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SUCCESSFUL VECTORIZATION - REACTOR PHYSICS MONTE CARLO CODE

William R. MARTIN

DepartmentofNuclear Engineering, University of Michigan, Ann Arbor, MI 48109-2104, USA

Most particletransportMonteCarlo codesin use today arebasedon the “history-based”algorithm, whereinoneparticle
history at a time is simulated.Unfortunately,the “history-based”approach(presentin all Monte Carlo codesuntil recent
years)is inherentlyscalarandcannotbevectorized.In particular,thehistory-basedalgorithmcannottake advantageof vector
architectures,which characterizethelargestand fastestcomputersat theCurrenttime, vectorsupercomputerssuchastheCray
X/MP or IBM 3090/600. However, substantialprogresshasbeen madein recentyearsin developingand implementinga
vectorizedMonteCarlo algorithm.This algorithm follows portions of many particlehistories at thesametime andforms the
basisfor all successfulvectorizedMonteCarlocodesthat arein usetoday.This paperdescribesthebasicvectorizedalgorithm
alongwith descriptionsof severalvariationsthat havebeendevelopedby different researchersfor specificapplications.These
applicationshavebeenmainly in theareasof neutrontransportin nuclearreactorandshieldinganalysisandphotontransport
in fusion plasmas.The relative merits of the various approachschemeswill be discussedand the presentstatus of known
vectorizationeffortswill besummarizedalongwith availabletimingresults,including resultsfrom thesuccessfulvectorization
of 3-D generalgeometry,ContinuousenergyMonteCarlo.

1. Introduction 2. Computer performance

The Monte Carlo method is one of the prin- The dramatic increase in computer perfor-
cipal computationaltechniquesused for analyzing mance(and substantialdecreasein the cost perparticle transport problems. Particle transport CPU second)over the past two decadeswould

problemsare characterizedby high dimensionality seem to be working in favor of Monte Carlo
and physical complexity and in many casesthe methods. However, this impressiveimprovement
Monte Carlo methodis the only feasibleapproach in computerperformancehasnotbeendueonly to
to obtain reasonablesolutionswithout resortingto advancesin hardware — a significant portion of
drasticsimplifications of eitherthe problemgeom-

thegains hasbeendueto innovationsin architec-
etry or the problem physicsor both. Historically, lure — how the computeris designedandorganized
the principal drawbackto the useof Monte Carlo

to carry out its computationaltasks.The principal
methodshasbeenits excessivedemandon compu- innovationsfor large-scalecomputationhavebeen
tational resources— Monte Carlo methodsrequire vector(pipelined)architecturesandparallel archi-
enormousamountsof centralprocessorunit (CPU) tectures.This paperwill consideronly vectorar-
time aswell as a large,fast memoryto containthe chitecturesand the developmentof Monte Carlo
geometryinformation andcrosssectiondatabase methodsfor such architectures.As is well-recog-
neededto describethe complicatedphysics. nized,particle transportMonte Carlo is especially

well-suited for parallel architecturesdue to the
independentnatureof the individual particle his-

1 Royal Society Visiting Fellow, Departmentof Mechanical
tories,but this topic will notbe consideredin anyEngineering,Nuclear Power Section, Imperial College, Uni-

versityof London,Exhibition Road,LondonSW7 2BX, UK detail although a few remarks regardingparallel
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Monte Carlo arepresentedin the concludingsec- the end of the time step.The codewill then loop
tion of this paper. over the requisitenumberof histories to achieve

Sinceonevectorinstructionexecutesthe entire acceptablestatistics, which may easily lead to
vector operation (which might correspondto 64 unacceptable computational cost for realistic
multiplicationson the Cray-I or 65535multiplica- simulations.
tions on the CDC Cyber-205),it is necessarythat
the algorithm is vectorized— vectorsof operands
need to be constructedand identical arithmetic 4. Vectorized Monte Carlo
operationshaveto be performedon eachcompo-
nent of the vector. Properly constructed, a The conventionalMonte Carlo algorithmis in-
vectorized algorithm can take advantageof the herentlyscalar in natureandcannotbe vectorized.
vectorarchitectureandrealize the potential gains Sincethe particlesimulationis a randomwalk, or
in performanceofferedby this particulartype of Markov, process,each step of a history is de-
architecture.As will be discussedbelow, the con- terminedby statisticalmeans(e.g., distanceto the
ventional Monte Carlo algorithm is inherently next collision, what kind of collision, what angle
scalar and cannot take advantageof a vector of scatter,etc.). Therefore,treatingmany histories
architecture.However,effort over the pastseveral simultaneouslyfails immediately,becausethe vec-
yearsby a numberof researchershas led to an tor is destroyedafter the first step in the simula-
alternativealgorithm, describedas the event-based tion — some particles in the vector will reach a
algorithm(anunfortunatedescriptionfor the high boundary, some may suffer a capture collision,
energyphysics community,since the term “event” othersa scatteringcollision, some may reach the
bearsno relationto a highenergyphysics“event”), end of the currenttime step,etc. Thus the vector
This paperwill summarizetheseefforts, of particlesis no longer a vector from the stand-

The next section describes the conventional point of the vector CPU becausedifferent oper-
MonteCarlo methodasused for particletransport ationswill be performedon eachcomponentof
analysis.The vectorizedalgorithms are then de- the vector.
scribedalong with resultsfor the different imple- Thus recompiling an old Monte Carlo source
mentations. codeon a vectorsupercomputersuch as the Cray-

X/MP will not resultin an efficient utilizationof
the vector architecture,hence a resultantloss in

3. ConventionalMonte Carlo performancethat can approacha factorof 10—20
comparedwith that potentially attainable.How-

The conventional particle transport Monte ever, recent progressby a numberof researchers
Carlo algorithminvolvesthe statisticalsimulation has shown that significant gains in performance
of one particle at a time moving througha given can be attainedby totally restructuringthe con-
medium. Each simulation is termed a “history” ventionalMonte Carlo algorithmto becompatible
anda realisticsimulationmight consistof 100000 with the vector architecture.Although there are
or morehistories. In a typical Monte Carlo code substantial differences in the individual ap-
such as MCNP [1], MORSE[2], or GEANT3 [3], a proaches,all of thesevectorizedalgorithmshavea
particlewill be emittedvia a sourceroutine,trans- common characteristic— they all are event-based
ported throughthe mediumof interest(tracked), algorithmsversusthe history-basedalgorithmof a
and processedthrough whatevercollisions or in- conventional(scalar)Monte Carlo code.
teractionsmay occur (collision analysis). As the
history unfolds,resultsof the simulation are accu- 4.1. The event-basedalgorithm
mulated (tallies), and the simulation continues
until the particleis terminated,suchas by absorp- The first mentionin the literatureof the event-
tion in the medium, by escapefrom the problem basedapproachis that of Troubetzkoyet al. in
geometry, or, in a time-dependentsimulation,at 1973 [4], who adapted a version of the Monte
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Fig. 1. Eventinitiation andprogression.

Carlo code SAM-CE for use on the Illiac-IV, Once the event is initiated, it continuesuntil
whichwasan experimentalparallelprocessorwith terminatedby:
64 processors. collision (anykind),

Although the Illiac-IV was not a vector boundarycrossing(including escape),
processor,all 64 processorsperformedthe same • census(endof time step),
operationat eachclock step.Thereforeit was a • killing (non-analogMonte Carlo).
“single instruction—multipledata” architecture,or The importantobservationis that all eventsare
SIMD architecture,similar to a vector processor. similar — a vectorof particles(the particle bank)
The algorithm developed for the Illiac-IV was can be processedfor one event in a vectorized
basedon breakingup the overall simulation of fashion.
many historiesinto queuesof tasks,suchas track-
ing to a boundary,processinganelasticscattering 4.2. The eventiteration

collision, crossing a boundary, etc. The signifi-
canceof this work wasthe conceptof splitting the Assume that we have a bank of particles at
history into events,which are similar and which event iteration n, where each particle j is de-
canbe processedin a vectorizedmanner. scribedby a numberof attributesx7, where

We define aneventas that portion of a history
which is initiated with the appearanceof an = [x71, X~72,X~,..., Xj~K],

emergingparticle in phasespace at (r, v) and
and K is the numberof attributes.For example,

terminating at (r’, v’), which is the beginning of
the next event. Figure 1 illustratesthe conceptof (x7~,x72, x~’3)might be the position r = (x, y, z),
an event,andit is clearthat it differs substantially (x5~,x~,x~)might be the direction cosinesQ =

(u, v, w), and x77 the particletime at eventitera-
from its definition in the high energy physics

tion n for particlej. Let us now definethe particle
community.

bankvector I’° as the set of all particlevectorsat
For example,an event might be initiated at

eventiteration n:
phasespaceposition (r, v) by:
• samplingfrom asourcedistribution, = [xc, xc, xc, ..., x~J~
• emergingfrom a scatteringcollision,
• enteringfrom census(time-dependent), whereL~is the numberof particlesin the particle
• crossinga boundary, vector at the beginning of event iteration n. In

emissionfrom a nuclearreaction, general,the particles in the bank vector I’ are
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For event n = 0, 1, 2,...: geometrydata tabulatedby particle index must be
Fetchr. gatheredfrom S and R into the arrays .~‘ and p:
Perform thefree flight analysis:
• gatherthecrosssectiondata andgeometrydata tabulated ~= [,~~ .~3 .~L,,I

by particle,
p2 p3 PL,I’

~— R;
• using ~, sample a vector of distancesto collision, d~ where~ representsthe crosssectionsand the
- using ‘ determine vector of minimum distances to geometrydata for the zonethat containsparticle

boundary, db;

determine the minimum distances to end of event, I’
dmin = mintd~, dbl; (2) Figure 2 is only intendedto be illustrative

• updata the particle coordinates, of the basic event-basedalgorithm, since several
= r” + Q”’r,,,,. different variationshavebeendeveloped,asnoted

Perform thecollision analysis: in sections4.4 and4.5.
• gather particle attributes,

F”, E F”; (3) The compressionstepto eliminateterminat-
evaluatecollision physics for new direction cosinesand ed particleseffectively scramblesthe orderof the
energies, particles in the bank vector F and leadsto one

— ~2,E’ ~— consequenceof the event-basedalgorithm — it is
scatternew particleattributesback into bank, difficult to piecetogetherindividual particlehisto-

—‘ F”, E’ -. F”.
ries from the event-basedsimulation.Perform the boundaryanalysis:

• gatherparticlezone indicesz, (4) There is a premium on efficient datahan-
Z * F”; dung operations,due to the needto gather, scatter,

determinenew zoneindices, compress,etc. the particle vector and other data
— Z; arraysbefore, during, and after every eventitera-

- scatternew zoneindicesback into particlebank,
tion.z’ —IF”.

Update the particle bank, (5) Most of the steps are vector operations,
F” F”~ (with L~~1particles) except for the data handling operations, which
(e.g. compressOut terminatedparticles). may be custom-coded(sometimes in hardware)

• If L~~1# 0, continue, routinesandthe tally operations,which cannotbe

Fig. 2. The basiceventiteration. vectorized.The collision analysis,boundarycross-
ing analysis(perhapswith Russianroulette and
splitting), and other operationsto determinethe
outcomeof the eventcan also be performedin a

orderedrandomlyandthis orderwill changefrom vector fashion, but now sub-vectorsneed to be
one event iteration to the next — no attempt is defined(e.g.gatheredfrom the main particle vec-
madeto keep track of individual particles in F tor) for eachdistinct outcomeandthenprocessed.
from oneeventiterationto the next.Given F”, the
goal is to advanceit to the next event iteration 4.4. Thestack-drivenvariation
n + 1, as summarizedin fig. 2.

In the basicevent-drivenalgorithm,theparticle
vector is processedin a manner similar to the

4.3. Commentson thebasicevent-basedapproach conventionalhistory-basedalgorithm— one cycles
throughthe free-flight analysis,then the collisions

The following commentscan be maderegard- analysis routine, then the boundary analysis
ing the event-basedalgorithmillustrated in fig. 2: routine, etc., on an event-by-eventbasis. Thus at

(1) The arrays S and R are the usual cross any time during the simulation, all particleswill
sectionandgeometryarrays. In order to perform be in the sameevent iteration.A variationon this
the vector calculationsfor the distancesto colli- basic approach, called the “stack-driven” al-
sions and boundaries, cross section data and gorithm, ariseswheneventsare further subdivided
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into smaller computationaltasks which are then Another characteristicis the mannerin which
processedindependently. The simplified event- the particle banks are managedin stack-driven
basedalgorithm in fig. 2, for example, may be algorithms. In a “tagged-particle”scheme,thereis
logically subdividedinto the four separatecompu- only one particle bank,but an additionalparticle
tational tasksof free-flight analysis,collision anal- attribute (i.e. the “tag”) is used to keeptrack of
ysis, boundaryanalysis,and particle termination the next task to be performedon each particle.
analysis.Rather than cycling through thesefour The particle tags are examinedto determinethe
tasksin a fixed order, thecalculationmay proceed next task to be processed.In the “explicit stack”
by selectingthe task involving the greatestnumber scheme,a separateparticle stack is explicitly re-
of particlesand then performing the analysisfor servedfor eachcomputationaltask. Uponcomple-
that task. Basedon the outcomeof this analysis, tion of a task, particle datamustbe dispersedto
the affectedparticlesare thenqueuedfor the next the appropriatestacksfor further analysis.In the
appropriatetasks. “implicit stack” scheme,all particledataresidein

In comparing the event-basedalgorithm and one large bank, and pointers to the particles are
the stack-drivenvariation, the principaldifference queuedup for each task. A task usesits pointer
is the order in which computational tasks are list to gatherparticle data from the bank, per-
executed. The fixed sequenceof tasks in the formsthe task analysis,scattersupdateddataback
event-basedalgorithm leads to simpler control to the particle bank,and then dispersesthe par-
logic andmanagementof particleattributedataat tide pointer list to queuesfor other tasks.
the expenseof shorter vector lengths for each With thesedefinitions, let us now considerthe
individual task. The stack-drivenvariation selects work up to the current time to vectorizeMonte
tasks in a sequencewhich maximizesthe vector Carlo for particletransport.Only abrief summary
lengths,but involvesadditional logic for managing of the various efforts will be included here — the
the particle attribute data. However, it shouldbe interestedreaderis referred to a comprehensive
noted that the vectorcomputationsperformedin discussionof the topic of vectorizedMonte Carlo
each task are the samein either approach.Ad- methodology[6] or the above-referencedreview
ditional details regarding the stack-driven ap- paper [5] which discussthe various vectorization
proach and its various implementationsmay be efforts in moredetail.
found in the recentreview articleby Martin and
Brown [5].

5. Vectorizationresults

4.5. Other variations
This section is a survey of resultsobtainedby

Although all of the vectorized Monte Carlo various authorsin the areaof vectorizedMonte
algorithmsare basedon the event-basedapproach, Carlo. It is organizedby applicationarea,andit it
eitherthe basicalgorithmor the stack-drivenvan- notedthat mostof the applicationsrelate to reac-
ation, thereare significant differencesin specific tor physics andshieldingproblems.
implementations.The principal variations among
theseapproachesdependon the mannerin which 5.1. Gammatransport
theparticlevectorsare organizedandtreated.One
characteristicis whether or not particles from The initial effort to develop a vectorized a!-
more than one geometriczoneare treatedat the gorithm for a vector supercomputerwas that of
sametime. If the particlebank F only consistsof Calahan,Martin and Brown [6—8]andwas based
particleslocatedwithin a single geometriczone, on a simple vectorizedcode from Los Alamos
we denote this as a “one-zone” algorithm. An National Laboratory (LANL) that analyzedonly
“all-zone” algorithmwould thenemploy a particle gammatransportin a single,homogeneouscarbon
bankconsistingof particlesfrom any zonein the cylinder. Speedupsin the range of 5—10 were
problemgeometry. reported. Thesecodeswere mainly intended for
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basic algorithmic studiesandnot for the purpose optimized for the CDC Cyber-205vector super-
of drawing conclusionswith respect to produc- computer.
lion-level Monte Carlo codes, althoughthey did
provide valuableguidancefor determiningwhich 5.4. Photon transport — 2-D
approachesshould be taken for the production
codes.

In a separateapplicationarea, Bobrowicz [12]
developeda vectorized Monte Carlo codefor the

5.2. Multigroup neutrontransport analysisof photontransportin a 2-D Lagrangian
mesh.The approachwas all-zone,but with fixed

Subsequenteffort by Brown et al. [6,8] was stacksfor mostof the distinct computationaltasks
devotedto the developmentof a vectonizedMonte neededfor the Monte Carlosimulation.Forexam-
Carlo demonstrationcodethat incorporatedmost ple, separateparticle stacks were constructedto
of the significant physicsoptionsin standardpro- determinethe distanceto boundary, to perform
duction-levelMonte Carlo codes,butdid not have

thecollisionanalysis,to performThomsonscatter-
many of the userconveniencestypical of a true ing, and other tasks. When a particle was toproductioncode.This code,namedMCVMG, was undergoone of thesetasks, it was put into the

a multigroup (discreteenergybins) code,andhad correspondingstack and the stack was executed
a companionscalarcode(MCS) that was devel- whenits length reached64, which is the length of
opedto allow a fain evaluationof the efficiency of the Cray vector registers.As such,this algorithm
the vector code. The vectorizedcode was devel- wasoptimized for the Cray architecture.Reported
oped for the CDC Cyber-205supercomputerand resultsindicatethatspeedupswere in the rangeof
utilized a one-zonealgorithm, in which only par- 10—20 althoughthis wasrelativeto an old version
tides in the samezone(geometricalregion) are of the scalarcode. Recently, improved speedups
processedat the sametime (hencerequiring an have been reported by Fisher [13] for this ap-
“outer iteration” over zones to process all the proach.
particles). The initial results were actually ob-
tainedby emulatingthe Cyber-205instructionson
a conventionalcomputerandthenusingpublished 5.5. Neutrontransport — 2-D

timing data to estimatethe speedups[8]. Subse-
quent implementationof the vector code on a Chauvet [14,15] has developed a vectorized
Cyber-205 at Colorado State University verified Monte Carlo algorithmfor neutrontransportin a
theseresults to within 10 % [9]. The results in- 2-D Lagrangianmesh.The algorithmis similar to
dicated a speedupin the range 25—40 with MC- the approachof Bobrowicz, exceptthereare fewer
VMG relative to the optimized scalarcodeMCS stacksanddatamovementbetweenstacksis mini-
for severalrealisticproblems. mized wherepossibleby transferringparticle in-

dexesratherthanparticledatabetweenthe stacks.
5.3. Continuous energyneutron transport — lattice The reportedspeedupsrelativeto the scalarcode
geometry on the Cray-i were in the range of 7—13. The

vectonizedversions for the Cray-i and Cray X-
Brown [10] and Brown and Mendelson [11] MP/48 employedassemblycoding for determin-

have reported excellent results for a vectonized, ing distanceto boundary,which is generally the
continuous-energyMonte Carlo codefor nuclear mostcomputationally-intensiveportionof a Monte
reactorlattice analysis.They haveobtainedspee- Carlo code. The Cyber-205 version usedvendor
dups in the rangeof 20—85 comparedwith the suppliedsoftware (“q8” calls) for the datahan-
previouslyused scalarproduction code. This ap- dling operations(gather/scatter/compress,etc.)
proach utilized an all-zone algorithm with three while the Cray X-MP/48 version took advantage
fixed stacksto handlethe tracking,collision anal- of the hardwaregather/scattercapabilitiesof that
ysis, and the total particle bank. The code was computer.
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5.6. Photon transport — 2-D 5.8. Continuousenergyneutron transport — general
geometry

In additionto Bobrowicz, Martin et al. [16—18]
Except for the KENO-IV work, none of the

havedevelopeda vectorizedMonte Carlocodefor above approachestreated the case of a generalphoton transportin a 2-D Lagrangianmesh,typi-

cal of an inertial confinementfusion plasmacalcu- geometryMonte Carlocodewith a generalphysics
lation. This code, namedVPHOT, employedan package.However,this deficiencyappearsto have

beenaddressedin recentwork reportedby Brown
all-zonealgorithmwith two major fixed stacksof
particleandseveraldynamicstacksthatarecreated [21,22]. This effort has resultedin a three-dimen-sional, general-geometry,continuous-energyMon-
upon demand.A scalarversionof VPHOT, named te Carlo productioncodethat has essentiallyno
SPHOT, was developed to allow a meaningful

restrictions on problem geometry or problem
comparisonof thevectorandscalaralgorithms. In
addition, the VPHOT and SPHOT resultshave physics (for reactoranalysis),henceis capableofanalyzingconfigurationstypically treatedby pro-
beencomparedwith a referenceMonte Carlocode

duction codes such as GEANT3, MCNP, or
at Lawrence Livermore National Laboratory KENO-IV.
(LLNL) for a typical ICF test problem. Results Brown’s method utilizes an all-zone approach
obtained to date indicate that VPHOT is ap- with one largestackto hold particledatabetween
proximatelya factorof 5 fasterthan SPHOTand

events. However, rather than shuffling particlenearly a factor of 12 faster than the reference dataamongthe stacks,Brown constructsqueues
LLNL code for the Cray-X/MP. This codehas of pointers for each separatetask, where the
also been adapted to the IBM 3090/400 with pointer refers to the appropriateparticle in the
vector facilities and speedupsconsistentwith the

main stack. An event queue is processedif it
vector/scalarspeedratio of the IBM 3090 have containsthe mostparticles(indexes)by gatherup
beenobtained.

the affected particle particle attributes (perhaps
only a fractionof the total), performingthe corre-
sponding(vectorized)operations,andthenscatter-

5. 7. KENO-IV veclorization
ing the affected attributes back into the main
stack.Thus the particlepointersbecomethe index

Asai et al. [19] haveattemptedto vectorizethe list and are “shuffled” among the stacks rather
production-levelMonte CarlocodeKENO-IV [20] than the particle attributes. Shuffling pointers
with disappointingresults.They employedan all- ratherthan particle datawas also employedto a
zone algorithm with dynamic stacksfor the van- lesserextentby Martin et al. [16—18]andChauvet
ous tasks which are processedin order of length. [14,15].
The resulting vectorized code was testedon two Brown has reported speedupsin excessof 10
relatively simpleconfigurationsand yielded spee- for a full-core 3-D pressurizedwater reactor
dups of 1.4 with respect to the original (scalar) (PWR) model consistingof a pressurevesselcon-
version of KENO-IV. They attribute theserela- taming 137 fuel assemblies,with each assembly
tively poor results (comparedto results obtained containing a 14 x 14 array of fuel pins, poison
by others) to deficiencies in the compiler, slow pins, control rods, waterholes,etc. The absolute
indirect addressing(gather/scatter),andthe large performancefor this code is in the rangeof 9—15
number of sorting operations (constructing ~.ts/trackon the CDC Cyber-205for a typical mix
queues).However, given the excellent resultsob- of applicationsand less than 8 vs/track on the
tamedby others(includingrecentresultsby Brown Cray X/MP4. Theseresultsare the most impres-
with a production-level code discussionbelow), sive results reported to date and indicate that
theremay be somealgorithmic changesthat could vectorized Monte Carlo hasfinally matured— the
be incorporated into the vectorized version of vectorizedcodedevelopedby Brown is now the
KENO-IV to obtainimproved results, principal production-level Monte Carlo code at
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Knolls Atomic Power Laboratory (KAPL) and is 5.11. GEANT3 vectorizationeffort
usedon a daily basis.

A descriptionof the initial vectorizedalgorithm

5.9. Electrontransport — 3-D for the geometricalroutinesin GEANT3 hasbeen
reported by Dekeyser[26,27]. No performance
resultsweregiven.

Miura [23] has recently reported a factor of
8—10 speed-upfor the vectorizationof the EGS4
(electron gamma shower) coupled electron and 5.12. Recentwork reportedat CHEP89
photon transport code, for infinite medium
geometries.His algorithmutilizes the stack-driven Severalpaperspresentedat the CHEP89con-
approachwherein queuesof particles are’con- ference related to ongoing efforts to vectorize
structedandthe queuewith the largestnumberof Monte Carlo codes (including GEANT3) for
particlesis processed.While this versionof EGS4 simulation of high energy physics experiments
containsvectorized collision analysisroutines,no [28—32],and these proceedingsshould be con-
trackingto boundariesis permittedthusfar. sultedfor further details.

5.10. Particle tracking 5.13. Summaryof Monte Carlo vectorizationefforts

Youssefhas recently applied a vectorized ray Table 1 summarizesthe above discussionre-
tracingalgorithm[24] to Monte Carlo simulations garding the vectorization of Monte Carlo codes.
of electromagneticshowers.Basedon preliminary As can be seen,impressivespeedupscan be ob-
results for benchmarkcasesinvolving pure par- tamedbut it hasbeenfound in all successfulcases
tide tracking (no collision analysis)he reportsa that substantialmodifications and revisionswere
factor of 20 speed-upfrom vectorization[25]. needed to the original Monte Carlo codes (in

Table1
Summaryof Monte Carlo vectorization efforts

Author Application/Type Speedup Computer vs. Ref.

Brown, Martin and gamma transport, 7 Cray-i CDC-7600 [6]
Calahan cylinders

Brown,Martin and neutrontransport, 30—40 CDC Cyber-205 CDC-7600 [6]
Calahan multigroup,3-D

Brown,Mendelson neutrontransport, 20—85 CDCCyber-205 CDC-7600 [ill
continuousenergy,2-D

Bobrowiczet.al., photon transport,2-D 4—6 Cray-i, XMP Cray-i (i2,13]
Fisher

Chauvet neutron transport, 2-D 7—13 Cray-i, XMP Cray-i [14,151
Martin, Nowak and photontransport,2-D 4—9 Cray-i, XMP, Cray-i [181

Rathkopf Fujitsu VP-200
Asai,Higuchi and neutrontransport, i.4 FujitsuVP-200 same [i9]

Katakura multigroup, 3-D
Brown neutrontransport, > 10 Cyber-205 CDC-7600 [21,22]

Continuousenergy,3-D
Miura high energyphysics(EGS4) 8 Amdahl1200 same [23]
Youssef ray tracing 20 ETA-b same [25]
Dekeyser high energy physics — Cray, ETA-iO same [26,271

(GEANT)
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many cases,throwing away the original Monte processors,such as the Cray X-MP/48 and IBM
Carlo code and starting over) to obtain these 3090/400,this may not be a problem.The reason
speedups. for this confidenceis the inherentparallelism of

particle transportMonte Carlo andthe successful
vectorization efforts as reported above. That is,

6. Concluding remarks oncethe vectorizedalgorithmis developed,imple-
menting it on multiple vector processors is as

• Particle transport Monte Carlo has beensuc- straightforward as implementing conventional
cessfully vectorized. Although the conventional Monte Carlo on multiple scalarprocessors.How-
Monte Carlo algorithmis inherently scalarin na- ever, as the number of processorsgrows, the ef-
ture dueto its history-basedstructure, the event- ficiency may becomeunacceptablebecauseof the
basedalgorithmhasbeenshown to be very effec- trade-offbetweenvectorlength and granularity —

tive at exploiting vector architectures.While the as the numberof vector processorsincreases,the
first reported results with the vectorized al- average vector length will decreaseunless the
gorithmswerewith “restricted” Monte Carlo, it is problem size is also allowed to increase. If one
now clear that generalgeometry,general-purpose, acceptsthe fact that such machineswill only be
continuous-energyMonte Carlo can be vectorized usedfor truly large simulations, then acceptable
with excellentspeedups. performancewill be guaranteed.

• The vectorizationof a Monte Carlo code is a
significantundertaking.It is clear from the success-
ful vectorization efforts that global algorithmic 7. Acknowledgements
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the data structuresand possibly a complete re- This work was supportedby LawrenceLiver-
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