer a capture collision,
others a scattering collision, some may reach the
end of the current time step, etc. Thus the vector
of particles is no longer a vector from the stand-
point of the vector CPU because different oper-
ations will be performed on each component of
the vector.

Thus recompiling an old Monte Carlo source
code on a vector supercomputer such as the Cray-
X/MP will not result in an efficient utilization of
the vector architecture, hence a resultant loss in
performance that can approach a factor of 10-20
compared with that potentially attainable. How-
ever, recent progress by a number of researchers
has shown that significant gains in performance
can be attained by totally restructuring the con-
ventional Monte Carlo algorithm to be compatible
with the vector architecture. Although there are
substantial differences in the individual ap-
proaches, all of these vectorized algorithms have a
common characteristic ~ they all are event-based
algorithms versus the history-based algorithm of a
conventional (scalar) Monte Carlo code.

4.1. The event-based algorithm
The first mention in the literature of the event-

based approach is that of Troubetzkoy et al. in
1973 [4], who adapted a version of the Monte

70 W.R. Martin / Reactor physics Monte Carlo code vectorization

3. Event terminated at (r',v’)

1. Event is initiated with by
particle emerging at phase - Collision
space position (r,v) « Boundary
2. Event proceeds by tracking » End of time step (census)

and collision analysis to a
new phase space position (r',v')

24 v —>

Emerging particle at
(r,v) due to
« Source
: » Secondary particle
I: « Scatter
: » Boundary crossing
» Census

v

Fig. 1. Event initiation

Carlo code SAM-CE for use on the Illiac-IV,
which was an experimental parallel processor with
64 processors.

Although the Illiac-IV was not a vector
processor, all 64 processors performed the same
operation at each clock step. Therefore it was a
“single instruction—multiple data” architecture, or
SIMD architecture, similar to a vector processor.
The algorithm developed for the Illiac-IV was
based on breaking up the overall simulation of
many histories into queues of tasks, such as track-
ing to a boundary, processing an elastic scattering
collision, crossing a boundary, etc. The signifi-
cance of this work was the concept of splitting the
history into events, which are similar and which
can be processed in a vectorized manner.

We define an event as that portion of a history
which is initiated with the appearance of an
emerging particle in phase space at (r, v) and
terminating at (', v'), which is the beginning of
the next event. Figure 1 illustrates the concept of
an event, and it is clear that it differs substantially
from its definition in the high energy physics
community.

For example, an event might be initiated at
phase space position (r, v) by:

- sampling from a source distribution,

- emerging from a scattering collision,

« entering from census (time-dependent),
+ crossing a boundary,

- emission from a nuclear reaction.

zlr

A4

and progression.

Once the event is initiated, it continues until

terminated by:

+ collision (any kind),

+ boundary crossing (including escape),
+ census (end of time step),

+ killing (non-analog Monte Carlo).

The important observation is that all events are
similar — a vector of particles (the particle bank)
can be processed for one event in a vectorized
fashion.

4.2. The event iteration

Assume that we have a bank of particles at
event iteration n, where each particle j is de-
scribed by a number of attributes x}, where

x] = [xj'-'l, X5y X[3reens xl’-'K] ,

and K is the number of attributes. For example,
(x71, x5, x73) might be the position r=(x, y, z),
(x74, xJs, xjs) might be the direction cosines £ =
(u, v, w), and x;'7 the particle time at event itera-
tion n for particle j. Let us now define the particle
bank vector I'” as the set of all particle vectors at
event iteration n:

n __ n n n n
r ——[x,, x5, x3,...,xL"],

where L, is the number of particles in the particle
vector at the beginning of event iteration n. In
general, the particles in the bank vector I' are

W.R. Martin / Reactor physics Monte Carlo code vectorization 71

Forevent n=0,1,2,...:
» Fetch I'".
» Perform the free flight analysis:

+ gather the cross section data and geometry data tabulated

by particle,
TS,
P R;

+ using X, sample a vector of distances to collision, d;
using p, determine vector of minimum distances to
boundary, d\;
determine the minimum distances to end of event,

d pin = min[d,., d,];

- updata the particle coordinates,

P = QO
+ Perform the collision analysis:
« gather particle attributes,
QeI E<TI"
» evaluate collision physics for new direction cosines and
energies,
2 «Q E < E,
- scatter new particle attributes back into bank,
Q ->I", E'-TI"
» Perform the boundary analysis:
- gather particle zone indices Z,
Z<TI"
- determine new zone indices,
Z' « Z
- scatter new zone indices back into particle bank,
VA
Update the particle bank,
I'"=I"*! (with L, particles)
(e.g. compress out terminated particles).
If L,,,# 0, continue.

Fig. 2. The basic event iteration.

ordered randomly and this order will change from
one event iteration to the next — no attempt is
made to keep track of individual particles in I’
from one event iteration to the next. Given I'”, the
goal is to advance it to the next event iteration
n + 1, as summarized in fig. 2.

4.3. Comments on the basic event-based approach

The following comments can be made regard-
ing the event-based algorithm illustrated in fig. 2:
(1) The arrays § and R are the usual cross
section and geometry arrays. In order to perform
the vector calculations for the distances to colli-
sions and boundaries, cross section data and

geometry data tabulated by particle index must be
gathered from S and R into the arrays 2 and p:

=[2.2,.%.....5.)

p= [pl’ P2, P3,»-~vPL”]»

where 2, represents the cross sections and p; the
geometry data for the zone that contains particle
J.

(2) Figure 2 is only intended to be illustrative
of the basic event-based algorithm, since several
different variations have been developed, as noted
in sections 4.4 and 4.5.

(3) The compression step to eliminate terminat-
ed particles effectively scrambles the order of the
particles in the bank vector I' and leads to one
consequence of the event-based algorithm - it is
difficult to piece together individual particle histo-
ries from the event-based simulation.

(4) There is a premium on efficient data han-
dling operations, due to the need to gather, scatter,
compress, etc. the particle vector and other data
arrays before, during, and after every event itera-
tion.

(5) Most of the steps are vector operations,
except for the data handling operations, which
may be custom-coded (sometimes in hardware)
routines and the tally operations, which cannot be
vectorized. The collision analysis, boundary cross-
ing analysis (perhaps with Russian roulette and
splitting), and other operations to determine the
outcome of the event can also be performed in a
vector fashion, but now sub-vectors need to be
defined (e.g. gathered from the main particle vec-
tor) for each distinct outcome and then processed.

4.4. The stack-driven variation

In the basic event-driven algorithm, the particle
vector is processed in a manner similar to the
conventional history-based algorithm — one cycles
through the free-flight analysis, then the collisions
analysis routine, then the boundary analysis
routine, etc., on an event-by-event basis. Thus at
any time during the simulation, all particles will
be in the same event iteration. A variation on this
basic approach, called the <“stack-driven” al-
gorithm, arises when events are further subdivided

72 W.R. Martin / Reactor physics Monte Carlo code vectorization

into smaller computational tasks which are then
processed independently. The simplified event-
based algorithm in fig. 2, for example, may be
logically subdivided into the four separate compu-
tational tasks of free-flight analysis, collision anal-
ysis, boundary analysis, and particle termination
analysis. Rather than cycling through these four
tasks in a fixed order, the calculation may proceed
by selecting the task involving the greatest number
of particles and then performing the analysis for
that task. Based on the outcome of this analysis,
the affected particles are then queued for the next
appropriate tasks.

In comparing the event-based algorithm and
the stack-driven variation, the principal difference
is the order in which computational tasks are
executed. The fixed sequence of tasks in the
event-based algorithm leads to simpler control
logic and management of particle attribute data at
the expense of shorter vector lengths for each
individual task. The stack-driven variation selects
tasks in a sequence which maximizes the vector
lengths, but involves additional logic for managing
the particle attribute data. However, it should be
noted that the vector computations performed in
each task are the same in either approach. Ad-
ditional details regarding the stack-driven ap-
proach and its various implementations may be
found in the recent review article by Martin and
Brown [5].

4.5. Other variations

Although all of the vectorized Monte Carlo
algorithms are based on the event-based approach,
either the basic algorithm or the stack-driven vari-
ation, there are significant differences in specific
implementations. The principal variations among
these approaches depend on the manner in which
the particle vectors are organized and treated. One
characteristic is whether or not particles from
more than one geometric zone are treated at the
same time. If the particle bank I" only consists of
particles located within a single geometric zone,
we denote this as a “one-zone” algorithm. An
“all-zone” algorithm would then employ a particle
bank consisting of particles from any zone in the
problem geometry.

Another characteristic is the manner in which
the particle banks are managed in stack-driven
algorithms. In a “tagged-particle” scheme, there is
only one particle bank, but an additional particle
attribute (i.e. the “tag”) is used to keep track of
the next task to be performed on each particle.
The particle tags are examined to determine the
next task to be processed. In the “explicit stack”
scheme, a separate particle stack is explicitly re-
served for each computational task. Upon comple-
tion of a task, particle data must be dispersed to
the appropriate stacks for further analysis. In the
“implicit stack” scheme, all particle data reside in
one large bank, and pointers to the particles are
queued up for each task. A task uses its pointer
list to gather particle data from the bank, per-
forms the task analysis, scatters updated data back
to the particle bank, and then disperses the par-
ticle pointer list to queues for other tasks.

With these definitions, let us now consider the
work up to the current time to vectorize Monte
Carlo for particle transport. Only a brief summary
of the various efforts will be included here — the
interested reader is referred to a comprehensive
discussion of the topic of vectorized Monte Carlo
methodology [6] or the above-referenced review
paper [5] which discuss the various vectorization
efforts in more detail.

5. Vectorization results

This section is a survey of results obtained by
various authors in the area of vectorized Monte
Carlo. It is organized by application area, and it it
noted that most of the applications relate to reac-
tor physics and shielding problems.

5.1. Gamma transport

The initial effort to develop a vectorized al-
gorithm for a vector supercomputer was that of
Calahan, Martin and Brown [6—8] and was based
on a simple vectorized code from Los Alamos
National Laboratory (LANL) that analyzed only
gamma transport in a single, homogeneous carbon
cylinder. Speedups in the range of 5-10 were
reported. These codes were mainly intended for

W.R. Martin / Reactor physics Monte Carlo code vectorization 73

basic algorithmic studies and not for the purpose
of drawing conclusions with respect to produc-
tion-level Monte Carlo codes, although they did
provide valuable guidance for determining which
approaches should be taken for the production
codes.

5.2. Multigroup neutron transport

Subsequent effort by Brown et al. [6,8] was
devoted to the development of a vectorized Monte
Carlo demonstration code that incorporated most
of the significant physics options in standard pro-
duction-level Monte Carlo codes, but did not have
many of the user conveniences typical of a true
production code. This code, named MCVMG, was
a multigroup (discrete energy bins) code, and had
a companion scalar code (MCS) that was devel-
oped to allow a fair evaluation of the efficiency of
the vector code. The vectorized code was devel-
oped for the CDC Cyber-205 supercomputer and
utilized a one-zone algorithm, in which only par-
ticles in the same zone (geometrical region) are
processed at the same time (hence requiring an
“outer iteration” over zones to process all the
particles). The initial results were actually ob-
tained by emulating the Cyber-205 instructions on
a conventional computer and then using published
timing data to estimate the speedups [8]. Subse-
quent implementation of the vector code on a
Cyber-205 at Colorado State University verified
these results to within 10 % [9]. The results in-
dicated a speedup in the range 25-40 with MC-
VMG relative to the optimized scalar code MCS
for several realistic problems.

5.3. Continuous energy neutron transport — lattice
geometry

Brown [10] and Brown and Mendelson [11]
have reported excellent results for a vectorized,
continuous-energy Monte Carlo code for nuclear
reactor lattice analysis. They have obtained spee-
dups in the range of 20-85 compared with the
previously used scalar production code. This ap-
proach utilized an all-zone algorithm with three
fixed stacks to handle the tracking, collision anal-
ysis, and the total particle bank. The code was

optimized for the CDC Cyber-205 vector super-
computer.

5.4. Photon transport — 2-D

In a separate application area, Bobrowicz [12]
developed a vectorized Monte Carlo code for the
analysis of photon transport in a 2-D Lagrangian
mesh. The approach was all-zone, but with fixed
stacks for most of the distinct computational tasks
needed for the Monte Carlo simulation. For exam-
ple, separate particle stacks were constructed to
determine the distance to boundary, to perform
the collision analysis, to perform Thomson scatter-
ing, and other tasks. When a particle was to
undergo one of these tasks, it was put into the
corresponding stack and the stack was executed
when its length reached 64, which is the length of
the Cray vector registers. As such, this algorithm
was optimized for the Cray architecture. Reported
results indicate that speedups were in the range of
10--20 although this was relative to an old version
of the scalar code. Recently, improved speedups
have been reported by Fisher [13] for this ap-
proach.

5.5. Neutron transport — 2-D

Chauvet [14,15] has developed a vectorized
Monte Carlo algorithm for neutron transport in a
2-D Lagrangian mesh. The algorithm is similar to
the approach of Bobrowicz, except there are fewer
stacks and data movement between stacks is mini-
mized where possible by transferring particle in-
dexes rather than particle data between the stacks.
The reported speedups relative to the scalar code
on the Cray-1 were in the range of 7-13. The
vectorized versions for the Cray-1 and Cray X-
MP /48 employed assembly coding for determin-
ing distance to boundary, which is generally the
most computationally-intensive portion of a Monte
Carlo code. The Cyber-205 version used vendor
supplied software (““‘q8"” calls) for the data han-
dling operations (gather/scatter/compress, etc.)
while the Cray X-MP /48 version took advantage
of the hardware gather /scatter capabilities of that
computer.

74 W.R. Martin / Reactor physics Monte Carlo code vectorization

5.6. Photon transport — 2-D

In addition to Bobrowicz, Martin et al. [16-18]
have developed a vectorized Monte Carlo code for
photon transport in a 2-D Lagrangian mesh, typi-
cal of an inertial confinement fusion plasma calcu-
lation. This code, named VPHOT, employed an
all-zone algorithm with two major fixed stacks of
particle and several dynamic stacks that are created
upon demand. A scalar version of VPHOT, named
SPHOT, was developed to allow a meaningful
comparison of the vector and scalar algorithms. In
addition, the VPHOT and SPHOT results have
been compared with a reference Monte Carlo code
at Lawrence Livermore National Laboratory
(LLNL) for a typical ICF test problem. Results
obtained to date indicate that VPHOT is ap-
proximately a factor of 5 faster than SPHOT and
nearly a factor of 12 faster than the reference
LLNL code for the Cray-X/MP. This code has
also been adapted to the IBM 3090,/400 with
vector facilities and speedups consistent with the
vector /scalar speed ratio of the IBM 3090 have
been obtained.

5.7. KENO-IV vectorization

Asai et al. [19] have attempted to vectorize the
production-level Monte Carlo code KENO-IV [20]
with disappointing results. They employed an all-
zone algorithm with dynamic stacks for the vari-
ous tasks which are processed in order of length.
The resulting vectorized code was tested on two
relatively simple configurations and yielded spee-
dups of 1.4 with respect to the original (scalar)
version of KENO-IV. They attribute these rela-
tively poor results (compared to results obtained
by others) to deficiencies in the compiler, slow
indirect addressing (gather/scatter), and the large
number of sorting operations (constructing
queues). However, given the excellent results ob-
tained by others (including recent results by Brown
with a production-level code discussion below),
there may be some algorithmic changes that could
be incorporated into the vectorized version of
KENO-IV to obtain improved results.

5.8. Continuous energy neutron transport — general
geometry

Except for the KENO-IV work, none of the
above approaches treated the case of a general
geometry Monte Carlo code with a general physics
package. However, this deficiency appears to have
been addressed in recent work reported by Brown
[21,22]. This effort has resulted in a three-dimen-
sional, general-geometry, continuous-energy Mon-
te Carlo production code that has essentially no
restrictions on problem geometry or problem
physics (for reactor analysis), hence is capable of
analyzing configurations typically treated by pro-
duction codes such as GEANT3, MCNP, or
KENO-IV.

Brown’s method utilizes an all-zone approach
with one large stack to hold particle data between
events. However, rather than shuffling particle
data among the stacks, Brown constructs queues
of pointers for each separate task, where the
pointer refers to the appropriate particle in the
main stack. An event queue is processed if it
contains the most particles (indexes) by gather up
the affected particle particle attributes (perhaps
only a fraction of the total), performing the corre-
sponding (vectorized) operations, and then scatter-
ing the affected attributes back into the main
stack. Thus the particle pointers become the index
list and are “shuffled” among the stacks rather
than the particle attributes. Shuffling pointers
rather than particle data was also employed to a
lesser extent by Martin et al. [16—-18] and Chauvet
[14,15].

Brown has reported speedups in excess of 10
for a full-core 3-D pressurized water reactor
(PWR) model consisting of a pressure vessel con-
taining 137 fuel assemblies, with each assembly
containing a 14 X 14 array of fuel pins, poison
pins, control rods, waterholes, etc. The absolute
performance for this code is in the range of 9-15
ps/track on the CDC Cyber-205 for a typical mix
of applications and less than 8 ps/track on the
Cray X/MP4. These results are the most impres-
sive results reported to date and indicate that
vectorized Monte Carlo has finally matured — the
vectorized code developed by Brown is now the
principal production-level Monte Carlo code at

W.R. Martin / Reactor physics Monte Carlo code vectorization 75

Knolls Atomic Power Laboratory (KAPL) and is
used on a daily basis.

5.9. Electron transport — 3-D

Miura [23] has recently reported a factor of
8-10 speed-up for the vectorization of the EGS4
(electron gamma shower) coupled electron and
photon transport code, for infinite medium
geometries. His algorithm utilizes the stack-driven
approach wherein queues of particles are con-
structed and the queue with the largest number of
particles is processed. While this version of EGS4
contains vectorized collision analysis routines, no
tracking to boundaries is permitted thus far.

5.10. Particle tracking

Youssef has recently applied a vectorized ray
tracing algorithm [24] to Monte Carlo simulations
of electromagnetic showers. Based on preliminary
results for benchmark cases involving pure par-
ticle tracking (no collision analysis) he reports a
factor of 20 speed-up from vectorization [25].

5.11. GEANTS3 vectorization effort

A description of the initial vectorized algorithm
for the geometrical routines in GEANT3 has been
reported by Dekeyser [26,27]. No performance
results were given.

5.12. Recent work reported at CHEPS89

Several papers presented at the CHEP89 con-
ference related to ongoing efforts to vectorize
Monte Carlo codes (including GEANT3) for
simulation of high energy physics experiments
[28-32], and these proceedings should be con-
sulted for further details.

5.13. Summary of Monte Carlo vectorization efforts

Table 1 summarizes the above discussion re-
garding the vectorization of Monte Carlo codes.
As can be seen, impressive speedups can be ob-
tained but it has been found in all successful cases
that substantial modifications and revisions were
needed to the original Monte Carlo codes (in

Table 1

Summary of Monte Carlo vectorization efforts

Author Application/Type Speedup Computer Vvs. Ref.

Brown, Martin and gamma transport, 7 Cray-1 CDC-7600 (6]
Calahan cylinders

Brown, Martin and neutron transport, 30-40 CDC Cyber-205 CDC-7600 [6]
Calahan multigroup, 3-D

Brown, Mendelson neutron transport, 20-85 CDC Cyber-205 CDC-7600 [11]

continuous energy, 2-D

Bobrowicz et. al., photon transport, 2-D 4-6 Cray-1, XMP Cray-1 [12,13]
Fisher

Chauvet neutron transport, 2-D 7-13 Cray-1, XMP Cray-1 [14,15]

Martin, Nowak and photon transport, 2-D 4-9 Cray-1, XMP, Cray-1 [18]
Rathkopf Fuyjitsu VP-200

Asai, Higuchi and neutron transport, 1.4 Fujitsu VP-200 same [19]
Katakura multigroup, 3-D

Brown neutron transport, >10 Cyber-205 CDC-7600 [21,22]

continuous energy, 3-D

Miura high energy physics (EGS4) 8 Amdahl 1200 same [23]

Youssef ray tracing 20 ETA-10 same [25]

Dekeyser high energy physics - Cray, ETA-10 same [26,27)

(GEANT)

76 W.R. Martin / Reactor physics Monte Carlo code vectorization

many cases, throwing away the original Monte
Carlo code and starting over) to obtain these
speedups.

6. Concluding remarks

+ Particle transport Monte Carlo has been suc-
cessfully vectorized. Although the conventional
Monte Carlo aigorithm is inherently scalar in na-
ture due to its history-based structure, the event-
based algorithm has been shown to be very effec-
tive at exploiting vector architectures. While the
first reported results with the vectorized al-
gorithms were with “restricted” Monte Carlo, it is
now clear that general geometry, general-purpose,
continuous-energy Monte Carlo can be vectorized
with excellent speedups.

» The vectorization of a Monte Carlo code is a
significant undertaking. It is clear from the success-
ful vectorization efforts that global algorithmic
changes are necessary — comprehensive changes to
the data structures and possibly a complete re-
write of the code. This degree of effort may not be
possible, or affordable, but is probably essential to
achieve significant speedups. If this substantial
investment is not taken, then one might not enjoy
optimum results, as evidenced by the disap-
pointing results with the KENO-IV vectorization,
which was encumbered by the structure of the
original KENO-IV code.

« The next challenge is multitasking. There is
no question that Monte Carlo can be parallelized,
the principal question is the ease of implemen-
tation. For example, the Winfrith Atomic Energy
Establishment has recently implemented its pro-
duction-level, general-purpose, general-geometry
Monte Carlo code MONKG6 to the Meiko Trans-
puter-based parallel processor with excellent re-
sults [33]. In addition, Martin et al. [34] have
reported results with photon transport on both
shared-memory and distributed-memory parallel
processors. But the case for multiple vector
processors is not so apparent. The question that
needs to be addressed is: How efficient will a
vectorized Monte Carlo algorithm be when imple-
mented on multiple vector processors? For the
current generation of modestly-parallel vector

processors, such as the Cray X-MP /48 and IBM
3090,/400, this may not be a problem. The reason
for this confidence is the inherent parallelism of
particle transport Monte Carlo and the successful
vectorization efforts as reported above. That is,
once the vectorized algorithm is developed, imple-
menting it on multiple vector processors is as
straightforward as implementing conventional
Monte Carlo on multiple scalar processors. How-
ever, as the number of processors grows, the ef-
ficiency may become unacceptable because of the
trade-off between vector length and granularity —
as the number of vector processors increases, the
average vector length will decrease unless the
problem size is also allowed to increase. If one
accepts the fact that such machines will only be
used for truly large simulations, then acceptable
performance will be guaranteed.

7. Acknowledgements

This work was supported by Lawrence Liver-
more National Laboratory, Los Alamos National
Laboratory, and IBM Corporation (Kingston
Laboratory). Portions of this paper are based on
two previous review papers by the author [5,35].

8. References

[1] Los Alamos Monte Group, MCNP - A General Monte
Carlo Code for Neutron and Photon Transport, LA-7396-
M (revised), Los Alamos National Laboratory (1981).

[2] E.A. Straker, W.H. Scott and N.R. Byrn, The MORSE
General Purpose Monte Carlo Multigroup Neutron and
Gamma Ray Transport Code with Combinatorial Geome-
try, USAEC Report ORNL-4585 (1970).

[3] R. Brun, F. Bruyant, M. Maire, A.C. McPherson and P.
Zanarini, GEANT3 User’s Guide, CERN DD /EE /84-1,
CERN, Geneva, Switzerland (May 1986).

[4] E. Troubetzkoy, H. Steinberg and M. Kalos, Trans. Am.
Nucl. Soc. 17 (1973) 260.

[5] W.R. Martin and F.B. Brown, Int. J. Supercomput. Appl.
1(1987) 11.

{6] F.B. Brown and W.R. Martin, Prog. Nucl. Energy 14
(1985) 269.

[7] F.B. Brown, W.R. Martin and D.A. Calahan, Trans. Am.
Nucl. Soc. 39 (1981) 755.

[8] F.B. Brown, Ph.D. thesis, The University of Michigan,
Ann Arbor, Michigan (1981).

W.R. Martin / Reactor physics Monte Carlo code vectorization 77

[9] W.R. Martin, Vectorized Monte Carlo on the Cyber-205,
Final Report for Control Data Corporation, University of
Michigan (1983).

{10} F.B. Brown, in: Proc. Am. Nucl. Soc. Topical Meeting on
Advances in Reactor Computations, Salt Lake City (1983),
p- 108.

[11] F.B. Brown and M.R. Mendelson, Trans. Am. Nucl. Soc.
46 (1984) 727.

[12] F.W. Bobrowicz, J.E. Lynch, K.J. Fisher and J.E. Tabor,
Parallel Comput. 1 (1984) 295.

[13] K.J. Fisher, Vectorized Monte Carlo Radiation Transport,
LA-UR-86-3737, Los Alamos National Laboratory (1986).

[14]} Y. Chauvet, Cray Channels 6 (1984) 3.

[15] Y. Chauvet, Vectorization and Multitasking with a Monte
Carlo Code for Neutron Transport Problems, in: LANL-
CEA Meeting on Recent Applications of the Monte Carlo
Method, CEA-CONF 7902 (1985).

{16] W.R. Martin and D.A. Calahan, Trans. Am. Nucl. Soc. 43
(1982) 399.

[17] W.R. Martin, J.A. Rathkopf and P.F. Nowak, Trans. Am.
Nucl. Soc. 50 (1985) 278.

[18] W.R. Martin, P.F. Nowak and J.A. Rathkopf, IBM J. Res.
Dev. 30 (1986) 193.

[19] K. Asai, K. Higuchi and J. Katakura, Nucl. Sci. Eng. 92
(1986) 298.

[20] J.T. West, L. M. Petrie and J.K. Fraley, KENO-IV /CG.
The Combinatorial Geometry Version of the KENO
Monte Carlo Criticality Safety Program, ORNL
/NUREG/CSD-7, Oak Ridge National Laboratory
(1979).

[21] F.B. Brown, Trans. Am. Nucl. Soc. 53 (1986) 283.

[22] F.B. Brown and F.G. Bischoff, Computational Geometry
for Reactor Applications, in: Proc. Am. Nucl. Soc. Winter
Meeting, Washington, DC (1988).

[23] K. Miura, Comput. Phys. Commun. 45 (1987) 127.

[24] S. Youssef, Comput. Graphics Image Process. 18 (1982)
109.

[25] S. Youssef, Vectorized Simulation and Ray Tracing, in:
Proc. Workshop on Detector Simulation for the SSC,
Argonne National Laboratory (August 1987); Supercom-
puter Computations Research Institute Technical Report
FSU-SCRI-87-63, Florida State University (1987).

[26] J.-L. Dekeyser, Nucl. Instrum. Methods A 264 (1987) 291.

[27] J.-L. Dekeyser, Technical Report on the Vectorization of
GEANT3, Supercomputer Computations Research Center
Report FSU-SCRI-87-63, Florida State University (1987).

[28] S. Youssef, W. Martin, T.C. Wan and S. Wilderman,
Comput. Phys. Commun. 57 (1989) 251.

[29}] C.H. Georgiopoulos and M.E. Mermikides, Comput. Phys.
Commun. 57 (1989) 255.

[30) M.J. Corden, C.H. Georgiopoulos and M.E. Mermikides,
Comput. Phys. Commun. 57 (1989) 260.

[31] U. Chandra, G. Riccardi, J. Vagi, J.L. Dekeyser and F.
Hannedouche, Comput. Phys. Commun. 57 (1989) 263.

[32] M.J. Corden, C.H. Georgiopoulos, R. Brun, F. Bruyant
and J.L. Dekeyser Comput. Phys. Commun. 57 (1989)
268.

(33] R.J. Brissenden, UKAEA Winfrith, private communica-
tion (March 1989).

[34] W.R. Martin, T.C. Wan, T. Abdel-Rahman, and T.N.
Mudge, Int. J. Supercomput. Appl. 1, No. 3, (1987) 57.

[35] W.R. Martin, Particle Transport Monte Carlo on Vector
and Parallel Architectures, in: Sixth IMACS Int. Symp.
Computer Methods for Partial Differential Equations,
Bethlehem, PA (June 1987).

